

2 | www.redhat.com

Performance and Scalability of the RMDS Market Data Platform
(based on Reuters RMDS)

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

"Red Hat," Red Hat Linux, the Red Hat "Shadowman" logo, and the products listed are trademarks or
registered trademarks of Red Hat, Inc. in the United States and other countries. Linux is a registered
trademark of Linus Torvalds.

All other trademarks referenced herein are the property of their respective owners.

© 2008 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from the copyright holder.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com | 3

Table of Contents

1. Executive Summary .. 5
2. RMDS: Introduction and Architecture ... 7

2.1 Growing Demand for High Throughput and Low Latency .. 7
2.2 RMDS .. 7

2.2.1 Source Distributor ... 9
2.2.2 P2PS (Point-To-Point Server) ... 9

3. Testing Methodology... 11
3.1 Two-Node Configuration ... 11
3.2 Three-Node Configuration ... 12
3.3 Publisher Application: Sink_Driven_Src .. 12
3.4 Subscriber Application: RMDSTestClient .. 12
3.5 RMDS Components Being Tested: Src_Dist, P2PS .. 13
3.6 Middleware / Transport: RRCP ... 13
3.7 Data Format: RWF .. 13
3.8 Performance Metrics: Update Rate & Latency .. 13

3.8.1 End-to-End Latency .. 13
3.9 Watchlist(s) ... 14
3.10 Process and Interrupt Binding ... 14
3.11 IRQbalance ... 14
3.12 TCP Segmentation Offload (TSO) ... 15

4. Hardware/Software Versions & Configurations ... 16
4.1 Hardware ... 16

4.1.1 Load Driver System .. 16
4.1.2 System(s) Under Test ... 16

4.2 Network ... 18
4.3 Software .. 18

4.3.1 RMDS 6.0.2.L2 ... 18
4.3.2 RMDS 6.0.3.L1 ... 18
4.3.3 RHEL 4.4 .. 18
4.3.4 RHEL 5.1 .. 18
4.3.5 RHEL & RMDS Configuration & Parameter Settings .. 18

4.4 Test Tools and Test Data Files ... 20
4.5 Disabled RHEL Services and Monitoring Tools ... 20

5. 2-Node versus 3-Node Configuration Comparison - Latency Test Results 22
5.1 Two-Node Configuration (RHEL 4.4) Latency ... 22
5.2 Two-Node Configuration (RHEL 4.4) Latency – with Process & Interrupt Binding 23
5.3 Three-Node Configuration (RHEL 4.4) Latency .. 24
5.4 Three-Node Configuration (RHEL 4.4) Latency – with Process & Interrupt Binding 25
5.5 Comparison of 2-Node and 3-Node Configurations... 26

6. RHEL 4.4 versus RHEL 5.1 - Latency Test Results .. 27
6.1 RHEL 4.4 (2-Node Configuration) Latency .. 27
6.2 RHEL 4.4 (2-Node Configuration) Results – with Process & Interrupt Binding 28
6.3 RHEL 5.1 (2-Node Configuration) Results .. 29
6.4 RHEL 5.1 (2-Node Configuration) Results – with Process & Interrupt Binding 30

4 | www.redhat.com

6.5 Comparison of RHEL 4.4 and RHEL 5.1 ... 31
7. Summary & Conclusions ... 32
8. Next Steps (Tuning & Optimization) .. 33

8.1 Multi-core, Multi-NIC Configurations with Interrupt and Process Binding 33
8.2 Update Throughput ... 33

8.2.1 P2PS – Update Throughput .. 33
8.2.2 Source Distributor – Update Throughput .. 33

8.3 RMDS Infrastructure Topologies ... 33
8.3.1 Traditional Topology ... 33
8.3.2 Stacked Topologies .. 34

8.3.2.1 P2PS Multiplex Topology ... 34
8.3.2.2 P2PS Multipath Topology ... 34
8.3.2.3 P2PS Multipath/Multiplex Topology .. 35
8.3.2.4 P2PS Fanout .. 35
8.3.2.5 Src_Dist Multipath/Multiplex Topology ... 36
8.3.2.6 Stacked Topology for Latency Testing ... 36

8.4 10 GigE and Infiniband .. 37
8.5 RealTime Kernel .. 37

9. References ... 38
10. Appendix I: Determining Steady State .. 39
11. Appendix II: Recent RMDS/RHEL Results from STAC Research 43

www.redhat.com | 5

1. Executive Summary

In the financial services industry, automated trading is a race – firms develop sophisticated
strategies and attempt to beat the competition by analyzing and acting on market information
faster than other traders. The quicker the systems, the better the financial results. For these
financial services firms, one of the keys to maximizing portfolio performance is reducing data
latency, or the time it takes for the market information to get to the trading applications. RMDS
(Reuters Market Data System) is a high throughput, low latency platform for market data
applications. This reference architecture is Phase I of a study of the performance, scalability,
tuning, and optimization of RMDS running on RHEL® (Red Hat® Enterprise Linux®).

All the performance tests described herein used the Reuters RMDS performance testbed.
Typically these tests are run using configurations of 3 or more nodes – one node runs the
load driver, the second node runs the RMDS infrastructure component that publishes market
data (= source distributor), and a third node runs the RMDS infrastructure component that
subscribes to market data (= Point-to-Point server = P2PS). Due to a shortage of hardware
and being pressed for time, it was decided to run the latter two nodes on a single physical
node with a loop-back ethernet connection to simulate the network hop. However, before
deciding on using the 2-node configuration, a series of tests were run to position the relative
performance of the 2-node and 3-node test configurations. As documented in this report, the
3-node configurations always outperformed the 2-node configurations because the cpu
became the bottleneck in the 2-node configuration.

• With these results we are confident that real-world 3-node configurations
would perform better than any 2-node configurations tested in the lab. With
this assurance, we proceeded to use the 2-node configuration for the RHEL
4 versus RHEL 5 comparison.

Today, many of our existing customers use RMDS on RHEL-4. For many of these customers
who are considering moving from RMDS-5 / RHEL-4 to RMDS-6 / RHEL-5, we wanted to
ensure continued leadership performance. One of the primary goals of this study was to
ensure that there would be no performance or other problems when moving RMDS from
RHEL-4 to RHEL-5. The results clearly show:

• In the configurations tested, there is no statistically significant performance
regression when going from RMDS-6 / RHEL-4.4 to RMDS-6 / RHEL-5.1

• Process and Interrupt binding to cpu cores did not make any appreciable
difference in performance

• Setting TSO (TCP Segmentation Offload) to “on” and “off” did not make any
appreciable difference in performance

The configurations employed for the tests in this report used 2-core Intel® Xeon® processors
and a limited number of 1GigE NICs (Network Interface Cards). In follow-on testing, the goal
is to use multi-core servers with a larger number of NICs. This will enable us to more fully
explore the impact of binding instances RMDS infrastructure processes and NIC interrupts to
cpu cores in different topologies

6 | www.redhat.com

The Securities Technology Analysis Center (STAC®) is a provider of performance
measurement services, tools and research to the securities industry. A summary of some
recent STAC reports about RMDS/RHEL throughput and latency are included in the
appendix. STAC reports are available at: http://www.STACresearch.com.

STAC, on 18-March-2008, reported that RMDS 6 / RHEL 5.1 running on IBM BladeCenter® H
with HS21 Blades and using Blade Network Technologies (BNT) 10 Gigabit Ethernet Switch
and Chelsio Communication's 10 Gigabit Ethernet Network Interface Card (NIC) achieved:

1. Lowest mean latency ever reported with RMDS
• Less than 0.9 milliseconds of end-to-end infrastructure latency at up to

600,000 updates per second in the low-latency configuration of RMDS
2. Lowest standard deviation of latency ever reported with RMDS

• Less than 0.5 milliseconds at rates up to 600,000 updates per second.
3. Very high output rate in the ― “Producer 50/50” fanout test of a stacked

P2PS
• 5.8 million updates per second
• 30% of this due to the TCP/IP Offload Engine (TOE) in the Chelsio

NIC Blade Network Technologies 10GigE Switch

Based on recent STAC reports at www.STACresearch.com/redhat and a Sun® report dated
November 2007 www.sun.com/third-arty/global/reuters/collateral/Benchmark_WP_110207.pdf
a comparison of RMDS mean latency performance on Solaris/x86-64 and RHEL/x86-64 is
shown below.

Figure 1

Similarly, data in these reports shows RHEL/x86-64 outperforming Solaris/x86-64 in the
RMDS throughput delivered.

www.redhat.com | 7

2. RMDS: Introduction and Architecture

2.1 Growing Demand for High Throughput and Low
Latency
The rapid growth of data traffic in the capital markets industry continues to be a major
concern for technologists, as they attempt to deal with the dual requirements of higher
throughput and lower latency.

Market data latency has a huge impact on the overall speed with which a trading firm can
execute a transaction in response to new information. In some markets, firms can profit from
as little as one millisecond of advantage over competitors, which drives them to find sub-
millisecond optimizations of the systems fueling their trades. The latency obsession has
resulted from the spread of automated trading to nearly every geography and asset class, and
the resulting imperative to exploit—or defend against—new latency arbitrage opportunities.

Another consequence of automated trading is a ballooning of market data traffic volumes,
which complicates the latency race, thanks to a well-established tradeoff between throughput
and latency. Update-rate increases of 2 to 6 times in a single year are not uncommon for
today’s exchanges. Automated trading drives this traffic by both increasing transaction
volumes and increasing the ratio of quotes and cancellations to actual trades. While North
American venues still produce the most traffic, many observers expect the Markets in
Financial Instruments Directive (MiFID) to trigger a sharp increase in European traffic as the
number of trade-reporting venues proliferates. On top of this, large sell-side institutions often
generate enormous amounts of real-time data internally, which they pump onto their internal
market data system. The traffic from internal content sometimes exceeds that of information
coming in from external sources.

This combination of forces keeps market data technologists on the lookout for new
technologies that can shift the performance tradeoffs in the right direction.

2.2 RMDS
The Reuters Market Data System (RMDS) provides a platform for efficient and reliable
distribution of Reuters, value-added and third-party data to client applications. In response to
the market demand for reduced total cost of ownership, improved performance, flexibility and
ease of implementation, Reuters supports the next-generation version of Reuters Market Data
System (RMDS 6.0) on Red Hat Enterprise Linux (RHEL) on both the Intel Xeon and AMD
Opteron x86-64 platforms.

RMDS is a modular system consisting of several products which can be introduced
incrementally. These products provide a number of powerful capabilities.

• Point-to-Point delivery (P2PS) – ideal for high volume applications that require a

8 | www.redhat.com

dedicated distribution for desktops.
• Multicast delivery (RTIC: TIC-RMDS Edition) – ideal for desktop applications with

high commonality.
• Internet delivery (IFP: Internet Finance Platform) – ideal for applications with low

update frequency integration requirement.
• Reuters Wireless Delivery System (RWDS) – provides streaming access to Reuters

and internal data on the BlackBerry.
• Wide-Area Networking (WAN) – ideal for efficiently sharing data with remote users or

branches.

Figure 2

This new version of this low-latency market data platform has been comprehensively
enhanced to give increased performance and increased flexibility. RMDS 6.0 adds support for
new data formats (OMM/RWF), the Reuter Data Feed Direct (RDF Direct) and the Reuters
Foundation API 6.0 (RFA).

Reuters has introduced the Open Message Model (OMM) and Reuters Wire Format (RWF)
in the RMDS 6.0 – a new and open set of data modeling tools which deals with complex data
types. This new message model gives Reuters customers and partners the ability to publish
data across their enterprise in a wide variety of formats via the RMDS platform. RWF, the new
binary message format supported in RMDS 6, substantially reduces the size of the market
data updates. This increased efficiency allows RMDS 6 to support higher update rates and
comfortably manage the rapid growth in real-time update rates in the market.

www.redhat.com | 9

RMDS 6.0 delivers significant performance benefits like reduced latency, increased
throughput, reduction in network bandwidth requirement and a drop in image sizes.

RMDS 6.0 is also backward compatible with older version of RMDS. This means that
customers can implement RMDS 6 components alongside RMDS 5 elements, allowing new
investment to be focused on components which need new functionality or higher
performance, while continuing to exploit previously deployed components. This flexibility is
underpinned by the support for Red Hat Enterprise Linux across both RMDS 5 and RMDS 6.
This allows skills, experience and capabilities to be re-used across both RMDS 5 and RMDS
6 while allowing customers to choose the appropriate hardware platform – for each new
component.

The two key components that are the subject of this performance and scalability study are:
1. Source Distributor
2. P2PS (Point-to-Point Server)

2.2.1 Source Distributor
The Source Distributor is a key component used by all source server publishers in order to
make their content available on the Market Data Hub (MDH). It implements source specific
features such as recovery, data quality, state management, load balancing, source mirroring,
resource management and support for interactive/broadcast publishers.
Optionally, the Source Distributor is also capable of maintaining a cache of items so that new
requests for currently serviced items can be satisfied without interaction with the source
application. In this case the Source Distributor automatically applies any updates written by
the application to the cache. The Source Distributor can simultaneously serve a configurable
number of independent source applications for the same or different services.
The Source Distributor also optionally supports field and update filtering. Certain fields can be
removed from the data and time-based conflation can be used to cut down on bandwidth
requirements.
The Source Distributor can simultaneously support a configurable number of independent
source applications for the same or different services. Source applications use the RFA or
legacy SSL Library to communicate with the Source Distributor infrastructure component.
Source applications can run on the same node as the Source Distributor or they can run on a
remote node if performance/security (e.g. firewalls) requirements warrant the added expense.
Source Distributor 6.0 supports standard RMDS capabilities such as Source Mirroring,
Preemption and Load Balancing for OMM sources. It also supports an optional data cache for
OMM, Marketfeed Record and ANSI Page data.
MDH is the RMDS backbone consisting of components that communicate using RRMP
(Reuters Reliable Management Protocol) & RRCP (Reuters Reliable Communication
Protocol), i.e. Source Distributor, P2PS, and RTIC.

2.2.2 P2PS (Point-To-Point Server)
The P2PS combines an optional high-speed in-memory data cache with intelligent distribution

10 | www.redhat.com

semantics used to implement the Point-to-Point Client LAN. The P2PS provides consolidated
point-to-point access to all the information available on the Market Data Hub. It consumes
data provided on the MDH and/or the Multicast Client LAN, optionally caches it and then re-
distributes the data (using TCP/IP) to consumer applications upon request. This protects the
consuming applications from the complexities of the multicast based traffic of the MDH and
Client LAN. The P2PS supports all forms of simple publishing.
The P2PS can handle all forms of data, such as quotes, chains, time-and-sales, news stories
and headline streams, etc. Access to P2PS data is authorized through DACS (Data Access
Control System) and enforced within the P2PS.
Applications typically have backup Point-to-Point Servers in order to provide resiliency. When
an application loses connectivity to a P2PS, it will attempt to connect to a backup P2PS and
re-open all of the items of interest (also known as failover). During initialization an application
will periodically try each P2PS (in its configured list) in a ‘round robin’ fashion until it
successfully establishes communication with one of them.
P2PS 6 supports connections with SSL-based client applications, RFA 5.0 and RFA 6.0. It
provides access to all of the data types currently available to SSL-based applications and the
new OMM data. In addition, P2PS 6 automatically converts RWF in the MarketPrice domain
to Marketfeed for SSL-based client applications. It also converts Marketfeed data to RWF so
that RFA 6.0 applications do not need to parse Marketfeed.

Figure 3

www.redhat.com | 11

3. Testing Methodology

3.1 Two-Node Configuration

Figure 4

12 | www.redhat.com

3.2 Three-Node Configuration

Figure 5

3.3 Publisher Application: Sink_Driven_Src
Sink_Driven_Src is a single threaded source application which can be used for both
throughput and latency testing. Sink_Driven_Src provides simulated data with automated
responses and updates. Sink_Driven_Src is used in conjunction with RMDSTestClient.

3.4 Subscriber Application: RMDSTestClient
RMDSTestClient is an RSSL/SSL consuming application that can request instruments listed
in a file and log (optionally) the data to console or file. (RSSL = Reuters SSL protocol.)
RMDSTestClient is a single threaded test tool. By default this tool decodes only the message
header for updates

www.redhat.com | 13

3.5 RMDS Components Being Tested: Src_Dist, P2PS
All experiments used a single instance each of:

1. Source Distributor (Src_Dist) and
2. Point-To-Point Server (P2PS)

3.6 Middleware / Transport: RRCP
Src_Dist and P2PS may communicate using either:

1. TIBCO Rendezvous
2. Reuters Reliable Communication Protocol (RRCP)

The tests in this study use RRCP. Physically, an instance of Src_Dist and an RRCP daemon
(RRCPD) communicate with another instance of RRCPD and P2PS.

3.7 Data Format: RWF
There was a choice:

1. MarketFeed (MF) update size of 140 bytes, and an equivalent
2. Reuters Wire Format (RWF) update size of 74 bytes.

The tests in this study used the RWF format.

3.8 Performance Metrics: Update Rate & Latency
For throughput testing, the Sink_Driven_Src utility was used to generate update traffic, and
the RMDSTestClient utility was used to consume the updates.

The infrastructure is tuned for maximum throughput, and the update rate was increased until
the CPU limit was reached with no errors reported.

3.8.1 End-to-End Latency
Latency is defined as the time for a data item to propagate through one or more RMDS
components. “End to end” latency is defined as the delta between the time an update is
posted by the publisher application to an RMDS API and the time the same update is
received by the consuming application from an RMDS API, i.e. it includes both the latency
contribution from the API and the core infrastructure components.
The results below include the mean, standard deviation, and minimum and maximum
latencies measured for the tests. While looking at latency results, it is important to not only
look at the average latency but at the distribution of latency. Standard deviation is the most
commonly used measure of spread. In a normal distribution, about 68% of the data points are
within one standard deviation of the mean and about 95% of the data points are within two
standards deviations of the mean.
The embedded timestamp approach was used to calculate end-to-end latency (Quotes and

14 | www.redhat.com

Trades) data. RMDS 6.0 end-to-end update latency is measured by using Sink_Driven_Src as
the publisher and RMDSTestClient as the subscriber. In the embedded timestamp approach,
the publisher embeds timestamps into selected updates that the subscriber uses for latency
calculations. In this scenario, the publisher and subscriber must be running on the same node
for accurate timestamps.

3.9 Watchlist(s)
Each subscribing client (connected to the P2PS) can specify a watchlist of securities. Any
updates the P2PS receives relating to a security on a watchlist is forwarded to (all) the clients
which have that security on their watchlist. Long watchlists can significantly increase the load
on the P2PS. The worst case scenario is when there are a lot of clients connected to a P2PS,
each with a long watchlist and a high degree of commonality among the watchlists of the
clients. In this case each update the P2PS receives must be forwarded to many clients.

For experiments in this study we used a 100,000 item watchlist.

3.10 Process and Interrupt Binding
Tests have shown that there is less fluctuation in the update rate if the RMDS infrastructure
components are bound to individual CPU(s). In addition to such binding, Reuters has found
that binding NIC interrupts to a single CPU helps achieve better CPU utilization on the
System Under Test (SUT) node(s). [By default, on a dual NIC dual CPU SUT node, interrupts
from eth0 are bound to CPU 0 and interrupts from eth1 are bound to CPU 1.]

The optimization tried was as follows: Since the RMDS transport daemons (RRCPD) use less
CPU than the Source Distributor or P2PS at a given update rate, we ran experiments with
NIC interrupts from both eth0 and eth1 bound to CPU 0, thereby making CPU 1 completely
available for the Source Distributor or P2PS main thread.

Binding NIC interrupts to cpu cores is done using:

echo <cpu_core_hex_mask> / proc / irq / <interrupt #> / smp_affinity

Binding of RMDS processes to cpu cores was done using:
 # taskset <cpu_core_hex_mask> -p <pid>

3.11 IRQbalance
IRQbalance is a Linux daemon that distributes interrupts over the processors and cores. The
design goal of IRQbalance is to find a balance between power savings and optimal
performance.

In the runs where process/interrupts were bound to cpu cores, IRQbalance is also disabled.

This command will stop the irqbalance service immediately and prevent it from starting on
subsequent reboots. There is no need to reboot the system after making this change.

chkconfig irqbalance off

www.redhat.com | 15

3.12 TCP Segmentation Offload (TSO)
TCP Segmentation Offload (TSO) is used to reduce the CPU overhead of TCP/IP on fast
networks. TSO breaks down large groups of data sent over a network into smaller segments
that pass through all the network elements between the source and destination. This type of
offload relies on the NIC to segment the data and then add the TCP, IP and data link layer
protocol headers to each segment. The NIC must support TSO.

[TSO is “off” by default in RHEL 4.4 and TSO is “on” by default in RHEL 5.1]

Previous testing has shown that TSO being set to “on” or “off” can sometimes have a
performance impact. Tests performed in this study were run with TSO “on” and “off” to confirm
that there was no performance impact.

TSO is shut off using the command:

ethtool -K eth* tso off

16 | www.redhat.com

4. Hardware/Software Versions &
Configurations

4.1 Hardware

The test harness consisted of Xeon-based HP Servers sufficient to generate load on the
target System(s) Under Test (SUT). Load Driver and Target SUT specification are as follows.

4.1.1 Load Driver System

Node 1: Dual core DL320p.
One computer used for test applications only (Sink_Driven_Src and RMDSTestClient) in any
kind of 3-node configuration and in 2-node configuration when running RMDS 6.0.3.L1 on
RHEL 4.4 and on RHEL 5.1

Vendor Model: HP Proliant DL320 G5p
Processors: 1
Processor type: Dual-Core Intel® Xeon® X3075, 2.66GHz
Cache: 4GB Level 2
Bus speed: 1333MGz
Memory: 3x1GB PC2-6400
Eth0: NC110T PCIe Gigabit Adapter
Eth1: NC326i Dual Integrated Gigabit NIC
Eth2: NC326i Dual Integrated Gigabit NIC
Disk1: 72GB 15K SAS
Disk2: 160GB 7.2K SATA

4.1.2 System(s) Under Test

Node 2 & Node 3 in 2-Node versus 3-Node Comparison: Dual core DL320 .
Two computers used in 2-node and 3-node configuration when running RMDS 6.0.2.L2 on
RHEL 4.4

www.redhat.com | 17

Vendor Model: HP Proliant DL320 G5
Processors: 1
Processor type: Dual-Core Intel® Xeon® 3050, 2.13GHz
Cache: 2MB Level 2
Bus speed: 1066MGz
Memory: 1x1GB PC2-5300
Eth0: Embedded NC324i Dual Port Gigabit NIC
Eth1: Embedded NC324i Dual Port Gigabit NIC
Eth2: NC324i Dual Port Gigabit NIC
Eth3: NC324i Dual Port Gigabit NIC
Disk Controller: Integrated Intel® 82801GR Serial ATA
Disk: 80GB SATA 1.5GB 7,200 rpm

Node 2 in RHEL 4.4 versus RHEL 5.1 Comparison: Dual core DL320p.
One computer running Src_Dist and P2PS processes in 2-node configuration - RMDS
6.0.3.L1 on RHEL 4.4 and on RHEL 5.1.

Vendor Model: HP Proliant DL320 G5p
Processors: 1
Processor type: Dual-Core Intel® Xeon® X3075, 2.66GHz
Cache: 4GB Level 2
Bus speed: 1333MGz
Memory: 3x1GB PC2-6400
Eth0: NC326i Dual Integrated Gigabit NIC
Eth1: NC326i Dual Integrated Gigabit NIC
Eth2: NC360T PCIe Dual Port Gigabit Adapter
Eth3: NC360T PCIe Dual Port Gigabit Adapter
Disk1: 72GB 15K SAS
Disk2: 160GB 7.2K SATA

18 | www.redhat.com

4.2 Network
All of the wires were run directly between Ethernet sockets using CAT6 crossover cables. No
Ethernet switches were used. Each peer-to-peer connection belonged to a separate network.

Txqueuelen 5000

4.3 Software

4.3.1 RMDS 6.0.2.L2

RMDS 6 software Src_Dist ver. 6.0.2.L2

P2PS ver. 6.0.2.L2
RMDS 6 Test Tools Sink_Driven_Src from Src_Dist ver. 6.0.2.L2

RMDSTestClient from P2PS ver. 6.0.2.L2

4.3.2 RMDS 6.0.3.L1

RMDS 6 software Src_Dist ver. 6.0.3.L1

P2PS ver. 6.0.3.L1
RMDS 6 Test Tools Sink_Driven_Src from Src_Dist ver. 6.0.3.L1

RMDSTestClient from P2PS ver. 6.0.3.L1

4.3.3 RHEL 4.4

Operating system Red Hat Enterprise Linux 4 AS x86 update 4
Kernel 2.6.9-42.ELsmp

4.3.4 RHEL 5.1

Operating system Red Hat Enterprise Linux Server x86 ver. 5.1
Kernel 2.6.18-53.1.14.el5xen

4.3.5 RHEL & RMDS Configuration & Parameter Settings
RedHat Linux kernel configurations were modified by Reuters recommendations before
running latency tests:

www.redhat.com | 19

OS
Configuration

net.core.rmem_max = 8388608
net.core.rmem_default = 8388608
net.core.wmem_max = 8388608
net.core.wmem_default = 8388608
net.ipv4.tcp_mem = 4096 8388608 16777216
net.ipv4.tcp_rmem = 4096 8388608 16777216
net.ipv4.tcp_wmem = 4096 8388608 16777216
net.ipv4.ip_local_port_range = 34800 65535

RMDS Configuration Parameters were set by Reuters recommendations listed in the
document “RMDS Core Infrastructure 6.0 – Demo Tools” Issue 0.4, 5 September 2006.,
paragraph “5.3 Configuration Parameters”, pp 10-11.

Before starting RMDS components, the appropriate entries are set in the configuration file
(default location is /var/reuters/rmds/rmds.cnf).

RMDS
Configuration

The default RMDS configuration was modified as directed in the document:
“RMDS Core Infrastructure 6.0. Demo Tools. Issue 0.4. 5 September
2006”

{node}*Src_Dist*{route_inst}.route*hostList : <sinkDrivenSrc_hostname>
{node}*Src_Dist*{route_inst}.route*port : 14002
{node}*Src_Dist*{route_inst}.route*sslMountVersion : 5

*P2PS*14002*clientToServerPings : False
*P2PS*14002*pingTimeout : 30
*P2PS*14002*serverToClientPings : False
*P2PS*aggregateItemLimit : 100000
*P2PS*allowCompMode : True
*P2PS*allowRSSLConnections : True
*P2PS*allowSSLConnections : True
*P2PS*compressionType : 0
*P2PS*disableHostLookup : True
*P2PS*flushInterval : 0
*P2PS*guaranteedOutputBuffers : 1600
*P2PS*hashTableSize : 200000
*P2PS*itemLimit : 100000
*P2PS*maxMounts : 100
*P2PS*maxOutputBuffers : 1600
*P2PS*minimumOpenWindow : 500
*P2PS*outputThresholdBreach : 30
*P2PS*outputThresholdOK : 10
*P2PS*pingInterval : 10
*P2PS*poolSize : 2000

20 | www.redhat.com

*P2PS*portList : 8101
*P2PS*rrmpProtocols : rrmp4and6
*P2PS*rsslMsgPacking : True
*P2PS*rsslPort : 14002
*P2PS*sessionStatsWindow : 1
*P2PS*sslMsgPacking : True
*P2PS*tcpNoDelay : True
*P2PS*tcpSendBufSize : 64240
*P2PS*timedWrites : False

*RRCP*switchReorderFixEnabled : False

*{serviceName}*cacheType : sinkDriven
*{serviceName}*dataType : 6
*{serviceName}*rrmpFlushInterval : 0

*Src_Dist*server*ipc*transmissionBus*inputBias : 60

Affinities When trying to achieve maximum performance the next settings were
used:
All of Ethernet interrupts were bound to core 0.
RRCPD processes were bound to core 0.
Src_Dist and P2PS processes were bound to core 1.

4.4 Test Tools and Test Data Files
Sink_Driven_Src was used as a data simulator and the file sample.xml (located in
<mdh_path>/demo/bin) was used as a data file for the simulator. Connection type RSSL
(Reuters SSL) and data format RWF were used for all of tests. The next command was used
to run Sink_Driven_Src:

./Sink_Driven_Src -S RDFD -N 14002 -Q sample.xml -q GOOG.O -K -c -tcpnodel -ts
-tsn RTRSY.O -UL 10 -tps 500

after the program was started the interactive command “ur <update rate>” was used in order
to get results for every particular update rate.
RMDSTestClient was used as a test client application and file rdf.100kitems was used as an
item file for the test client. The next command was used to run RMDSTestClient:

./RMDSTestClient -S RDFD -h <P2PS host>_2 -p 14002 -md 6 decodeFormat 3 -I 1 -o
500 -u rmds -tt -lmfile <result_file> -f rdf.100kitems -ct rssl -rf 12

4.5 Disabled RHEL Services and Monitoring Tools
The following services were disabled when running the tests:

1. Selinux

www.redhat.com | 21

2. Crond
3. Ntpd
4. cpuspeed

The top command was used to monitor CPU and memory usage when running tests.

22 | www.redhat.com

5. 2-Node versus 3-Node Configuration
Comparison - Latency Test Results
Every test was ran a little bit longer than 10 minutes and processed about 6,050 samples.
Before the results were processed, 300-600 of the first samples were discarded. This is
because only after 35-50 seconds from launch does the test start producing samples with the
required update rate. See Appendix I.

5.1 Two-Node Configuration (RHEL 4.4) Latency

This shows the results with irqbalance running and without any processes and interrupt
bindings to CPUs.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 231.653 45.6364 1046 163 5080
5000 300.891 41.554 788 218 5716
10000 378.999 42.0595 814 304 5700
20000 489.698 51.8419 1295 370 5690
30000 612.822 72.2084 1509 376 5728
40000 710.484 51.8994 1369 468 5690
50000 778.228 83.608 2774 443 5680
60000 888.474 102.604 1908 398 5700
70000 958.175 113.968 2121 387 5670
80000 1027.57 137.694 2591 399 5650
90000 1130.83 174.21 3207 461 5670
100000 1210.24 198.731 3493 438 5660
150000 1718.59 454.742 6795 430 5690
200000 2202.87 632.246 9972 493 5680

www.redhat.com | 23

5.2 Two-Node Configuration (RHEL 4.4) Latency – with
Process & Interrupt Binding

This shows the results with irqbalance disabled and Ethernet interrupts bound to CPU 0,
RRCPD bound to CPU 0, Src_Dist and P2PS bound to CPU 1. Also, in contrast with all other
tests in this section which were running RMDS software version 6.0.2.L2 this set of tests was
run using RMDS and RMDS Test Tools version 6.0.3.L1.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 192.458 32.9876 2026 179 5684
5000 250.179 39.164 2099 233 5692
10000 320.132 45.9514 2030 298 5629
20000 446.084 45.1649 2029 353 5610
30000 579.942 52.3071 2014 385 5650
40000 638.432 50.0861 1308 380 5639
50000 716.657 88.995 2201 376 5669
60000 825.057 102.589 2277 382 5668
70000 892.875 123.172 2829 381 5650
80000 969.464 146.136 2737 378 5650
90000 1076.39 179.055 4165 395 5520
100000 1157.87 242.476 6035 399 5610
150000 1642.39 497.969 9439 400 5489
200000 2132.48 580.424 10064 504 5700

24 | www.redhat.com

5.3 Three-Node Configuration (RHEL 4.4) Latency

This shows the results with irqbalance running and without any processes and interrupt
bindings to CPUs.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 260.496 44.5063 1002 192 5705
5000 332.886 41.8998 1022 259 5700
10000 405.63 124.322 3035 325 5710
20000 510.213 57.042 2037 372 5678
30000 641.655 72.0836 2041 405 5700
40000 655.038 88.5922 3607 393 5710
50000 762.694 103.887 2192 411 5690
60000 842.812 113.765 2146 401 5690
70000 882.978 151.172 4086 409 5670
80000 977.006 171.798 5145 410 5695
90000 1060.05 223.663 9081 414 5680
100000 1074.74 242.613 6698 415 5690
150000 1342.27 355.98 4114 418 5690
200000 1357.76 425.761 4125 420 5680
250000 1617.6 534.443 4993 419 5670
300000 1886.05 839.897 12658 417 5690
350000 2130.9 1544.54 20697 425 5620

www.redhat.com | 25

5.4 Three-Node Configuration (RHEL 4.4) Latency – with
Process & Interrupt Binding

This shows the results with irqbalance disabled and Ethernet interrupts bound to CPU 0,
RRCPD bound to CPU 0, Src_Dist and P2PS bound to CPU 1.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 265.086 47.1616 2010 194 5695
5000 330.004 53.7201 2016 259 5700
10000 396.441 67.5512 3030 325 5710
20000 519.296 123.114 6007 387 5690
30000 619.963 65.7104 2006 398 5690
40000 581.038 83.3479 2459 386 5670
50000 701.862 97.0837 3065 389 5700
60000 787.507 102.317 2090 396 5680
70000 839.223 134.604 2085 398 5650
80000 879.065 160.113 2158 394 5650
90000 915.426 188.861 4325 393 5640
100000 1006.47 195.363 2983 402 5640
150000 1219.46 344.083 4076 397 5620
200000 1351.87 346.131 4207 396 5510
250000 1646.74 484.91 5602 404 5630
300000 1886.51 1446.53 36820 407 5610
350000 2074.07 1079.98 20025 400 5650
400000 3386.49 3600.84 53303 409 4901

26 | www.redhat.com

5.5 Comparison of 2-Node and 3-Node Configurations

Plotting the data from the last four tables, we can see in Figure 6 below that the 3-node
configurations always outperformed the 2-node configurations because the cpu (running both
Src_Dist and P2PS) became the bottleneck in the 2-node configuration.

Figure 6

www.redhat.com | 27

6. RHEL 4.4 versus RHEL 5.1 - Latency Test
Results

6.1 RHEL 4.4 (2-Node Configuration) Latency

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 211.81 44.7495 1008 141 5670
5000 280.705 43.3033 1035 197 5688
10000 327.812 64.814 2043 253 5684
20000 454.867 50.9464 2005 327 5660
30000 557.348 48.9816 2053 384 5670
40000 585.486 58.9436 3060 354 5660
50000 670.418 69.541 2068 427 5710
60000 739.502 103.342 4051 379 5679
70000 800.903 101.526 2463 376 5640
80000 865.41 106.018 3015 426 5669
90000 856.357 132.657 4068 401 5660
100000 913.143 145.231 2086 372 5650
150000 1223.28 245.208 3584 343 5650
200000 1491.07 262.754 4925 339 5600
250000 1920.94 428.929 8146 354 5517

28 | www.redhat.com

6.2 RHEL 4.4 (2-Node Configuration) Results – with
Process & Interrupt Binding

This shows the results with irqbalance disabled and Ethernet interrupts bound to CPU 0,
RRCPD bound to CPU 0, Src_Dist and P2PS bound to CPU 1.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 216.459 43.3781 1025 144 5670
5000 263.686 51.0862 2024 192 5722
10000 322.09 50.8939 2029 250 5720
20000 429.737 46.6239 2002 326 5686
30000 537.685 53.7293 2049 357 5670
40000 591.357 64.2492 2061 349 5699
50000 650.279 75.5374 2058 360 5694
60000 749.243 85.3279 2063 413 5700
70000 757.033 90.5869 2322 389 5692
80000 769.549 114.103 1868 345 5706
90000 844.348 145.532 2883 386 5680
100000 895.712 163.387 3006 369 5690
150000 1239.24 231.947 3929 362 5656
200000 1466.64 250.685 4161 376 5670
250000 1858.78 379.811 6114 337 5670
300000 2489.42 934.663 9407 333 2430

www.redhat.com | 29

6.3 RHEL 5.1 (2-Node Configuration) Results

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 192.911 17.3959 415 158 5697
5000 248.313 18.6694 484 210 5697
10000 319.39 20.299 549 274 5718
20000 427.02 35.0676 670 327 5705
30000 499.835 51.1025 954 359 5692
40000 564.888 56.5912 1053 392 5692
50000 631.674 66.233 1241 415 5703
60000 746.547 91.0913 1440 435 5668
70000 795.799 95.585 1706 424 5647
80000 892.508 105.591 1877 422 5680
90000 985.734 124.735 2399 409 5670
100000 1059.52 157.573 2910 495 5671
150000 1335.41 316.368 4141 390 5644
200000 1627.07 713.797 9506 417 2738

30 | www.redhat.com

6.4 RHEL 5.1 (2-Node Configuration) Results – with
Process & Interrupt Binding

This shows the results with irqbalance disabled and Ethernet interrupts bound to CPU 0,
RRCPD bound to CPU 0, Src_Dist and P2PS bound to CPU 1.

Update Rate
(per sec)

Mean
(usec)

Std Deviation
(usec)

Max Latency
(usec)

Min Latency
(usec)

Samples

1000 194.537 18.8991 428 153 5684
5000 249.091 18.4876 469 208 5679
10000 309.731 20.4177 557 268 5686
20000 420.08 32.7705 823 321 5652
30000 492.092 56.1817 887 345 5680
40000 529.98 74.6715 1080 370 5690
50000 614.742 83.904 1572 380 5690
60000 715.36 107.054 1473 380 5690
70000 764.807 116.501 1706 412 5690
80000 865.693 124.69 1774 399 5660
90000 953.288 147.279 2017 459 5670
100000 1035.64 167.995 2860 474 5650
150000 1286.48 306.798 3564 365 5670
200000 1464.03 334.487 2915 375 5620

www.redhat.com | 31

6.5 Comparison of RHEL 4.4 and RHEL 5.1

Plotting the data from the last four tables, we can see in Figure 7 below that there is no
statistically significant performance regression when going from RMDS 6 / RHEL 4.4 to
RMDS 6 / RHEL 5.1. And the throughput is limited by the cpu (running both Src_Dist and
P2PS) becoming the bottleneck in this 2-node configuration

Figure 7

32 | www.redhat.com

7. Summary & Conclusions

In the financial services industry, automated trading is a race – firms develop sophisticated
strategies and attempt to beat the competition by analyzing and acting on market information
faster than other traders. The quicker the systems, the better the financial results. For these
financial services firms, one of the keys to maximizing portfolio performance is reducing data
latency, or the time it takes for the market information to get to the trading applications. RMDS
(Reuters Market Data System) is a high throughput, low latency platform for market data
applications. This reference architecture is Phase I of a study of the performance, scalability,
tuning, and optimization of RMDS running on RHEL (Red Hat Enterprise Linux).

All the performance tests described herein used the Reuters RMDS performance testbed.
Typically these tests are run using configurations of 3 or more nodes – one node runs the
load driver, the second node runs the RMDS infrastructure component that publishes market
data (= source distributor), and a third node runs the RMDS infrastructure component that
subscribes to market data (= Point-to-Point server = P2PS). Due to a shortage of hardware
and being pressed for time, it was decided to run the latter two nodes on a single physical
node with a loop-back ethernet connection to simulate the network hop. However, before
deciding on using the 2-node configuration, a series of tests were run to position the relative
performance of the 2-node and 3-node test configurations. As documented in this report, the
3-node configurations always outperformed the 2-node configurations because the cpu
became the bottleneck in the 2-node configuration.

• With these results we are confident that real-world 3-node configurations
would perform better than any 2-node configurations tested in the lab. With
this assurance, we proceeded to use the 2-node configuration for the RHEL
4 versus RHEL 5 comparison.

Today, many of our existing customers use RMDS on RHEL 4. For many of these customers
who are considering moving from RMDS 5 / RHEL 4 to RMDS 6 / RHEL 5, we wanted to
ensure continued leadership performance. One of the primary goals of this study was to
ensure that there was no performance regression when moving RMDS from RHEL 4 to RHEL
5. The results clearly show:

• In the configurations tested, there is no statistically significant performance
regression when going from RMDS 6 / RHEL 4.4 to RMDS 6 / RHEL 5.1

• Process and Interrupt binding to cpu cores did not make any appreciable
difference in performance

• Setting TSO to “on” and “off” did not make any appreciable difference in
performance

The configurations employed for the tests in this report used 2-core Intel® Xeon® processors
and a limited number of 1GigE NICs (Network Interface Cards). In follow-on testing, the goal
is to use multi-core servers with a larger number of NICs. This will enable us to more fully
explore the impact of binding instances of RMDS infrastructure processes and NIC interrupts
to cpu cores in different topologies.

www.redhat.com | 33

8. Next Steps (Tuning & Optimization)

There are several areas of RMDS/RHEL performance measurement, optimization and tuning
that will be investigated in the next phase of this work.

8.1 Multi-core, Multi-NIC Configurations with Interrupt and
Process Binding
The configurations employed for the tests in this report used 2-core Intel® Xeon® processors
and a limited number of 1GigE NICs. These restrictions limited the insights that could have
been gained by having multiple instances of RMDS infrastructure components - Src_Dist,
P2PS, and RRCPD - and the binding of these processes and NIC interrupts to cpu cores in
different topologies. In follow-on testing the goal is to use multi-core servers with a larger
number of NICs. This will enable us to more fully explore the impact of binding processes and
interrupts to cpu cores.

8.2 Update Throughput
The focus of this study was on measuring end-to-end latency. One of the next steps is to
determine the maximum throughput that can be sustained by the system. The maximum
throughput for the Src_Dist and P2PS are determined separately.

8.2.1 P2PS – Update Throughput
To avoid the Source Distributor becoming the limiting factor when testing the P2PS update
throughput, in some cases two source servers (data simulator/Source Distributor) are
configured to provide updates to the P2PS. Similarly in some cases multiple sink applications
are connected to the P2PS where it is necessary in order to create sufficient load.

8.2.2 Source Distributor – Update Throughput
Reuters in-house testing has shown that the update throughput of a Source Distributor is
more than that of a P2PS. So, to perform Source Distributor non-caching tests, you would
need to run two or more P2PS nodes and split the load.

8.3 RMDS Infrastructure Topologies

8.3.1 Traditional Topology
In the traditional topology, each machine runs exactly one instance of RRCP and one
instance of the P2PS or Src_Dist. All RRCP daemons communicate over the same network

34 | www.redhat.com

address, and each machine has one network interface card (NIC) to the RMDS backbone. All
RMDS "services" flow across this single network address and NIC, using either UDP
broadcast or IP multicast. (RMDS "services" are the mechanism by which RMDS enables
system administrators to manage content namespaces. Each service typically corresponds to
a source of data, such as the Reuters Datafeed, an internal rate system, etc. A service is also
a load-balancing/fault-tolerance domain.)

8.3.2 Stacked Topologies
The traditional topology has some limitations. While the RRCP daemon is multi-threaded and
scales across multiple processors or cores, most P2PS and Src_Dist processing happens in a
single thread, which limits performance in systems with many thread processors. The
challenge is therefore to configure multiple instances of RMDS processes (= Src_Dist, P2PS,
RRCPD) in so called "stacked" topologies to take advantage of multiple CPU cores in order to
deliver better performance on multi-core architectures.

8.3.2.1 P2PS Multiplex Topology
In a multiplex topology multiple P2PS instances consume from a common RRCP daemon.
This topology effectively co-locates several P2PS instances that would otherwise run on
separate servers. In so doing, it utilizes the power of multiple multi-core processors and
achieves economies of scale by leveraging a common RRCP daemon.

Figure 8: P2PS Multiplex Topology

8.3.2.2 P2PS Multipath Topology
Multiplexing more than two P2PS instances creates undesirable performance side effects.
Another way to support multiple P2PS instances on a server is to run multiple RRCP
daemons each bound to its own NIC and P2PS instance. A unique set of RMDS “services” is
assigned to each network address = RRCP daemon. This creates a “multipath” topology, in

www.redhat.com | 35

which the server supports parallel, independent data paths. In this topology, each P2PS
instance handles a unique set of RMDS services, rather than the traditional model in which
every P2PS handles all services.

Figure 9: P2PS Multipath Topology

8.3.2.3 P2PS Multipath/Multiplex Topology
A preferred topology combines mutliplexing and multipathing RMDS services are split across
multiple RRCP daemons. Each RRCP daemon binds to its own NIC and supports a pair of
P2PS instances.

Figure 10: P2PS Multipath/Multiplex Topology

8.3.2.4 P2PS Fanout
The fanout capability of a P2PS machine is oriented toward environments in which many
users are connected to the P2PS.
The P2PS "Producer 50/50" test is an extreme test of the fanout capability of a P2PS
machine. It is oriented toward environments in which many users are connected to the P2PS

36 | www.redhat.com

and users have a high degree of commonality in their watchlists (meaning that for most of the
updates that the P2PS receives from the backbone, it must forward each update to many
users).
To maximize fanout performance, a multiplex topology is chosen, in which multiple P2PS
instances consume from a common RRCP daemon.

8.3.2.5 Src_Dist Multipath/Multiplex Topology
The performance challenge of a Src_Dist is throughput without fanout.
Multiplex topologies, in which multiple Src_Dist instances publish through a single RRCPD,
improve throughput over standard topologies.
 Just as in the P2PS case, a preferred topology for Src_Dist combines mutliplexing and
multipathing. RMDS services are split across multiple RRCP daemons. Each RRCP daemon
binds to its own NIC and supports two Src_Dist instances.

Figure 11: Src_Dist Multipath/Multiplex Topology

8.3.2.6 Stacked Topology for Latency Testing
To test latency through just two servers (one for the Src_Dist, one for the P2PS), STAC uses
Src_Dist multipath/multiplex with the P2PS multipath/multiplex.

www.redhat.com | 37

Figure 12: Stacked Topology for Latency Testing

8.4 10 GigE and Infiniband
As seen from recent STAC reports, faster networking technology like 10 GigE and Infiniband
can enable significantly higher throughput and lower latencies. We will study the imact of
these technologies in the next phase.

8.5 RealTime Kernel
Finally, we will tune RMDS running on the RealTime Kernel to further improve end-to-end
latencies.

38 | www.redhat.com

9. References

1. Reuters - RMDS Core Infrastructure 6.0 – Demo Tools, Issue 0.4, 5 September 2006.

2. Reuters – Reuters Market Data System 6.0 – Performance Test Procedure and
Results, Issue 1.1, 8 June 2006.

3. Reuters – RMDS 6 Performance Testing, 8 June 2006.

4. STAC Report – BNT 10 GigE Switch and Chelsio NIC with RMDS 6 / RHEL 5.1 on
Intel®-based IBM BladeCenter® Server, Issue 1.0, 18-March-2008.

5. STAC Report – RMDS 6 / RHEL 5.1 on a 45nm Intel® Xeon® Harpertown Processor,
Issue 1.0, 26-February-2008.

6. STAC Report – RMDS 6 / RHEL 4.5 on a 16-core Intel® ‘Caneland’ Server, Issue 1.0,
14-September-2007.

7. STAC Report – RMDS 6 / RHEL 4.4 with Voltaire Infiniband and HP c-Class
BladeSystem, Issue 1.0, 19-June-2007

www.redhat.com | 39

10. Appendix I: Determining Steady State

The next four figures in this appendix clearly show that there is an initial period of between
35-50 seconds before the statistics enter a steady state. So, when processing the data the
first 300-600 samples were discarded. This is because only after 35-50 seconds from launch
does the test start producing samples with the required update rate.

Figure 13

40 | www.redhat.com

Figure 14

www.redhat.com | 41

Figure 15

42 | www.redhat.com

Figure 16

www.redhat.com | 43

11. Appendix II: Recent RMDS/RHEL
Results from STAC Research

The Securities Technology Analysis Center (STAC®) is a provider of performance
measurement services, tools and research to the securities industry. A summary of some
recent STAC reports about RMDS/RHEL throughput and latency are included in the
appendix. STAC reports are available at: http://www.STACresearch.com.

Figure 17

STAC, on 18-March-2008, reported that RMDS 6 / RHEL 5.1 running on IBM BladeCenter® H
with HS21 Blades and using Blade Network Technologies (BNT) 10 Gigabit Ethernet Switch
and Chelsio Communication's 10 Gigabit Ethernet Network Interface Card (NIC) achieved:

1. Lowest mean latency ever reported with RMDS
• Less than 0.9 milliseconds of end-to-end infrastructure latency at up to

600,000 updates per second in the low-latency configuration of RMDS
2. Lowest standard deviation of latency ever reported with RMDS

• Less than 0.5 milliseconds at rates up to 600,000 updates per second.
3. Very high output rate in the ― “Producer 50/50” fanout test of a stacked

P2PS
• 5.8 million updates per second
• 30% of this due to the TCP/IP Offload Engine (TOE) in the Chelsio

NIC Blade Network Technologies 10GigE Switch

44 | www.redhat.com

Figure 18

STAC, on 14-September-2007, reported that RMDS 6 / RHEL 4.5 running on 4 x quad core
Intel® Xeon® with 4 x Intel® Pro 1 GigE NICs achieved:

1. Highest Source Distributor throughput to date on a single 4-socket or 2-
socket server

• 2.8 million updates per second
2. Highest Point-to-Point Server throughput to date on a single 4-socket or 2-

socket server
• 2.2 million updates per second through a single Point-to-Point Server

