
www.redhat.com © 2008 specialized copyright information. If none, please delete this textbox.

Four useful dTrace scripts  
you can port to SystemTap 
Dominic duval, senior consultant, Red hat consulting. 



2   www.redhat.com 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

2	 introduction 

2	 top i/o script

2	 Global Reads, Writes, Totals

4	 system wide errors script

6	 block device seeks script

6	 Global Reads, Writes, Totals

7	 tcptop secret script

9	 conclusion

Table of contents



www.redhat.com   3 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

Introduction

A persistent myth among system administrators is that there is no DTrace equivalent for Red Hat® Enterprise 
Linux®. While this was true a few years ago, today, SystemTap can accomplish the same tasks as DTrace. This 
paper describes in detail how to accomplish the same tasks with SystemTap that some of the most popular 
DTrace scripts perform. We found four DTrace scripts that are useful in several situations and adapted some 
existing SystemTap scripts to achieve similar results. By using SystemTap to react to common scenarios that 
system administrators and developers face, this guide shows how powerful SystemTap can be. 

1. TOP I/O Script

Original DTrace script: www.brendangregg.com/DTrace/iotop

When investigating performance issues, being able to monitor how applications use storage devices can be 
critical. Knowing which programs transfer the largest amount of data is key. Out of dozens of processes, we 
want to identify the most active ones, with a screen that looks as follows:

         process     read   KB tot     write   KB tot

      userscript   488692   244346    488692   244346

            sshd    11912     1220       303     1234

             find        8        4     17799     1201

              vi      206      734        12        5

       automount        4        1         0        0

            bash       40        0        98        1

          stapio      151        0         2        0

       mcstransd        1        0         0        0

From the screen above it should be clear that userscript is the first process to investigate if we’re running 
into some performance issues with our storage devices. Applying sensors at the right place with SystemTap 
will help us get this data easily. In this case, what we need to do is simple: increase counters whenever data is 
read or written.

We first need to setup three arrays: one for the amount of data read, another for the amount of data written, 
and a last one for the total amount of data transfered per process. We will use the process name as an index 
in those arrays to present data for each process later on.



4   www.redhat.com 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

Global Reads, Writes, Totals

Now we insert some probes in the kernel. Linux relies on system calls to let applications communicate 
with the kernel and the hardware. System calls are numbered and named. This is in fact the first challenge 
associated with SystemTap, just like DTrace: we need to find the name of the system call we’re interested in. 
Since the whole point behind this script is to monitor data transfered with storage devices, we’ll focus on the 
read() and write() system calls. 

To make things easier, SystemTap provides a number of existing hooks that we can use in our script. These 
are called tapsets. In our case, we’re interested in the syscall tapset. More specifically, in the read and 
write hooks. We choose to catch those two system calls when they return, hence the .return at the end of 
the call:

probe syscall.read.return {

  count = $return

  if ( count >= 0 ) {

    e=execname();

    reads[e] <<< count # statistics array

    totals[e] += count

  }

}

probe syscall.write.return {

  count = $return

  if (count >= 0 ) {

    e=execname();

    writes[e] <<< count # statistics array

    totals[e] += count

 
Some variables are already defined for us here; notice that $return never got declared anywhere. The 
syscall tapset defined $return automatically, so we can use it to access the return value of the system 
call. In the case of read and write, the return value is the number of bytes that got pulled from or pushed to 
storage. Exactly what we need.

execname() is part of another tapset. It returns the name of the process on behalf of which the system call is 
executed. Things like ‘ls,’ ‘httpd,’ or anything that can be executed on your system. This might sound strange 
to programmers, but we will use this name as an index for the arrays we built previously. It makes our job  
a lot easier.

Also note the use of the “<<<” operator instead of “=”. We call this statistics accumulation. This feature 
enables us to compute the sum, average, min, and max values quickly.

A SystemTap script can run for a while. How long? As long as you want. SystemTap listens to the SIGINT 
signal. (This is CTRL-C for people who like to use keyboards.) The script automatically stops when you press 
those keys. In fact, it does more than that; it also executes the probe end statement if you provided one. As  
a matter of fact, we did:



www.redhat.com   5 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

 probe end {

  printf(“%16s %8s %8s %8s %8s\n”,

    “process”, “read”, “KB tot”, “write”, “KB tot”)

  foreach (name in totals- limit 20) { # sort by total io

    printf(“%16s %8d %8d %8d %8d\n”,

      name,

      @count(reads[name]),

      (@count(reads[name]) ? @sum(reads[name])>>10 : 0 ),

      @count(writes[name]),

      (@count(writes[name]) ? @sum(writes[name])>>10 : 0 )

    )

  }

}

 
Pay attention to the foreach loop above. This construct will let us extract the name of the 20 most active 
processes, based on the total number of bytes transfered. That’s what we’ve been recording earlier in the 
totals array.

The @count and @sum are data extraction functions. We use them to analyze statistics we built with the “<<<” 
operator. We want to print the number of read and write operations, as well as the total number of bytes 
read and written for those top 20 processes. 

The following construct might give you a hard time:

(@count(reads[name]) ? @sum(reads[name])>>10 : 0 )

 
It’s really just a compact way to print the sum of all values stored in the reads array, as long as there’s 
actually something in there. Otherwise we’ll just print 0.

Once the entire script described above gets saved in a file--we usually name it something like iotop.stp-- 
we’re ready to execute it:

# stap iotop.stp

 
Parsing and compiling the script will take one or two seconds. Then it will start executing. Remember to 
press CTRL-C to see results on the screen.

2. System Wide errors script

Original DTrace script: www.brendangregg.com/DTrace/errinfo

Applications need to handle errors all the time. That’s generally fine; however, large numbers of errors may 
lead to other issues. They can drop performance. Or indicate that something is wrong with your system. 
Perhaps point at a bug in your software. 



6   www.redhat.com 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

DTrace provides a clever script that produces an overview of all errors encountered on the system through 
system calls. Turns out, we can do the same with SystemTap. Errors are generated in the kernel from those 
functions called system calls. There are a few hundreds of those. An easy way to catch all of them is to probe 
syscall.* Adding .return will ensure that the probe always gets executed when a system call returns, 
rather than when it starts:

global execname, errors

probe syscall.*.return {

  errno = $return

  thissyscall=probefunc();

  if ( errno < 0 ) {

    p = pid()

    execname[p]=execname();

    errors[p, errno, thissyscall] ++

  }

}

Catching the return value of a function (any function, really) with SystemTap is trivial--just refer to $return. 
That variable is built in; you don’t need to declare it. Also notice the calls to the probefunc() and execname(). 
probefunc() returns the name of the function we’re probing; we used a * in the probe name, so we need 
to figure this out. execname() gives us the name of the  executable that invoked this system call. All that 
information will be displayed later on. 

The errors array is the core of this script. We’re now working with three dimensional arrays. That’s what 
we’ll use to record the number of hits for any error number returned by a specific system call for any given 
process on the system. 

As always, whenever we hit CTRL-C, the end probe gets invoked:

probe end {

  printf(“%8s %16s %16s %12s %8s\n”,

    “PID”, “Syscall”, “Process”, “Error”, “Count”)

  foreach ([pid, error, thissyscall] in errors- limit 20) {

    printf(“%8d %16s %16s %12s %8d\n”,

      pid,

      thissyscall, 

      execname[pid],

      error ? errno_str(error) : “”,

      errors[pid, error, thissyscall]

    )

  }



www.redhat.com   7 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

There’s one new aspect to consider here; printing error numbers is good, but error messages are even better. 
SystemTap provides an array called errno_str that contains actual error messages, making the whole thing 
easier to understand. Just use the error number as the index, and you’ll get the message as a result:

# stap errno.stp

     PID          Syscall       Process     Error        Count

   19793        sys_close       bash        EBADF        86

    3225        sys_futex       automount   ETIMEDOUT    52

   19793      sys_newstat       bash        ENOENT       21

   19793        sys_wait4       bash        ECHILD       12

    3510      sys_newstat       hald        ENOENT       8

   19791      sys_connect       sshd        ENOENT       6

   19795         sys_open       egrep       ENOENT       6

   19797         sys_open       egrep       ENOENT       6

   19799         sys_open       egrep       ENOENT       6

 
3. Block device seeks script

Back to storage devices. These tend to be the devices that slow down entire systems when not used 
appropriately. One reason why a storage device, such as a disk, might be slow could be seek usage. In other 
words, applications force the disk to fetch data on vastly different locations on the disk. This can be hard to 
tell; statistics on disk seeks are not easily accessible from standard interfaces. Once again, SystemTap makes 
it trivial.

The plan here is to monitor every data access at the disk level. We’ll do this by attaching a probe to the 
request function. Every storage device driver has such a function. It gets executed whenever a read or write 
operation needs to be serviced by the hardware device. First, we need to set up two variables: seeks, which 
contains data for all seek operations on a specific device, and oldsec, which holds the last sector accessed 
on a device.

global seeks, oldsec

The guts of the script lies in the ioblock.request probe. This probe will automatically let you monitor all 
request functions on the system. Incidentally, this is part of the ioblock tapset, and you can refer to all 
tapsets by looking at the /usr/share/systemtap/tapset directory. Everything in this directory can be used 
in your scripts. 

Whenever we execute the request function, we will read the sector variable. This contains the sector number 
where the operation starts. By computing the difference between the current sector and one accessed in 
the last request invocation, we’ll be able to compute the seeks value for this device. This can be a positive or 
negative number. We’ll also save the current sector number for next time we execute a request.



8   www.redhat.com 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

probe ioblock.request {

  sec = sector

  seeks[devname] <<< sec - oldsec[devname]

  oldsec[devname] = sector

}

 
 
Finally, when the script ends, we need to print a summary of what happened. We chose to take the top five 
most active devices on the system. For each of them we’ll print a histogram: @hist_log will automatically 
take the data accumulated in seeks and summarize it on the screen as a histogram based on a logarithmic 
scale (just remove _log to switch to a linear scale).

probe end {

  foreach ([devname] in seeks- limit 5) {

    printf(“Device: %s\n”, devname)

    println(@hist_log(seeks[devname]))

  }

}

 
4. tcptop script

Original DTrace script: www.brendangregg.com/DTrace/tcptop

Wouldn’t it be nice if something could tell us what application network traffic comes from? SystemTap can.

This script monitors the TCP/IP stack and looks for packets received from and sent to the application layer 
(i.e. sockets). That way we can see easily which process, user, and command transfered data on the network, 
how much data was transfered, and in what direction it went. 

Other than process IDs, command names, and user IDs, we’ll need to keep track of two critical pieces of data: 
bytes transmitted and received for every process we probed:

global xmit, recv, process, execname, user

 
We want to probe the socket probe points. Two probes are of interest here: socket.send and socket.
receive. These are documented in the stapprobes.socket main page, as well as other probe points related 
to networking.probe socket.send



www.redhat.com   9 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

{

        p = pid()

        execname[p] = execname()

        user[p] = uid()

        xmit[p] <<< size

        process[p] ++

}

probe socket.receive

{

        p = pid()

        execname[p] = execname()

        user[p] = uid()

        recv[p] <<< size

        process[p] ++

 
The two probes are nearly identical: we want to keep track of how many bytes are transmitted and received 
for every process that deals with the network. As seen previously, the pid(), execname(), and uid() 
functions let us easily retrieve the process ID, the command name, and the user ID associated with the 
probed function.

One major difference from the scripts we’ve covered so far lies in the way we print data. Here we make use of 
a timer. This will let us invoke the script and monitor results while it keeps running. The function that prints 
the data is relatively similar to what we’ve used so far:

function print_activity()

{

        printf(“%5s %5s %7s %7s %7s %7s %-15s\n”,

                “PID”, “UID”, “XMIT_PK”, “RECV_PK”,

                “XMIT_KB”, “RECV_KB”, “COMMAND”)

        foreach ([pid] in process-) {

                n_xmit = @count(xmit[pid])

                n_recv = @count(recv[pid])

                printf(“%5d %5d %7d %7d %7d %7d %-15s\n”,

                        pid, user[pid], n_xmit, n_recv,

                        n_xmit ? @sum(xmit[pid])/1024 : 0,

                        n_recv ? @sum(recv[pid])/1024 : 0,

                        execname[pid])

        }    



10   www.redhat.com 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval

print(“\n”)

        delete execname

        delete user

        delete xmit

        delete recv

        delete process

 
Notice the delete statements; these let us reset all counters we use in this script so that current results 
are not affected by the last sample. In this case, we’re taking samples every five seconds by attaching the 
print_activity() function to the timer probe:

probe timer.ms(5000)

{

        print_activity()

)

 

Final result (assuming there’s some kind of network traffic on your system) should look as follows, repeated 
every five seconds:

PID   UID XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        

11404     0       0    3658       0    4879 wget           

11004    48       1       2       4       0 httpd          

11005    48       1       2       0       0 httpd          

10270     0       1       0       0       0 sshd

 
Conclusion

Just a handful of SystemTap scripts were covered in this document. Nonetheless, these should give 
you a good idea what the typical structure of a script looks like. With just a few lines of code, system 
administrators and developers can implement scripts that are just as capable as their DTrace equivalents. 
Several topics, such as embedded C code, kernel markers, as well as advanced features of the SystemTap 
language were not discussed. We encourage you to visit the SystemTap web site, which is always a great 
source of information and sample scripts: www.sourceware.org/systemtap/.



www.redhat.com   11 

Four Useful DTrace Scripts You Can Port to SystemTap | Dominic Duval



© �2009 Red Hat, Inc. All rights reserved. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products listed are 
trademarks or registered trademarks of Red Hat, Inc. in the US and other countries. Linux is a registered trademark of Linus Torvalds.

www.redhat.com 
#1098170_0609

Learn more about Red hat consulting

 
www.redhat.com/consulting 

EUROPE, MIDDLE EAST  
AND AFRICA 
00800 7334 2835 
www.europe.redhat.com 
europe@redhat.com

Turkey: 00800 448 820 640 
Israel: 1809 449 548 
UAE: 80004449549

ASIA PACIFIC 
+65 6490 4200 
www.apac.redhat.com 
apac@redhat.com

ASEAN: 800 448 1430 
Australia and New Zealand:  
1800 733 428 
Greater China: 800 810 2100 
India: +91 22 3987 8888 
Japan: 0120 266 086 
Korea: 080 708 0880

NORTH AMERICA 
1-888-REDHAT1 
www.redhat.com

 
LATIN AMERICA 
+54 11 4341 6200 
www.latam.redhat.com 
info-latam@redhat.com


