

Deploying a Vertica®/Jaspersoft®
based Business Intelligence
Solution on Red Hat® Enterprise
Linux® 5

Version 1.0

November 2008

 www.redhat.com 2 www.vertica.com

Deploying a Vertica™ / Jaspersoft®
based Business Intelligence Solution
on Red Hat® Enterprise Linux® 5

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

"Red Hat," Red Hat Linux, the Red Hat "Shadowman" logo, and the products listed are trademarks or
registered trademarks of Red Hat, Inc. in the United States and other countries. Linux is a registered
trademark of Linus Torvalds.

All other trademarks referenced herein are the property of their respective owners.

© 2008 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Vertica Systems Inc. may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly provided in
any written license agreement from Vertica Systems Inc., the furnishing of this document does not
give you any license to these products, trademarks, copyrights, or other intellectual property.

Jaspersoft, the Jaspersoft logo, JasperAnalysis, JasperServer, JasperETL, JasperReports, iReport,
and Jasper4 products are trademarks and/or registered trademarks of Jaspersoft Corporation of the
United States and in jurisdictions throughout the world.

The information contained herein is subject to change without notice. Red Hat, Inc., Vertica Systems
Inc. and Jaspersoft Corporation shall not be liable for technical or editorial errors or omissions
contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc., Vertica Systems Inc. and Jaspersoft Corporation.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc., Vertica Systems Inc. and
JaserSoft Corporation

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.vertica.com 3 www.redhat.com

 www.redhat.com 4 www.vertica.com

Table of Contents

1. Introduction ... 8

1.1 Vertica Analytic Database Architecture and System Overview ... 10
1.2 Performance Features .. 12

1.2.1 Column-orientation .. 13
1.2.2 Aggressive Compression ... 13
1.2.3 Read-Optimized Storage .. 14
1.2.4 Ability to exploit multiple sort orders .. 14
1.2.5 Parallel shared-nothing design on off-the-shelf hardware ... 14
1.2.6 Bottom Line ... 15

1.3 Administrative and Management Features ... 16
1.3.1 Vertica Database Designer ... 16
1.3.2 Recovery and High Availability through k-Safety .. 17
1.3.3 Continuous Load: Snapshot Isolation and the WOS .. 18
1.3.4 Backup/Restore for Disaster Recovery .. 18

1.4 Who Should Use Vertica? ... 19
1.5 Additional Resources .. 19
1.6 About Vertica Systems .. 20

2. Vertica and Red Hat Linux: System Requirements and Configuration .. 21
2.1 Representative Commercial Systems .. 21
2.2 Trickle Loads .. 22
2.3 Swap Space Recommendations .. 22
2.4 Package Requirements .. 22
2.5 Conflicting Packages... 23
2.6 Deployment Directory .. 23
2.7 Creating a Striped Data Disk .. 23
2.8 Locale and Time zone ... 24
2.9 Network Time Protocol ... 24
2.10 Database Administration User .. 24
2.11 Networking ... 25
2.12 Hostnames ... 25
2.13 IP Addressing .. 26
2.14 Firewalls .. 26
2.15 SE Linux ... 26
2.16 Installation ... 27
2.17 Replacing Nodes ... 27

3. Jaspersoft / Vertica Integration ... 28
3.1 Steps to Install Jaspersoft Software .. 28
3.2 Steps to Connect Jaspersoft with Vertica .. 33

4. Vertica Analytic Database on SAN .. 50
4.1 Shared Nothing Architecture .. 50
4.2 Direct Attached Storage vs. Storage Area Network ... 50
4.3 Storage Area Network Configuration Guidelines ... 50
4.4 Storage Area Network Diagram .. 51

www.vertica.com 5 www.redhat.com

5. SAN Storage Configuration .. 52
5.1 Vertica Database Cluster with SAN Storage .. 52
5.2 Vertica I/O Profile Characterization ... 53
5.3 SAN Performance Requirements and Configuration Recommendations 54
5.4 SAN Configuration Considerations .. 55

5.4.1 Host Side Driver and Multipathing Software .. 55
5.4.2 Impact of Disk Group Allocations ... 56
5.4.3 Impact of RAID Type .. 56

5.5 SAN Configuration Verification Tool .. 56
6. Vertica Cluster Network Configuration .. 58

6.1 IP Configuration .. 58
6.2 Routing .. 58
6.3 Hostnames ... 59
6.4 SSH ... 59
6.5 Open Sockets... 59
6.6 IP Tables ... 60
6.7 Other Firewalls .. 60
6.8 SELinux and Security Levels .. 60
6.9 Network Configuration ... 61

6.9.1 Private subnets which do not use host name resolution ... 61
6.9.2 Configurations where each IP address is given a unique host name 62
6.9.3 Configurations where all IP addresses on a given system share a host name 62

6.10 Network Troubleshooting ... 63
6.10.1 Issue: Install reports “Expected n heard from n-y” ... 63
6.10.2 Issue: In multi-home scenarios when a hostname is shared by many IP's, Vertica install
chooses the wrong IP address to install to .. 64

7. High Availability Recovery .. 65
7.1 K-Safety .. 65

7.1.1 Requirements for K-Safety .. 65
7.1.2 Determining K-Safety .. 66
7.1.3 Monitoring K-Safety .. 66
7.1.4 Loss of K-Safety .. 67

7.2 Catalog and Data Files .. 67
7.3 Recovery Scenarios ... 68

7.3.1 Restarting a Node ... 69
7.3.2 Restarting a Database ... 73
7.3.3 Partial Disk Loss .. 77
7.3.4 Replacing a Failed Machine ... 77
7.3.5 Adding Disk Space .. 78
7.3.6 Adding Disk Space Across the Cluster .. 79
7.3.7 Recovering the from a Backup ... 79

7.4 Monitoring Recovery .. 79
8. Backup and Restore .. 81

8.1 Introduction ... 81
8.1.1 Cold Backup ... 81
8.1.2 Hot Backup .. 81

8.2 Backup Procedures .. 82

 www.redhat.com 6 www.vertica.com

8.2.1 Prepare the Database .. 82
a.) Stop the Database (Cold Backup) ... 82
b.) Stop the Tuple Mover (Hot Backup) .. 82

8.2.2 Determine the Database Directory ... 84
8.2.3 Archive the Database Directory ... 86

a.) Full Backup ... 86
b.) Incremental Backup .. 86

8.3 Restore Procedures .. 87
8.3.1 Restore the Database .. 87

a.) Restoring to a New Cluster ... 88
b.) Restoring on the Same Cluster (Incremental) .. 92

8.3.2 Replace the Database Directories .. 93
8.3.3 Change the Meta-data Definitions ... 96
8.3.4 Start the Database... 98
8.3.5 Verify the Database .. 98

8.4 Removing Old Incremental Backups .. 99

www.vertica.com 7 www.redhat.com

 www.redhat.com 8 www.vertica.com

1. Introduction

The Vertica Analytic Database is the only database built from scratch to handle today's heavy
business intelligence workloads. In customer benchmarks, Vertica has been shown to
manage terabytes of data running on extraordinarily less expensive hardware and answers
queries 50 to 200 times faster than competing row-oriented databases and specialized
analytic hardware

This document summarizes the key aspects of Vertica’s technology that allows it to provide
such dramatic performance benefits, and compares the design of Vertica to other popular
relational systems.

The key to Vertica’s performance is three fold:

1. It organizes data on disk as columns of values from the same attribute, as opposed to
storing it as rows of tabular records. This organization means that when a query needs
to access only a few columns of a particular table, only those columns need to be read
from disk. Conversely, in a row-oriented database, all values in a table are typically
read from disk, which wastes I/O bandwidth.

2. Vertica employs aggressive compression of data on disk, as well as a query
execution engine that is able to keep data compressed while it is operated on.
Compression in Vertica is particularly effective, as values within a column tend to be
quite similar to each other and compress very well—often by up to 90%. In a traditional
row-oriented database, values within a row of a table are not likely to be very similar,
and hence are unlikely to compress well. Direct operation on data combined with
Vertica’s compression algorithms – which are especially designed to impose negligible
CPU overhead -- means that compression not only reduces the amount of data read
from disk but actually decreases the amount of work the CPU has to do to process a
query.

3. Because data is compressed, Vertica has sufficient storage to store each table on disk
in multiple sort orders. Tables are decomposed into overlapping groups of columns,
called projections, and each projection is sorted on a different attribute (or set of
attributes). Each projection is optimized for answering queries with predicates on its
sort attributes.

Of course, compression, column-orientation, and table decomposition are transparent to the
end-user. In fact, Vertica provides a standard SQL interface to users, as well as compatibility
with existing ETL, reporting, and business intelligence (BI) tools. This makes it easy to
migrate existing databases to Vertica and use other BI technologies with Vertica databases.
Vertica is designed to run on inexpensive clusters or “grids” of off-the-shelf Linux servers—no
expensive SANs high-end servers are required to run large data warehouses on Vertica.
Vertica both reduces hardware costs (often by up to 90% relative to other data warehouse
databases) and improves the ability to answer more queries for more people against more

www.vertica.com 9 www.redhat.com

data.

Besides remarkable performance on a variety of database workloads, Vertica includes
several other features designed to offer performance, scalability, reliability, and ease of use.
These include:

1. A shared nothing, grid-based parallel database architecture that allows
Vertica to scale effectively on clusters of commodity CPUs.

2. A hybrid data store, where newly inserted records are added to a write-
optimized portion of the database to allow continuous, high-performance insert
operations concurrently with querying to enable real-time analytics.

3. Automated physical database design tools that recommends how data
should be organized both locally on each node in a cluster, as well as
partitioned across a cluster. In addition to choosing projections and sort orders,
these tools ensure k-safety, meaning that each table is replicated on k nodes
so that k-1 node failures can be tolerated by the system without interrupting
functionality. These tools reduce administrative costs by simplifying physical
database design decisions. They also allow Vertica to automatically adapt to on-
the-fly the addition or removal of database nodes.

4. High-performance, ACID-compliant replication-based concurrency control,
recovery, and high-availability algorithms that exploit k-safety rather than
using traditional log-based methods.

5. Flexible deployment options –

a. Downloaded and installed on Linux servers of your choice

b. Pre-configured and shipped on HP or Sun hardware

c. Licensed and used on an on-demand basis, hosted in the Amazon Elastic
Compute Cloud (EC2).

6. A collection of backup and disaster recovery tools.

In the remainder of this white paper, we describe the basic architecture of the Vertica Analytic
Database, and describe these key features of Vertica in more detail. With these features in
mind, we then describe how it is that Vertica can provide such remarkable performance
compared to other relational systems.

 www.redhat.com 10 www.vertica.com

1.1 Vertica Analytic Database Architecture and System
Overview

Figure 1: The Vertica Analytic Database Architecture

Figure 1 illustrates the basic system architecture of Vertica on a single node. As in a
traditional relational database, queries are issued in SQL to a front end that parses and
optimizes queries. Unlike a traditional relational database, however, Vertica is internally
organized into a hybrid store consisting of two distinct storage structures. The Write-
Optimized Store (WOS) is a data structure that generally fits into main memory and is
designed to efficiently support insert and update operations, but is relatively slow to query
because it is unsorted and uncompressed. Conversely, the Read-Optimized Store (ROS)
contains the bulk of the data in the database, and is both sorted and compressed, making it
efficient to read and query. Periodically, a Tuple Mover process moves data out of the WOS
and into the ROS in large blocks. Because it operates on the entire WOS, the tuple mover
can be very efficient, sorting many records at a time and writing them to disk as a batch.

Internally, both the WOS and ROS are organized into columns, with each column
representing one attribute of a table. For example, for a table of sales data with the schema
(order-id, product-id, sales-date, customer-id, sales-price), Vertica would store this as at least
five distinct columns (though they would logically appear as one table to the user). By storing
these columns separately, Vertica is able to access only those columns that are needed to
answer a particular query. Figure 2 illustrates how logical data in an example sales table is
physically stored as columns. It also shows data being distributed across several projections

www.vertica.com 11 www.redhat.com

and servers, which further improves performance, as we describe below.

Figure 2: Logical tables are physically stored as columns, and partitioned into segments on

several machines and in several different projections.

In Vertica, each column may be stored in a number of Projections that represent partially
redundant copies of the data in the database. For example, as shown in Figure 2, our sales
table might be stored as two projections, one called sales-prices with the schema (order-id,
product-id, sales-date, sale-price), and one called sales-customers with the schema (order-id,
product-id, customer-id). Each of these projections also has a sort order that specifies how
the data in the projection is arranged on disk. For example, the sales-customers projection
might be stored sorted on customer id; this makes it particularly efficient for finding all of the
products that a customer bought. By storing several overlapping projections of a table in
different sort orders, Vertica can be efficient at answering many different types of queries.
Vertica’s Database Designer automatically selects a good set of overlapping projections for a
particular table based on the set of queries issued to that table over time.

 www.redhat.com 12 www.vertica.com

It may seem that redundantly storing data in multiple projections is very wasteful of disk
space. However, Vertica includes a suite of aggressive column-oriented compression
schemes that allow it to reduce the amount of space a particular projection takes up in the
ROS by as much as 90%. This also improves query performance by reducing the amount of
data that must be read off disk . These compression schemes, described in more detail
below, have low CPU overhead and allow direct operation by the database on the
compressed data. This means that Vertica can often process queries over compressed data
substantially faster than over uncompressed data.

Beyond projections, there are several additional optimizations employed by Vertica that
involve storing each individual column in Vertica across several physical objects. First, on a
single machine, the ROS is horizontally partitioned into several Storage Containers by time.
This allows the Tuple Mover to insert new data into the ROS without having to merge together
and rewrite all old containers. To keep the total number of containers small, from time to time,
the tuple mover merges these ROS containers together in the background. This process is
illustrated in Figure 3.

Figure 3: A hybrid storage architecture features a Tuple mover process that asynchronously

moves batches of new data from a memory-based WOS to disk-based ROS containers

Second, each projection is horizontally partitioned into segments, each of which is stored on a
different machine in the cluster based on the value of one attribute in the table. This makes it
possible to parallelize queries, allowing many applications to scale linearly with the number of
nodes in the database. One possible partitioning across machines is shown for our example
sales database at the bottom of Figure 2.

Now that we have covered the basic architecture of the Vertica database system, we look at
the key features of the system that allow it provide outstanding performance as well as
simplify administration and reduce total cost of ownership.

1.2 Performance Features
Vertica’s performance on read-intensive workloads is due to a number of factors. To help
understand its performance properties, let’s look at the execution of a simple query over the

www.vertica.com 13 www.redhat.com

sales table described above. Suppose we wish to compute the average sales price grouped
by date in our sales database. The steps involved in processing this query are shown in
Figure 4. There are two primary costs in processing a typical query: disk access and CPU
cycles (in a distributed database, network I/O may also be significant). On most modern
computers, it is possible to perform disk I/O in parallel with CPU operations. Thus, if
answering a query takes D seconds of disk time and C seconds of CPU time, the total query
time will be the maximum of C and D.

1.2.1 Column-orientation
Since many database queries are “disk bound,” meaning D > C, the most obvious
performance advantage of Vertica is that it only needs to read the two columns involved in the
query from disk. In a row-store database, the disk scans all five columns. This extra three
columns of scanning can represent as much as a 250% slowdown in performance. Since
most databases have many more than five columns (hundreds, even), the performance of a
row-store is often even worse.

Other database vendors include support for materialized views and data cubes, which are
data structures designed to optimize the performance of a few common queries. They work
by reducing the need to scan over unused columns by partially pre-computing query answers
into data structures stored on disk. These approaches are optimized for answering a few
queries well and are unable to provide comparable performance to Vertica across many
different query workloads. Besides Vertica’s column-orientation, one of the major ways in
which Vertica achieves this performance advantage is via aggressive columnar compression,
which we describe next.

Figure 4: A query plan for a simple query in Vertica

1.2.2 Aggressive Compression
In our simple model of database performance, compression helps to dramatically reduce both
C and D. As an example, suppose the sales table accessed by the plan in Figure 4 is sorted
by date, and then within each date by price. If a database contains 1 year of data, and each
order has one of about 1,000 different prices on a given day, and there are 10 million total
records in the database, there will on average be about 27 different orders from each of the
1,000 prices during each day. This means that, rather than representing the price column as a

 www.redhat.com 14 www.vertica.com

list of the form (price1, price2, price3, …), we can represent it as a run-length encoded (RLE)
list of the form (<count, price1>, <count, price2>, ….), which will be about 27 times smaller
than the initial representation. We can also compress date in a similar way, storing just 365
different <count, date> pairs to store the entire column of 10 million dates! Compressing data
in this way greatly reduces the disk I/O (D). However, we also reduce the amount of CPU
work, C, because database operators (like scan and aggregate in Figure 2) in Vertica are
specially optimized to work directly with compressed data. For example, the AVG aggregate
does not need to convert the RLE compressed list of prices back into uncompressed form, but
can instead compute averages directly from the compressed records, reducing C by about a
factor of 27.

Vertica includes many other compression methods, including delta encoding of successive
values and an efficient Lempel Ziv implementation, that are well-suited to use with sorted
columns with more distinct values as well as with unsorted columns. Most of these methods
allow direct operation on the data within the query processor. Other database systems – even
those that have a column-oriented architecture – cannot operate on compressed data in this
way.

1.2.3 Read-Optimized Storage
Recall that the bulk of the data in Vertica is stored in the ROS, which is optimized for efficient
read operations. Keeping the ROS sorted and compressed is one way in which its structure is
optimized. However, Vertica includes a number of other optimizations. For example, data in
the ROS is dense packed, meaning that no empty spaces are left at the ends of disk pages;
traditional databases leave a substantial portion of each page empty to allow insert operations
to be performed without reorganizing all data on the disk. Vertica does not need to do this
because inserts to the ROS are only done in bulk via the tuple mover. As another
optimization, Vertica pre-fetches large blocks during most reads to avoid unnecessary seeks
when large portions of several columns are being scanned.

1.2.4 Ability to exploit multiple sort orders
As described above, Vertica’s approach to high availability and recovery involves the use of
replicas which store the same data in different sort orders. Not only does Vertica’s recovery
scheme avoid expensive logging operations, these additional sort orders can be used to
further improve query performance. Furthermore, Vertica’s aggressive compression schemes
mean that different projections can be created on a single node that store the overlapping
sets of columns in different sort orders. Vertica can then select the best sort order for
processing a given query.

1.2.5 Parallel shared-nothing design on off-the-shelf hardware
Vertica’s performance scales linearly to a large number of CPUs. Because Vertica does not
depend on custom hardware, it will benefit over time from the dramatic performance
improvements that commodity hardware has traditionally enjoyed. It is much harder for
custom hardware solutions to reap these same benefits. Furthermore, because it is designed
from the ground up to run on off-the-shelf, Linux-based (including kernel-based I/O and file
systems) servers, it will maintain compatibility and scalability over time.

www.vertica.com 15 www.redhat.com

1.2.6 Bottom Line
In summary, many vendors offer non-column store systems. For read-mostly workloads,
these designs typically offer about 1/100th the performance of Vertica when using the same
amount of disk space, or 1/10th the performance of Vertica in 10 times the disk space (for
example, when they have many materialized views). A few column-oriented systems do exist,
but these first-generation designs lack aggressive compression features, a hybrid WOS/ROS
design, or Vertica’s sophisticated recovery and replication strategies. Typically, Vertica offers
10 times the performance of these column-based systems in about ¾ the disk space.

The table below illustrates the performance wins in a typical data warehouse application. The
study comes from a Vertica customer in the financial services industry, and it compares
Vertica to a popular row-oriented data warehouse DBMS. Here, queries against 1.5 terabytes
of stock market trade and quote history are 270X faster when Vertica queries the data.
Vertica allows them to answer 33x more queries per day, and data is available in real-time
rather than being a day late. All of this can be achieved on hardware costing over $1M (USD)
less. Similar benefits can be reviewed for other industries and applications by visiting
www.vertica.com/benchmarks.

 Row-Oriented Data
Warehouse DBMS

Vertica® Analytic
Database Vertica Advantage

Avg Query Response
Time 37 minutes 9 seconds 270x faster answers

Reports per Day 30 1000 33x more reports

New Market Data
Availability Next day 1 minute Real-time views

Hardware Cost
$1.4M

(2x 6 servers +
SAN)

$50,000
(6 HP ProLiant

servers)

1/28th of the
hardware,

built-in redundancy

 www.redhat.com 16 www.vertica.com

1.3 Administrative and Management Features
In addition to outstanding performance on a range of applications, Vertica includes a number
of features designed to simplify database administration and reduce total cost of database
ownership.

1.3.1 Vertica Database Designer
The primary role of the Vertica Database Designer (DB Designer) is to recommend a set of
projections (including encoding, sort order and segmentation values) that will provide good
performance for the queries that the user most commonly issues over his or her database and
cover any ad-hoc queries that users may choose to run. Of course, the database
administrator is able to override any of the decisions made by the DB Designer, but in many
cases, the designer can do a remarkably good job of optimizing performance, thus reducing
the time administrators must spend on physical database tuning.

The basic algorithm the DB Designer uses takes in a deployed logical schema, a set of
sample data from those tables, a “training set” of typical queries, and a maximum space
budget for each machine in the cluster. It then recommends a set of projections that provide
good performance on the training set, subject to satisfying the space constraints and ensuring
that any SQL query can be answered (which means all of the columns of the database must
be stored in at least one projection) even in the event that k server nodes fail (i.e.,
recommends a k-safe design).

Figure 5 illustrates the basic process: the DB Designer takes in a logical schema and a query
and data workload, and produces a physical schema consisting of a set of projections and a
partitioning of those projections across multiple machines.

Figure 5: The DB Designer produces a physical schema consisting of a set of projections and a
partitioning of those projections from a logical schema, a query workload, and a collection of

sample data.

www.vertica.com 17 www.redhat.com

1.3.2 Recovery and High Availability through k-Safety
The traditional method to ensure that a database system can recover from a crash is to use
logging and (in the case of a distributed databases), a protocol called two-phase commit. The
main idea is to write in a sequential log a log record for each update operation before the
operation is actually applied to the tables on the disk. These log records are a redundant copy
of the data in the database, and when a crash occurs, they can be replayed to ensure that
transactions are atomic – that is, all of the updates of a transaction appear to have occurred,
or none of them do. The two-phase commit protocol is then used to ensure that all of the
nodes in a distributed database agree that a transaction has successfully committed; it
requires several additional log records to be written. Log-based recovery is widely used in
other commercial systems, as it provides strong recoverability guarantees at the expense of
modest (but not insignificant) performance and disk space overhead.

Vertica has a unique approach to recovery that avoids these costs while still providing
distributed recoverability. The basic idea is to exploit the distributed nature of a Vertica
database. The Vertica DB Designer ensures that every column in every table of the database
is stored on at least k+1 machines in the Vertica cluster. We call such a database k-safe,
because if k machines crash or otherwise fail, a complete copy of the database is still
available. As long as fewer than k-1 other machines fail simultaneously, a crashed machine
can recover its state by copying data about transactions that committed or aborted while it
was crashed from other machines in the system. This approach does not require logging
because nodes replicating the data ensure that a recovering machine always has another
(correct) copy of the data to compare against, replacing the role of a log in a traditional
database. As long as k-safety holds, there is always one machine that knows the correct
outcome (commit or abort) of every transaction.

k-safety also means that Vertica is highly available: it can tolerate the simultaneous crash of
up to any k machines in a grid without interrupting query processing. The value of k can be
configured to provide the desired tradeoff between hardware costs and availability
guarantees. Note, however, that adding additional machines to increase the k-value of a
Vertica database not only improves availability but also improves performance. This is
because all that is required for k-safety is that each column is replicated K times, but each
copy of a column may be stored in a different projection, with a different sort order. As noted
above, different sort orders are good for answering different queries.
It is instructive to contrast Vertica’s high-availability schemes with traditional database
systems where high availability is achieved through the use of active standbys – essentially
completely unused hardware that has an exact copy of the database and is ready to take over
in the event of a primary database failure. Unlike Vertica’s k-safe design employing different
sort orders, active standbys simply add to the cost of the database system without improving
performance.

Because Vertica is k-safe, it supports hot-swapping of nodes. A node can be removed and
the database will continue to process queries (at a lower rate). A node can be added, and the
database designed will automatically allocate a collection of objects to that node so that it can
begin processing queries, increasing database performance automatically.

 www.redhat.com 18 www.vertica.com

1.3.3 Continuous Load: Snapshot Isolation and the WOS
In a traditional database system, adding new data is done in one of two ways. Either, it is
inserted a record-at-a-time, which is convenient for users, since they can update the database
whenever they need to, but substantially slows the database. This slowness comes from two
factors: first, inserts usually require locking operations that block other transactions running in
the system and second, because every insert requires expensive updates to indices,
materialized views, and cubes. As an alternative to record-at-a-time inserts, conventional
databases are often loaded via a bulk-load process, where the database system is taken
offline for several hours so that new records can be added without acquiring locks and so that
indices can be updated in bulk.

Vertica, in contrast, offers a continuous load feature that does not require the system to ever
be taken offline but still provides excellent insert performance. This is achieved through two
techniques. First, inserts do not affect the performance of most queries in the system. This is
because read-only operations in Vertica usually run in a snapshot isolation mode, where
they read a consistent snapshot of the database from just before any concurrent insert or
update operation ran. This means that read-only queries do not block for updates or inserts. It
also means that read-only operations are not required to acquire locks before reading from
the database, further improving performance.

The second way in which Vertica achieves good continuous load performance is through the
WOS. Since the WOS is unsorted and un-indexed, individual insert operations are fast. When
the tuple mover runs, it updates the (sorted and indexed) ROS very efficiently because it can
apply all of the WOS operations in bulk (much as the bulk-load process does in traditional
databases, but without taking the system offline.)

1.3.4 Backup/Restore for Disaster Recovery
Finally, Vertica includes a set of administrative tools for performing database archival and
restore for use in disaster recovery. These tools support parallel backup of multiple nodes to a
single image stored on a remote disk (e.g., a SAN). They also support an incremental backup
mode, where new data added to the database is automatically written to an archival image.

www.vertica.com 19 www.redhat.com

1.4 Who Should Use Vertica?
Vertica is a relational SQL database system that is best suited to read-intensive analytic
database applications such as data warehouses and data marts. It is optimized for databases
with OLAP-style workloads that include a small fraction of update operations (a good rule of
thumb is that fewer than 1% of the total SQL statements should be DELETEs or UPDATEs).
For database-backed applications that meet these requirements, Vertica offers a substantial
performance increase over row-oriented OLTP databases, other column databases and even
proprietary data warehouse appliance hardware, while using significantly less disk space and
without requiring a large investment in hardware or annual database administration overhead.

1.5 Additional Resources
The Vertica Analytic Database supports SQL and integrates with 3rd-party ETL, analytic and
BI reporting tools and applications via JDBC, ODBC and specific language bindings.
Therefore, using all your existing SQL knowledge and technology, a Vertica database can be
very quickly created and loaded with data.

If you would like to learn more about the Vertica Database or if you would like to evaluate it
yourself, then visit the following links:

Gartner on
Vertica and

EDWs
www.vertica.com/gartner

Watch a recording of Don Feinberg of Gartner
explain why supplementing an EDW with

column-DB based data marts improves the
ROI on EDWs

Vertica
Resource

Library
www.vertica.com/resourcelibrary White papers, demos, webcasts, system

requirements

Vertica
Benchmarks www.vertica.com/benchmarks

See customer-submitted cost and
performance comparisons between Vertica

and other databases

Vertica for the
Cloud www.vertica.com/cloud

Get a Vertica database instance provisioned
instantly on the Amazon Cloud and use it on

a month-to-month basis

Vertica
Customers www.vertica.com/customers See who’s using Vertica

Request a
Vertica

Evaluation
www.vertica.com/download Request a free evaluation copy of the Vertica

Analytic Database to download and install

 www.redhat.com 20 www.vertica.com

1.6 About Vertica Systems
Vertica Systems is the market innovator for high-performance analytic database management
systems that run on industry-standard hardware. Co-founded by database pioneer Dr.
Michael Stonebraker, Vertica has developed grid-based, column-oriented analytic database
technology that lets companies of any size store and query very large databases orders of
magnitude faster and more affordably than other solutions. The Vertica Analytic Database's
unmatched speed, scalability, flexibility and ease of use helps customers like JP Morgan
Chase, Verizon, Mozilla, Comcast, Level 3 Communications and Vonage capitalize on
business opportunities in real time. For more information, visit the company's Web site at
http://www.vertica.com.

www.vertica.com 21 www.redhat.com

2. Vertica and Red Hat Linux: System Requirements
and Configuration

This section contains recommendations and guidelines for installation and configuration of a
Linux machine for use with Vertica.

2.1 Representative Commercial Systems
Vertica is optimized for distributed computing environments such as grids and clusters of
shared-nothing computers connected via TCP/IP. Vertica takes advantage of multiple
processors, cores, and disks.

A production deployment should feature a cluster of at least 3 nodes (to ensure high
availability), and each computer within the cluster should be identically equipped and meet
the following minimum system requirements:

CPU: 64-bit dual-core or quad-core 1.6GHz

Recommended CPUs: (AMD: any Opteron™ 1000, 2000, 8000
series; Intel: any Core 2 or Pentium D, or any Xeon 3000,3200,
5300 or 7000 series)

RAM: 2GB per CPU core

DISK: 1TB of local storage (4x250GB 10K RPM, SATA or SAS)

OS: Red Hat Enterprise Linux 5

HP ProLiant DL 385

• 2 x AMD Opteron™ Processor 2210
• 8 GB RAM - 533MHz 4x1GB
• 7 x 146GB SAS 10K RPM hard disks
• Red Hat Enterprise Linux 5 (64-bit)

Dell PowerEdge 2950

• 1 x Quad-core Intel Xeon 5310 1.6GHz
• 8GB RAM
• 4 x 250GB SATA II
• Red Hat Enterprise Linux 5 (64-bit)

 www.redhat.com 22 www.vertica.com

2.2 Trickle Loads
For high rate trickle loads (> 500MB/min) Vertica recommends a minimum of 4 cores and
16GB of RAM (4GB per CPU core) to allow for larger merge chunks.

2.3 Swap Space Recommendations
Swapping is undesirable and causes performance to degrade. Vertica recommends that you
allocate minimum swap space as follows:

RAM Swap Space
2 GB 4 GB
4 GB 8 GB
8+ GB RAM + 2GB

2.4 Package Requirements
Vertica requires the following packages installed on the server

• libreadline
• ntp
• pam
• python (version 2.5 or greater)
• ssh
• sudo
• bc

Vertica also recommends the following optional packages

• gcc
• perl
• sysstat
• zip

www.vertica.com 23 www.redhat.com

2.5 Conflicting Packages
Vertica recommends against installing or running other processor or memory intensive
services the same system including

• Application Servers,
• Web Servers and
• Other Database Engines

2.6 Deployment Directory
Vertica installs in /opt/vertica. This directory must not be shared across the machines and
should be mounted on a local disk. Vertica will automatically install the RPM on all nodes in
the cluster and replicate the contents of the configuration directory as well as the license key
file. Minimum disk requirements for Vertica directories are as follows:

Path Description Minimum Free
Space

/opt Vertica installs in /opt/vertica 50MB for install
/catalog Path to directory for database

catalog
2x RAM always free

/data Path to directory for database
files

10x RAM always
free

2.7 Creating a Striped Data Disk
For storing database files, Vertica recommends using multiple dedicated physical drives for
each machine. These drives may be striped (RAID0) using either a hardware RAID controller if
it can stripe in 1MB chunks or in software using mdadm. Follow these instructions to configure
a stripe set using md.

1. Determine the device names of the disks to be striped. These are listed during install
and sometimes with the machine is started (check dmsg). They may also be listed
using dmesg or

mdadm –query /dev/sd*

A four disk set may have device names /dev/sda1, /dev/sdb1, /dev/sdc1,

 www.redhat.com 24 www.vertica.com

/dev/sdd1

2. Run the mdadm command to create a stripe set. This command creates a new
device (/dev/md0) that is a RAID level 0 stripe set with chunk size of 1024k. In this
example the stripe set is composed of the four disk devices listed. The 1MB chunk size
is chosen because Vertica reads and writes in 1MB chunks.

Repeat once for each /dev/sd[b,c,d]
$ printf 'n\np\n1\n\n\nt\nfd\nw\n' | fdisk /dev/sda

Note the “1”
$ /sbin/mdadm --create /dev/md0 --level=0 --chunk=1024 --raid-devices=4
/dev/sd[bcde]1

3. With the new device created, format it ext3

$ mkfs.ext3 /dev/md0

4. Create a /data directory and add mount information to /etc/fstab

/dev/md0 /data ext3 defaults 0 0

2.8 Locale and Time zone
Vertica recommends that you set the LANG and TZ environment variables are correctly
configured. The preferred LANG is en_US.UTF-8. Ensure that the environment variables are set
on all machines in the cluster or you may experience inconsistent results in data returned from
different machines in the cluster.

2.9 Network Time Protocol
Vertica recommends keeping the time on all machines in the cluster in sync using NTP. While
Vertica itself is resilient to clock skew, each process uses its local clock for time based
functions. Time variances may cause inconsistent query results when using date and time
functions.

2.10 Database Administration User
The Vertica catalog and database directories must be owned by the dbadmin user. The user
may be created at installation by the Vertica installer or can be deployed prior to installation.

www.vertica.com 25 www.redhat.com

When deploying a user manually, ensure the user has password-less ssh access between all
nodes in the cluster and owns both the catalog and database directories. The installer will
check for this at install time.

2.11 Networking
Vertica recommends connecting the database hosts on a private GigE network, using a
secondary interface for client communications. The private network may be configured in a
high availability deployment using multiple physical interfaces and switch switches bound to
each host as a single IP using NIC bonding.

Check open sockets on each node in the cluster, in particular look for servers listening on
ports 4803 (the spread port) and 5433 (the Vertica Database port). You can use the following
command:

netstat -nap | grep -e 4803 -e 5433

Before installing Vertica the command should have no output indicating that both ports are
available. After installing Vertica and before creating a database, you should see spread
bound to port 4803:

tcp 0 0 0.0.0.0:4803 0.0.0.0:* LISTEN 2206/spread
udp 0 0 0.0.0.0:4803 0.0.0.0:* 2206/spread

After creating a Vertica database, you should see both spread bound to port 4803 and
Vertica bound to port 5433:

tcp 0 0 0.0.0.0:5433 0.0.0.0:* LISTEN 2840/vertica
tcp 0 0 :::5433 :::* LISTEN 2840/vertica
tcp 0 0 0.0.0.0:4803 0.0.0.0:* LISTEN 2206/spread
udp 0 0 0.0.0.0:4803 0.0.0.0:* 2206/spread

2.12 Hostnames
Names for all hosts must be forward and reverse resolvable and should have consistent case
names. When possible make sure host identify themselves and can resolve each other using
canonical names rather than fully qualified names.

Vertica recommends setting up hostnames using /etc/hosts and configuring /etc/resolv.conf
to resolve hostnames using /etc/hosts.

 www.redhat.com 26 www.vertica.com

2.13 IP Addressing
Vertica host IP addresses must be permanent. This can be configured as a static IP address
or using DHCP with statically bound IP address. The IP address for a Vertica host may not
change and any replacement nodes must assume the IP address of the original host.

2.14 Firewalls
Vertica recommends disabling SELinux and Linux firewalls on all database host and
recommends against using iptables. Review your Linux installation guide for information on
how to disable any other system firewalls that may be present.

If you choose to configure IP Tables, allow ports 4803 UDP and 5433 TCP as well as higher ports
for session connections.

Check whether iptables is running by issuing the following command:

/etc/init.d/iptables status
Firewall is stopped.

If iptables is not stopped you may stop it by issuing the command

/etc/init.d/iptables stop
Firewall is stopped.

You may also remove it from the appropriate run levels in /etc/rc.d.

2.15 SE Linux
Most Linux systems offer a feature called Secure Linux or SELinux. This feature offers fine
grained control over system security. You may configure SELinux to allow Vertica access to
the network though Vertica recommends disabling it. On RedHat Enterprise Linux you can
configure SELinux using the following command:

/usr/bin/system-config-securitylevel-tui

Follow the instructions to disable the Security Level and SELinux.

www.vertica.com 27 www.redhat.com

2.16 Installation
Root access is required to install the Vertica RPM and to run the install_vertica script.
These can both be performed by a system administrator or scripted to for automated
deployment. Both operations may be completed using sudo provided it has privileges to
install the Vertica binaries and configure the spread service. To install the RPM issue the
following command

rpm -i {rpm file}

Following rpm installation run the install_vertica command providing valid arguments
as detailed in the Vertica Installation Guide.

2.17 Replacing Nodes
When replacing a failed machine the replacement machine must be configured identically
to the machine being replaced. Follow these steps to configure the new host:

1. Install the same OS and use the same IP address, hostname and catalog and data
paths.

2. Ensure password-less ssh connectivity between all machines including the new host.
3. Install the same version of the Vertica RPM.
4. Create the dbadmin user.
5. Create the catalog and data paths and set the same permissions as the original host.

If the original catalog directory was:
/catalog/devdb/DATABASE_NAME/sitexx_catalog/
then create this directory:
/catalog/devdb/DATABASE_NAME/

6. From the administration tools select “Start a Node”

Vertica will automatically initialize the configuration and create the catalog and data files
based on the configuration in the rest of the cluster.

Note: If you have made any changes to the vertica.conf file these will not be reflected on the
new host. After the new host has recovered you may stop the Vertica process on that host,
replace the Vertica.conf file and restart the Vertica node.

 www.redhat.com 28 www.vertica.com

3. Jaspersoft / Vertica Integration

[This document describes a standard installation of JasperServer on Red Hat Enterprise
Linux which will install a copy of the Apache Tomcat application server. It is also possible to
manually deploy the JasperServer application to an existing application server. JBoss,
WebSphere, GlassFish, and other application servers are supported. Manual deployment of
JasperServer is outside the scope of this document.]

Pre-Requirements:

• Jaspersoft Software

• Vertica DBMS

• Vertica JDBC Driver

Please ensure that you have downloaded and installed the latest copy of the Vertica JDBC
driver. The driver and the latest version number can be found on the Vertica Systems
website at http://www.vertica.com/v-zone/download_vertica link using your username and
password. Also, download the Jaspersoft software from the link
http://www.jaspersoft.com/downloads.html and follow the steps given below to install the
Jasper soft Software.

3.1 Steps to Install Jaspersoft Software

1) Double click the exe downloaded from http://www.jaspersoft.com/downloads.html and click on
Run.

www.vertica.com 29 www.redhat.com

2) A Setup window of Jasper Server Professional 3.0 appears. Click on Next in the window
below.

3) Accept the License Agreement by checking the radio button as shown in the window
below.

 www.redhat.com 30 www.vertica.com

4) Select a path of the directory (other than the default) if you want to change the path of the
installation directory and then click Next.

5) Select the first option if you want to use the bundled Tomcat with the Software otherwise if
you wish to use the existing installed Tomcat then select second option in the window below.

6) Select the first option if you want to use the bundled MySQL Database with the Software
otherwise if you wish to use the existing installed MySQL Database then select second option
in the window below.

www.vertica.com 31 www.redhat.com

7) The window below shows the Tomcat Port Configuration. Click Next.

8) Keep Clicking “Next” in the windows ahead. Installation will start as shown in the window
below.

 www.redhat.com 32 www.vertica.com

9) Click Finish. This completes the installation of Jasper Soft Software.

www.vertica.com 33 www.redhat.com

3.2 Steps to Connect Jaspersoft with Vertica

Below are steps to connect vertica to Jaspersoft and check the connection by listing the schema and
tables.

1) First of all to configure Jasper with Vertica, copy the Vertica JDBC jar’s file (vertica_x.x_jdk-
_5.jar where x.x is the version of the JDBC Driver) from “C:\Program Files\Vertica
Systems\Vertica Client Drivers 2.2\lib” to “InstallationDirectory_Jaspersoft”\ireport\lib
(example “C:\Program Files\jasperserver-pro-3.0\ireport\lib”).

2) From Windows Start up, Select All Programs -> JasperServer Pro 3.0 - > Start iReport. This
will open iReport 3.0.

3) Go to Options - > Classpath. This will open the window to set the classpath.

 www.redhat.com 34 www.vertica.com

4) The window below opens. Click Add JAR and select

“InstallationDirectory_Jaspersoft”\ireport\lib\vertica_x.x_jdk_5.jar where x.x is the version of
the JDBC Driver. This will set the classpath of the driver.

5) Go to Data - > Connections/Data Sources to create a new data source. This will open a new

window. Click on “New” in new window opened.

www.vertica.com 35 www.redhat.com

6) Select Database JDBC connection as the new data source and click “Next”.

7) Enter the Database JDBC Driver Connection Properties as in the below figure and

Click on “Test” to test the connection.

 www.redhat.com 36 www.vertica.com

8) Go to File - > New Document.

www.vertica.com 37 www.redhat.com

9) Enter the report name “Vertica_report” in the Report Name field.

10) Go to Data - > Report Query.

 www.redhat.com 38 www.vertica.com

11) Enter a valid query in the query window example “select * form date_dimension”.
 Click Query designer which will open the second window given below. It shows the tables
and schema information and is used to design the query.

www.vertica.com 39 www.redhat.com

12) Window below shows how to create query in the Query Designer. It is just drag and

drop of tables and checking boxes for selecting the particular columns. We can also
create the query with conditions, group by clause etc as given below.

 www.redhat.com 40 www.vertica.com

13) The below window shows the query designed by the query designer.

www.vertica.com 41 www.redhat.com

14) Now the fields selected in the query is shown in the Document structure Pane as

given below.

15) Drag and drop these fields from Document Structure Pane to Report Window.

 www.redhat.com 42 www.vertica.com

16) For entering Static Text in the Colum headings click “T” icon. Then make a box
of a particular size in the Report window and right click that box to set the properties.

17) The window below is the Properties window to change the properties of the static text

box.

www.vertica.com 43 www.redhat.com

18) Using the above 2 steps put the columns heading and title of the Report as shown in
the figure below.

19) Save the report by selecting a particular path as shown below.

 www.redhat.com 44 www.vertica.com

20) To Compile the Report Go to Build - > Compile.

21) Then to run the report with the active connection Go to Build -> Execute(with active

connection)

22) After executing the reports we get iReport Jasper Viewer given below.

www.vertica.com 45 www.redhat.com

23) To include charts in the report go to Edit -> Insert Element -> Chart as shown below.

24) Go to Report window and click anywhere. It will open the window given below. Choose

the template of the chart and Click “OK”.

 www.redhat.com 46 www.vertica.com

25) Right click on the chart in the report window and click Chart Properties to set the

properties of the chart.

www.vertica.com 47 www.redhat.com

26) A new window of properties open shown below. In Chart Data Tab, set the key
expression and value expression for the chart.

 www.redhat.com 48 www.vertica.com

27) After setting the properties of the chart again compile and execute the report to get the
final report as shown below. We can save these reports in various file formats by
clicking save button.

www.vertica.com 49 www.redhat.com

 www.redhat.com 50 www.vertica.com

4. Vertica Analytic Database on SAN
This section following document provides important information on how to configure Storage
Area Network (SAN) for use with the Vertica Analytic Database. It also provides insight on
how it may directly impact application performance and how to best setup and configure
this scenario for optimum utilization.

4.1 Shared Nothing Architecture
The Vertica Analytic Database is optimized for share nothing configurations. The database is
deployed on a cluster of industry standard servers connected via Gigabit Ethernet. Each
server in the cluster manages its own persistent data and does not rely on shared disks in
order to communicate with other servers in the cluster. When loading data or executing
queries, Vertica distributes each operation so as to maximize parallelism on the various cluster
servers. Each server in an N-server system manages 1/Nth of the data. In a Highly Available
(HA) configuration, each server manages 2/Nths of the data, including a primary copy and a
different secondary copy. The HA configuration (known as K-safety) accommodates up to K
server failures in the cluster without any downtime or the need to restore from backup.

4.2 Direct Attached Storage vs. Storage Area Network
When considering a Vertica deployment a critical decision is whether to use local direct
attached storage - either in a paired blade or pizza box configuration - or if there is a
requirement to store the data on a SAN. For local storage configurations, follow the “Vertica
Machine Requirements and Config” document. The remainder of this document describes
considerations and guidelines for deploying Vertica on a SAN.

4.3 Storage Area Network Configuration Guidelines
The primary factor when using a SAN as the storage location for a Vertica deployment is
physical contention for spindles. Vertica strongly recommends using a dedicated SAN or a
dedicated segment of a restricted SAN. Aside from contention for disk, Vertica performance
will be limited by available cache, I/O and network traffic in any shared configuration.

Each server in the Vertica cluster should mount its own LUN backed by dedicated physical
drives. Sharing drives across LUNs can lead to hotspots since all servers issue multiple
concurrent I/O requests. Depending on the expected user load, each LUN should be striped
(RAID 0) with a minimum of eight disks. Stripes should be composed of as large a chunk size
as possible – ideally 1mb per disk as described in the Machine Requirements document.
When executing a query each server issues multiple simultaneous I/O requests for 1mb blocks
of data, processing the results in a pipelined fashion. Running 30 concurrent queries will incur
as many as 300 simultaneous requests. The response time for each query is principally gated
by the latency incurred in the disk subsystem.

While latency is the primary concern when configuring a SAN, throughput is the gating factor
in total execution time. Vertica is typically CPU bound while running both loads and queries
so long as disk throughput is adequate. When processing data on a SAN, Vertica should be
connected via dual 4gbps HBAs running in parallel to prevent a network bottleneck.

www.vertica.com 51 www.redhat.com

4.4 Storage Area Network Diagram
The following diagram illustrates the recommended deployment model for connecting
Vertica to a SAN.

Figure 6

For specific questions about configuring a SAN for your Vertica installation or for more
information about deploying Vertica, contact Vertica Field Engineering at
http://www.vertica.com/support.

 www.redhat.com 52 www.vertica.com

5. SAN Storage Configuration
This section provides general technical guidance to database administrators, system
administrators, storage management personnel, and Linux IT professionals regarding
deployment and maintenance of the Vertica® Analytic Database configured with SAN-
based storage systems.

This section includes:
• Vertica minimum requirements for the storage subsystem;

• A characterization of the Vertica I/O pattern, enabling IT engineers to apply storage
system vendors’ recommendations in the context of Vertica requirements; and

• Recommended tools and methods of validating the storage system configuration.

5.1 Vertica Database Cluster with SAN Storage
The example below outlines the recommended connectivity within an environment that
includes a distributed 4 node Vertica database cluster and a generic SAN storage system.
The minimum number of nodes in the Vertica cluster is 3. The connectivity pattern should be
repeated in the case of a larger Vertica cluster. The maximum number of cluster nodes is
determined by the capacity of the FC switching equipment and SAN units, and not by
intrinsic restrictions in the Vertica product design.

www.vertica.com 53 www.redhat.com

Figure 7

Each system representing a node in the Vertica cluster has two FC HBAs that provide two FC
connections to the SAN array via two FC SAN switches. The modern SAN storage arrays are
typically quipped with at least 2 controllers, which are cross connected to each other and
are also attached to each of the FC switches.

The logical volumes (LUNs) are allocated on the SAN unit and presented to its own Linux hosts.
Per the above connectivity chart, each host would have a total of 8 FC connection paths to
its LUNs across 2 HBAs, 2 switches, and 2 controllers.

This configuration is consistent with commonly accepted practices of attaching SAN storage.
It provides the opportunity for High Performance storage access by spreading out the I/O
across all available resources while offering redundancy to satisfy High Availability
requirements.

5.2 Vertica I/O Profile Characterization
Vertica is purposely designed to shift the burden of data processing from the storage tier to

 www.redhat.com 54 www.vertica.com

the computing tier, i.e. CPU and RAM. Vertica dramatically minimizes the amount of file I/O
by operating only on columns referenced by the query. Vertica further reduces the amount
of I/O by storing the data in a highly compressed form, only possible with a columnar
structure.

During query execution Vertica is primarily CPU bound, rarely requiring more than 150MB/s
read I/O bandwidth per query per each cluster node.

During direct data load, the Vertica database goes through several internal phases, some of
which may be constrained by I/O bandwidth. The Vertica database server may drive 150
MB/s or more of write I/O throughput.

Vertica’s I/O pattern is dominated by sequential 1 MB block reads and writes.

Vertica requires only a moderate sustainable level of IOPS (input/output operations per
second).

Vertica clustering is based on the shared-nothing model. Vertica does not require nor need a
shared/clustered file system.

5.3 SAN Performance Requirements and Configuration
Recommendations
1. Each node of the Vertica database cluster needs 2 top level directories to accommodate

its segment of the database – a directory for the database catalog files and a separate
directory for the database data files. While not technically a requirement, we strongly
recommend placing the catalog and data files on separate LUNs.

2. Per above, the total number of LUNs allocated on the storage array would be 2 x [the
number of nodes], i.e. 1 catalog and 1 data LUN per node. For catalog and database
data space allocation guidance refer to the Vertica documentation.

3. The LUNs must be presented to each Linux host so that the paths to the catalog and data
on each host are identical.

4. Vertica requires a minimum of 150 MB/s read and 150 MB/s write throughput on each
node, in full duplex (i.e. reading and writing at 150 MB/s simultaneously), concurrently on
all nodes of the cluster.

5. Vertica recommends a minimum of 2 FC HBAs on each node of the cluster, with each
port rated at 2Gb or better. A single dual port FC HBA may be acceptable.

6. Benchmark data suggests that Vertica I/O performance benefits from larger RAID stripe
sizes. Setting stripe size (or even stripe unit size, if available) to 1 MB may yield additional
performance gains on some SAN arrays.

www.vertica.com 55 www.redhat.com

5.4 SAN Configuration Considerations
Traditionally, the SAN array performance tuning focuses on two mutually exclusive strategies –
contention management vs. workload distribution.

More recently, however, the manufacturers have been claiming that the enterprise level
storage arrays, particularly high end models, have sufficient intelligence in the array
management software to offer a balance between the two strategies, often by being able
to determine the type of workload presented to the unit.

We have seen sufficient evidence to agree that given Vertica’s predictable and consistent
I/O pattern, it may be best to avoid attempts to manage perceived contention at the array
by overwriting manufacturer’s recommendations, as noted in the section Impact of Disk
Group Allocations.

While the focus of SAN configuration optimization may not necessarily be the storage array
itself, there is substantial opportunity for misconfiguration en route between the host and the
storage array, e.g. in the software and drivers on the host side and in the FC switched fabric
(switches/controllers/physical FC connections).

Vertica recommends validating that each of the cluster nodes receives the minimum
required I/O bandwidth by using the SAN Configuration Verification Tool. This test must be run
concurrently on all cluster nodes.

5.4.1 Host Side Driver and Multipathing Software
Selection and proper configuration of a Linux side driver and multipathing software is one of
the critical factors in delivering the required I/O bandwidth for the host.

The Linux FC driver and the optional multipathing software may be available from a variety of
sources, particularly from:

• the storage array manufacturer (e.g. HP, EMC, Hitachi, SUN, etc.);
• the host system manufacturer (e.g. HP, Dell, SUN, IBM, etc.);
• the HBA manufacturer (e.g. QLogic, Brocade, Emulex, etc.);
• a Linux kernel distribution.

The wide selection of configuration choices may lead to confusion at times. In our experience
the best overall results are achieved when storage administrators follow good practices
provided by storage array manufacturers.

Some device drivers may offer built-in multipath capabilities, which have to be carefully
managed. For instance, if the driver implements the failover functionality, it may present all
FC paths as a single device, thus denying the opportunity to load balance I/O traffic across
all available paths. Each host may be independently choosing the same primary connection
path to its LUNs, resulting in all I/O concentrating on a single FC connection rather than being
spread across available FC paths. Consequently, the multipath/failover option in the driver

 www.redhat.com 56 www.vertica.com

becomes counterproductive in a bandwidth focused environment and should be disabled.
When the multipath/failover option is disabled, each path is presented to the Linux host as a
separate block device, thus allowing all FC paths to the LUN to be managed by the optional
multipathing software.

The multipathing software (such as HP Device Mapper (DM) Multipath Software, EMC
PowerPath, etc.) enables automatic load balancing and explicit path management (via
device “blacklist”, for instance). These capabilities are typically required to achieve the best
results with SAN storage.

5.4.2 Impact of Disk Group Allocations
When configuring a Vertica cluster with storage arrays, follow good practices of disk group
allocations from the array manufacturer. Manufacturers often suggest creating a single large
disk group and allow the array’s software to manage striping.

With Vertica’s shared-nothing clustering model the goal may intuitively be towards
segregating resources attached to individual nodes. We are aware of situations when
attempts to manage perceived contention at the array’s spindle level by allocating separate
disk groups led to the overall inferior Vertica database performance.

5.4.3 Impact of RAID Type
Vertica field studies show that enterprise level SAN arrays, when configured as RAID0, RAID10,
or RAID5 yield essentially similar Vertica performance levels.
While use of RAID5 as database storage is often considered a controversial topic, the
benchmark data shows that RAID5 is a viable, perhaps even a preferred storage
configuration option for Vertica because of RAID5’s excellent storage utilization
characteristics.

Vertica cluster performance is practically not impacted with a failure of a physical drive. Both
queries and loads may continue while the storage that suffered a failure is operating in a
degraded configuration.

A sufficient amount of at Battery Backed Write Cache (BBWC/NVRAM), 1GB or more, should
be considered a minimum requirement for RAID5 configuration.

5.5 SAN Configuration Verification Tool
After the SAN storage is configured and the required catalog and data LUNs are presented
to each Linux host of the Vertica cluster, a standalone utility that emulates Vertica I/O
patterns may be used to validate that each of the cluster nodes receives the minimum
required I/O bandwidth.

This utility performs read, write, and re-write tests and requires a minimum amount of free disk
space equal to 4 times the amount of RAM.

www.vertica.com 57 www.redhat.com

The test must be run concurrently on all nodes of the Vertica cluster.

Please contact your Vertica sales consultant for the download, installation and configuration
instructions.

 www.redhat.com 58 www.vertica.com

6. Vertica Cluster Network Configuration
When preparing a cluster for a Vertica installation it is important to review the following
checklist to ensure compatibility and avoid issues creating a database. You will need to
have root access to your cluster to change most of these configurations. If you do not have
root access, please review this document with your IT administrator.

6.1 IP Configuration
Check the IP configuration on each node in your cluster using the /sbin/ifconfig
command. You will see output similar to the following:

/sbin/ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:52:37:63
 inet addr:192.168.163.128 Bcast:192.168.163.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe52:3763/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:14418 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4069 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:14106172 (13.4 MiB) TX bytes:359902 (351.4 KiB)
 Interrupt:177 Base address:0x1400

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:3926 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3926 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:380270 (371.3 KiB) TX bytes:380270 (371.3 KiB)

Pay attention to eth0 or similarly named interfaces. Check that the inet addr on line two has
a similar prefix on all nodes in your cluster. The Bcast and Mask must be identical on all nodes
in the cluster. Vertica requires that all nodes in a cluster be on the same subnet. You may
consult with your IT administrator if you are not sure whether all nodes are on the same
subnet.

6.2 Routing
Print the routing table with the ‘route’ command and check the default route. For example,
if you are running on a 192.168.163.x network your route table may appear as follows:

route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

www.vertica.com 59 www.redhat.com

192.168.163.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.163.2 0.0.0.0 UG 0 0 0 eth0

If you have multiple interfaces you may see other entries besides eth0 in the last column.
Make sure that the default route for all machines in your cluster is the same and that the
destination and genmask for the ‘*’ gateway is the same.

6.3 Hostnames
Hostnames must be set to non-local host (not the 127.0.0.1 address) and consistent across the
cluster. Your hostnames may be configured via DNS or using /etc/hosts. If you are using DNS,
please consult your IT administrator. If you are using /etc/hosts, it should look like the
following:

127.0.0.1 localhost.localdomain localhost
192.168.163.128 node01.domain.com node01
192.168.163.129 node02.domain.com node02
192.168.163.130 node03.domain.com node03

This configuration names three nodes with their corresponding ip addresses.

6.4 SSH
The database administrator user must be able to ssh from each node in the cluster to every
other node using the hostname and without being prompted for a password. To test this in
our example cluster log in as the database administrator on node01 and ssh to both node02
and node03, ssh-ing back to node01 from each. Repeat this process on node02, ssh-ing to
node3. If you find that ssh is not setup correctly please consult the Vertica documentation or
use the db-ssh-config tool setup your database administrator user.

6.5 Open Sockets
Look for open sockets on each node in the cluster, in particular look for servers listening on
ports 4803 (the spread port) and 5433 (the Vertica Database port). You can use the following
command:

netstat -nap | grep -e 4803 -e 5433

Before installing Vertica the command should have no output indicating that both ports are
available. After installing Vertica and before creating a database, you should see spread
bound to port 4803:

 www.redhat.com 60 www.vertica.com

tcp 0 0 0.0.0.0:4803 0.0.0.0:* LISTEN 2206/spread
udp 0 0 0.0.0.0:4803 0.0.0.0:* 2206/spread

After creating a Vertica database, you should see both spread bound to port 4803 and
Vertica bound to port 5433:

tcp 0 0 0.0.0.0:5433 0.0.0.0:* LISTEN 2840/vertica
tcp 0 0 :::5433 :::* LISTEN 2840/vertica
tcp 0 0 0.0.0.0:4803 0.0.0.0:* LISTEN 2206/spread
udp 0 0 0.0.0.0:4803 0.0.0.0:* 2206/spread

6.6 IP Tables
You may configure IP Tables to allow ports 4803 and 5433 as well as higher level ports though
Vertica recommends disabling it completely. Check whether iptables is running by issuing
the following command:

/etc/init.d/iptables status
Firewall is stopped.

If iptables is not stopped you may stop it by issuing the command

/etc/init.d/iptables stop
Firewall is stopped.

And remove it from the appropriate run levels in /etc/rc.d. Check with your IT
administrator before making changes to your system startup scripts.

6.7 Other Firewalls
Other firewalls may be present. You should review your Linux installation guide for information
on how to disable any additional system firewalls that are present.

6.8 SELinux and Security Levels
Most Linux systems offer a feature called Secure Linux or SELinux. This feature offers fine
grained control over system security. You may configure SELinux to allow Vertica access to
the network though Vertica recommends disabling it. On RedHat Enterprise Linux you can
configure SELinux using the following command:

/usr/bin/system-config-securitylevel-tui

www.vertica.com 61 www.redhat.com

Follow the instructions to disable the Security Level and SELinux.

6.9 Network Configuration
Vertica recommends that you run your database cluster on a private subnet with a
dedicated switch to prevent any network contention and issues with custom network
configurations. If this is not possible, review the Vertica installation and quickstart procedure
with your IT administrator and check for dropped or delayed packets, spread errors or
warnings in the vertica.log or problems creating a database.

Vertica supports systems that have multiple network cards in a number of configurations. The
most common configurations are:

• Private subnets which do not use host name resolution.
• Configurations where each IP address is given a unique host name.
• Configurations where all IP addresses on a given system share a host name.

Figure 8: Sample 4 Node Cluster

The illustration provided in Figure 4 is useful when discussing these types of network
configurations.

6.9.1 Private subnets which do not use host name resolution
In the illustration provided, the private subnet is the network identified by the 192.168.1.255
network. In this configuration, each of the systems will be provided with a hostname
corresponding to the ip address of the public network (xxx.xxx.xxx.xxx). There are no host
names defined for the private network.

In this configuration, the -s option of the install_vertica script would consist of a series of 4
ip addresses.

 www.redhat.com 62 www.vertica.com

For example:

 /opt/vertica/sbin/install_vertica -s
192.168.1.10,192.168.1.11,192.168.1.12,192.168.1.13 -r

6.9.2 Configurations where each IP address is given a unique
host name
Again using the illustration provided, the private subnet is identified by the 192.168.1.255
subnet. In this configuration the private and public ip addresses are given unique hostnames.
A sample /etc/hosts file might look like this:

bash#> cat /etc/hosts

local loopback do not delete this line
127.0.0.1 localhost localhost.localdomain
public network ip addresses.
10.10.10.10 host01.company.com host01
10.10.10.11 host02.company.com host02
10.10.10.12 host03.company.com host03
10.10.10.13 host04.company.com host04
private network – all vertica comms go here
192.168.1.10 cluster01
192.168.1.11 cluster02
192.168.1.12 cluster03
192.168.1.13 cluster04

It should be noted that all possible network paths are described here. It is possible to reach
the other members of the cluster with both the public and private hostnames. To ensure that
vertica installs using the private network, the install line should include the hostnames of the
private network. For example;

 /opt/vertica/sbin/install_vertica -s cluster01,cluster02,cluster03,cluster04 -r
...

6.9.3 Configurations where all IP addresses on a given system
share a host name
Again using the illustration provided, the private subnet is identified by the 192.168.1.255
subnet. In this configuration the private and public ip addresses are given shared host names.
A sample /etc/hosts file might look like this:

bash#> cat /etc/hosts

local loopback do not delete this line
127.0.0.1 localhost localhost.localdomain

public network ip addresses.
10.10.10.10 host01.company.com host01

www.vertica.com 63 www.redhat.com

private network – all vertica comms go here
192.168.1.10 host01
192.168.1.11 host02
192.168.1.12 host03
192.168.1.13 host04

Notice that in this case only the local public ip address is provided. If you want to include the
entire spectrum of ip addresses, be sure to put the private network first in /etc/hosts resolution
as the vertica install utility will pick the first set of ip addresses that share a common subnet.

Each host in the cluster that is configured this way must have its /etc/host.conf file modified to
turn on multi-home capabilities*. To do this, edit the /etc/host.conf file and add the line
multi on to the file. You must also make sure that the order of resolution is hosts,bind in this file.
For example;

bash#> cat /etc/host.conf
order hosts,bind
multi on

In addition, the /etc/nsswitch.conf will need to contain file resolution first.

To ensure that Vertica installs using the private network, the install line should include the
hostnames of the private network. For example;

/opt/vertica/sbin/install_vertica -s host01,host02,host03,host04 -r ...

6.10 Network Troubleshooting

6.10.1 Issue: Install reports “Expected n heard from n-y”
This is caused by 2 possible errors. The most common error is that there is no route from one of
the hosts in the cluster to another – probably because a firewall is still running. Make sure that
the firewall has been turned off.

The second error is less common and results when a system is heavily loaded or limited in
resources. Because the throughput test server may lag when starting up on heavily loaded
systems, the client will occasionally try to connect before that server has started up. This is
especially prevalent on VM images on laptops. To resolve, either wait for the system to quiet
down or provide more resources.

 www.redhat.com 64 www.vertica.com

6.10.2 Issue: In multi-home scenarios when a hostname is shared
by many IP's, Vertica install chooses the wrong IP address to
install to

The install script is able to identify the public subnet as a subnet common among all members
of the cluster first. To resolve, modify the /etc/hosts file and place the private network
addresses first.

www.vertica.com 65 www.redhat.com

7. High Availability Recovery
The Vertica Analytic Database has a unique approach to recovery that takes advantage of
its distributed architecture. Every data value in every table of a K-Safe database is stored on
multiple nodes. This form of distribution ensures that a complete and correct copy of the
database is available, even if up to K nodes fail. A recovering node automatically recovers its
lost objects by querying the other nodes in the cluster.

7.1 K-Safety
A Vertica database is said to be K-safe if one node can fail at any given time without causing
the database to shut down. If a database having K=1 loses a node, the database continues
to run normally. When the failed node returns and successfully recovers, it can participate in
database operations again. However if more than one node fails, the system is no longer K-
safe and will shut itself down to prevent inconsistency. The entire database must then be
started again as described in “Restart the Database” section.

7.1.1 Requirements for K-Safety
Vertica supports a k-safety level of 1, meaning that only one node can go down regardless of
the number of nodes in your cluster.

When creating projections with the Database Designer, projection definitions which meet k-
safe design requirements will be recommended and marked with a k-safety level of 1.
Notice the output from executing the optimized design script generated by the Database
Designer.

A physical schema consists of a set of projections used to store data on disk. The projections in the
physical schema are based on the objects in the Logical Schema.

A projection is a special case of a materialized view that provides physical storage for data. A
projection can contain some or all of the columns of one or more tables. A projection that contains all of
the columns of a table is called a superprojection. A projection that joins one or more tables is called a
pre-join projection. Most projections are used for ad-hoc query processing and K-safety but it is possible
to have query-specific projections.

A superprojection is a projection that contains every column of a table in the Logical Schema. A table
can have multiple superprojections with different sort orders.

A materialized view is similar to a standard SQL view with one major exception: the data is actually
stored on disk rather than computed each time the view is used in a query. A materialized view, then,
must be refreshed whenever the data in the underlying tables is changed. A projection is a special case
of a materialized view.

Stock_Schema=> \i Stock_Schema_design_opt_1.sql

 www.redhat.com 66 www.vertica.com

CREATE PROJECTION

CREATE PROJECTION

 mark_design_ksafe

 Marked design 1-safe

(1 row)

If you have created your projections manually, executing select mark_design_ksafe(1);
will either mark the system as 1-safe or will return an error which will indicate which projections
do not have buddy projections and are not k-safe. For more information on buddy
projections and how to add additional buddies using the db designer, refer to the Modifying
Existing Database Design section in the Vertica Product Documentation, DB Administrator
Guide.

7.1.2 Determining K-Safety
To determine the K-safety state of a running database, execute the following SQL command:

SELECT current_fault_tolerance FROM vt_system;
current_fault_tolerance

 1
(1 row)

7.1.3 Monitoring K-Safety
Monitoring tables can be accessed programmatically to enable external actions such as
alerts. The K-Safety level can be monitored by polling the vt_system table column and
checking the value.

For example, the following script will monitor the k-safety level of a Vertica cluster and email
the appropriate person if it drops to 1:

#!/usr/bin/perl

$email = @ARGV[0];

sub sendEmail {
 my ($to, $from, $subject, $message) = @_;
 my $sendmail = '/usr/lib/sendmail';
 open(MAIL, "|$sendmail -oi -t") or die "Cannot open $sendmail: $!";
 print MAIL "To: $to\n";

www.vertica.com 67 www.redhat.com

 print MAIL "From: $from\n";
 print MAIL "Subject: $subject\n\n";
 print MAIL "$message\n";
 close(MAIL);
}

$ksafety = `vsql –c “select current_fault_tolerance from vt_system;” | awk ‘/[0-9]/
{print $1}’`;
while ($ksafety > 0) {
 sleep(1);
 $ksafety = `vsql –c “select current_fault_tolerance from vt_system;” | awk ‘/[0-9]/
{print $1}’`;
}
sendEmail($email,$email,'K-Safety Level 0','K-Safety Level 0');

7.1.4 Loss of K-Safety
Should you lose a node and your cluster’s K-Safety level drops to 0, all DML operations will
remain available. However performance will be impacted.

7.2 Catalog and Data Files
For the recovery process to complete successfully it is essential to ensure that catalog and
data files are in the proper directories. In Vertica, the catalog is a set of files that contain
information (metadata) about the objects in a database, such as the nodes, tables,
constraints, and projections. The catalog files are replicated on all nodes in a cluster while the
data files are unique to each node. They can be found in the following directories:

/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_catalog/

/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_data/

Where DATABASE_HOME_DIR is the path that can be found from the admintools
“Configuration” -> ”View Database” menu.

To view the path from adminTools, select “Configuration” from the main menu and then
select “View Database”.

 www.redhat.com 68 www.vertica.com

Select the database that you would like to view and click “OK” to see the database profile.

In this example, the catalog files are found in the following directory:

/home/dbadmin/Stock_Schema/stock_schema_node1_host01_catalog/

7.3 Recovery Scenarios
In the following sections we detail four recovery scenarios describing the steps to recovering
or replacing a failed node.

www.vertica.com 69 www.redhat.com

7.3.1 Restarting a Node
When one node in a running database cluster fails or if any files from the catalog or data
directories are lost from any one of the nodes the admin tools will reflect the status of down
node in admin tools within a few minutes. This can be checked with the “View Database
Custer State” in the admintools main menu.

With one node of a K=1 cluster down the value of K is 0.

Note: The k-safety value is a property of the schema. Should a node fail, the new K value will
not be reflected in the vt_system table.

To begin the recovery process select “Restart Node” from admin tools as detailed in the steps
below. This will recover the failed node.

 www.redhat.com 70 www.vertica.com

1. Run admin tools and select “Restart Node”

2. Select the database node that you wish to recover.

www.vertica.com 71 www.redhat.com

3. Select Node to be restarted.

Note: You may see additional nodes in the list because they are used internally by the admin
tools.

4. The starting database message includes the recovery message.

 www.redhat.com 72 www.vertica.com

5. Recovery state can be viewed again by selecting “View Database Cluster State” from
the main menu.

6. After the database is fully recovered, the status can be checked again through “View
Database Cluster State”

www.vertica.com 73 www.redhat.com

7.3.2 Restarting a Database
Should you lose the Vertica process on more than one node (for example, due to power loss),
or if the servers are shut down without properly shutting down the Vertica database first, the
database cluster will identify that it was not cleanly shutdown during startup. The database
will automatically detect when the cluster was last in a consistent state and then shutdown.
At this point it can be restarted by an administrator.

From the main menu in admintools:

1. Verify that the database has been stopped.

 www.redhat.com 74 www.vertica.com

2. Then start the database by selecting “Start Database” from the Main Menu.

3. Select the database to be restarted.

www.vertica.com 75 www.redhat.com

If you are starting the database after an unclean shutdown, you will see messages
which will indicate that the startup has failed. Press RETURN to continue with the
recovery process.

 www.redhat.com 76 www.vertica.com

An epoch represents committed changes to the data stored in a database between two
specific points in time. When starting the database, Vertica will search for last good epoch.
Upon determining the last good epoch, you will be prompted to verify that you would like to
start the database from the good epoch date. Select “Yes” to continue with the recovery.

Vertica will then continue to initialize and recover all data prior to the last good epoch.

If recovery takes more than a minute, you will be prompted to answer <Yes> or <No> to “Do
you want to continue waiting?”. When all the nodes' status have changed to RECOVERYING
or UP, answering <No> will allow you to exit this screen and monitor progress via the
adminTool main menu. Otherwise, answering <yes> will continue to display the database
recovery window.

Note: Be sure to reload any data that was added after the last good epoch date to which
you have recovered.

www.vertica.com 77 www.redhat.com

7.3.3 Partial Disk Loss
If the disk where the data or catalog directory resides fails, replace the disk and recreate the
data or catalog directory. Then copy the following files from any other node to the new
node:

vertica.conf

debug_log.conf

These files can be found in the following directory on the other nodes:

/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_catalog/

Note: Examples for finding your DATABASE_HOME_DIR can be found in the “Catalog and
Data Files” section of this document.

After replacing these files, restart the database following the steps in the previous “Restart the
Database” section.

7.3.4 Replacing a Failed Machine
When replacing a failed machine, the replacement machine must be identically configured
to the machine being replaced. Follow these steps to configure the new host:

Note: Detailed instructions for steps 1 through 4 can be found in the Vertica Product
Documentation, Installation Guide.

1. Install the same OS and use the same IP address, hostname.
2. Install the same version of the Vertica RPM but do not run

/opt/vertica/sbin/install_vertica.
3. Create the dbadmin user.
4. Create the catalog and data paths using the same permissions as the original machine.

For example, if the original catalog directory was:
/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_catalog/

then create this directory:
/DATABASE_HOME_DIR/DATABASE_NAME/

Note: Examples for finding your DATABASE_HOME_DIR can be found in the “Catalog and
Data Files” section of this document.

a. To ensure password-less ssh, execute the following:

 www.redhat.com 78 www.vertica.com

b. Copy the fixkeys.py script, available for download on the Online Training Section
of the Vertica website, to the /opt/vertica/bin/ directory. The script must be
owned and executable by root.

c. Execute the fixkeys.py script as root:
fixkeys.py <comma separated list of all hosts in cluster, including
this one> <db admin user>

5. Restart the node. (Please refer to the previous section “Restart the Node” for more

details.)

6. Copy the contents of /opt/vertica/config over from another site

7. Install and start spread as root user. To install spread, execute the

/opt/vertica/sbin/spread_install.sh script as follows:

spread_install.sh <install,stop,remove,start> <prefix_dir>
<RHEL4|RHEL5|FC4|FC5|FC6|SUSE|DEBIAN>

For example, to install on a redhat 5 site:
spread_install.sh install /opt/vertica/ RHEL5

To start spread, execute the following as root:
/etc/init.d/spreadd start

7.3.5 Adding Disk Space
The following procedure details the steps required to add disk space to a node in the Vertica
cluster.

1. Add a disk to the system
Shutdown Vertica and power off system if it is required by the hardware.
Insert the new disk and power on the system if required

2. Partition/format/mount new disk as required by the hardware environment
3. Create a database path on the new volume
4. Restart Vertica on site if required
5. Add the new database path on the system with the new disk

from an open session:
select add_location(‘<database path on new volume’>);

Note: Add_location is a local command and needs to be run on each site that space is
added to.

For example, given the following configuration;

Site: site01
Database Name: myDB
Existing data path: /myPath/myDB/site01_data/

www.vertica.com 79 www.redhat.com

Path to new volume being added: /myNewPath/

We would follow the steps below to add a new disk.
1. From admintools stop database on site01
2. Power off site01
3. Insert new disk
4. Power on site01
5. Partition as needed

mount /myNewPath/ on new volume
6. Create a data directory path on the new volume

mkdir –p /myNewPath/myDB/site01_data2/
7. From admintools start database on site01
8. Open a database connection on site01 and add new data location

select add_location(‘/myNewPath/myDB/site01_data2/’);

7.3.6 Adding Disk Space Across the Cluster
The following steps can be performed to add disk space to all sites in an optimal cluster
environment:

If the cluster can be taken offline:

1. Shutdown the cluster from admintools
2. Follow “Base Case” steps 1-3 for adding a disk on each site
3. Start the Vertica database from admintools
4. Follow “Base Case” step 5 for adding a location on each site

If the cluster cannot be taken offline:
1. Follow “Bases Case” procedure for each site, 1 site at a time.

7.3.7 Recovering the from a Backup
Please refer to the Backup and Recovery guide available on the Online Training section of
the Vertica Website for additional information on recovering a cluster from backup.

7.4 Monitoring Recovery
During recovery, Vertica adds logging information to the vertica.log on each site. Monitoring
your Recovery progress is possible by viewing these messages. Recovery status messages
can be identified by the string '[Recovery]'. For example,

$ tail -f catalog-path/database-name/node-name_catalog/vertica.log

 www.redhat.com 80 www.vertica.com

01/23/08 10:35:31 thr:Recover:0x2a98700970 [Recover] <INFO> Changing site node01
startup state from INITIALIZING to RECOVERING
01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Recovering to specified
epoch 0x120b6
01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running 1 split queries
01/23/08 10:35:31 thr:CatchUp:0x1724b80 [Recover] <INFO> Running query: ALTER
PROJECTION proj_tradesquotes_0 SPLIT node01 FROM 73911;

When recovery has completed, selecting “View Database Cluster State” from the Main Menu
in the adminTools utility will report your node’s status as “UP”.

www.vertica.com 81 www.redhat.com

8. Backup and Restore
The following document details the steps required to perform a backup on and restore to the
Vertica Database. In this guide we will be using the Stock_Schema sample database,
included with the Vertica distribution. For the purposes of demonstration, the cluster to be
backed up will include hosts; hostA01, hostA02, hostA03, and hostA04 and the target cluster,
where the database will be restored, includes hosts; hostB01, hostB02, hostB03, and hostB04.

8.1 Introduction

8.1.1 Cold Backup
The most straightforward way to backup in Vertica is to perform a cold backup. A cold
backup involves shutting down the Vertica Database completely and backing up the
catalog and data directories. For this approach, the standard UNIX utility tar is used.

The advantages of a cold backup is that it is relatively easy to perform and restore with very
little site-specific customization required for implementation.

The disadvantage of cold backups is that the database must be shut down. If you can afford
to shut down a database for backups, cold database backups usually offer the best and
easiest backup strategy.

8.1.2 Hot Backup
During Vertica’s hot backup procedure the database is up and available for selects to users.
However, the tuple mover is shutdown and the system is not available for operations that
may modify the database and its data. For hot backups, the rdiff-backup tool, which is
provided by http://rdiff-backup.nongnu.org/, is used to demonstrate the procedures to
accomplish an incremental backup of the database’s catalog and data directories.
However, the tool is not a part of Vertica software.

The advantages of a hot backup are;

• The database can continue to handle select queries while the database is being
backed up.

• The data can be recovered to a more recent time period.

• Requires less time especially for large databases.

On the other hand, hot backups have several disadvantages including;
• Requiring a utility that is not included with the standard LINUX distribution or Vertica

software.

• Slightly more complex to implement.

• The need to periodically test in order to ensure viability.

 www.redhat.com 82 www.vertica.com

8.2 Backup Procedures

8.2.1 Prepare the Database

a.) Stop the Database (Cold Backup)
Before a cold backup is performed, the Vertica database process will need to be stopped to
ensure that the backup represent a single-moment snapshot of the db. In this example, we
will stop the Stock_Schema database on the hostA01 through hostA04 cluster using the
command line argument:

hostA01:/ $ /opt/vertica/bin/adminTools -t stop_db -d Stock_Schema –p [password]

 Issuing shutdown command to database

Database Stock_Schema stopped successfully

b.) Stop the Tuple Mover (Hot Backup)
Alternatively, if no operation that changes the database is performed, the database can be
placed into a steady state during the backup procedure. The approach is preferred in
reporting or analytic applications wherein data are only loaded or changed by the DBA at
scheduled times.

Before the backup, the DBA must issue a ‘select stop_tuple_mover();’ to stop the ATM
(automatic tuple mover) and wait for the currently running tuple mover mergeout and
moveout to finish.

The tuple mover can be stopped manually from modifying files in the background:

select stop_tuple_mover();

In addition, the following is an example script that will wait for the tuple mover mergeout and
moveout to finish.

stopTM.sh

#!/bin/bash

usage()

{

 echo "usage: $0 -n<db_name> -u<username> -p<port>"

}

DB_NAME=""; PORT=""; USERNAME=""

while getopts n:u:p: opt

do

 case "$opt" in

 n) DB_NAME=$OPTARG;;

www.vertica.com 83 www.redhat.com

 p) PORT=$OPTARG;;

 u) USERNAME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$PORT"]] ||

 { echo "Must specify the database port with -p<port>"; exit 1; }

[["$USERNAME"]] ||

 { echo "Must specify a username with -u<username>"; exit 1; }

MERGEOUT =`/opt/vertica/bin/vsql -d $DB_NAME -p $PORT -U $USERNAME \

 -c “select dump_configuration;” | grep MergeOutInterval | awk ‘{print $3}’`

MOVEOUT =`/opt/vertica/bin/vsql -d $DB_NAME -p $PORT -U $USERNAME \

 -c “select dump_configuration;” | grep MoveOutInterval | awk ‘{print $3}’`

if ((MERGEOUT>MOVEOUT)); then

 ((MAX_WAIT = MERGEOUT+3))

else

 ((MAX_WAIT =MOVEOUT+3))

fi

WAIT_INTERVAL=10;

TOTAL_WAIT=0;

Wait for currently running tuple mover mergeout and moveout to

finish

while true; do

 RUNNING=`/opt/vertica/bin/vsql -d $DB_NAME -p $PORT -U $USERNAME \

 -c "select * from vt_tuple_mover;" | grep Running | wc -l`

 if ((! RUNNING)); then

 break

 fi

 sleep $WAIT_INTERVAL

 ((TOTAL_WAIT += WAIT_INTERVAL))

done

Wait for tuple mover process to reset.

if ((TOTAL_WAIT < MAX_WAIT)); then

 ((TIME_REMAINING = MAX_WAIT - TOTAL_WAIT))

 sleep $TIME_REMAINING

fi

Next, advance the epoch to make sure all modified rows are flagged with an epoch:
select advance_epoch();

To ensure all the data in the WOS have been moved out to the ROS on the disk, run ‘alter projection
moveout’ for each projection that has data in the WOS. The following script can be used to automate
this process:

 www.redhat.com 84 www.vertica.com

#! /bin/bash

usage()

{

 echo "usage: $0 -n<db_name> -u<username> -p<port>"

}

DB_NAME=""; PORT=""; USERNAME=""

while getopts n:u:p: opt

do

 case "$opt" in

 n) DB_NAME=$OPTARG;;

 p) PORT=$OPTARG;;

 u) USERNAME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$PORT"]] ||

 { echo "Must specify the database port with -p<port>"; exit 1; }

[["$USERNAME"]] ||

 { echo "Must specify a username with -u<username>"; exit 1; }

PROJECTION_NAMES=`/opt/vertica/bin/vsql -d $DB_NAME -p $PORT -U $USERNAME \

–c “select wos_rows, projection_name from vt_column_storage;” | \

awk ‘{ if (($1 > 0) && ($1 !~ /wos/)) print $3}’ | uniq`

For PROJECTION in ${PROJECTION_NAMES[*]}; do

 /opt/vertica/bin/vsql -d $DB_NAME -p $PORT -U $USERNAME \

–c “alter projection $PROJECTION moveout;”

Done

Once this is completed, the database itself is ready to be backed up. It is important that in the duration
of the backup, there are no copy, insert, delete, or update commands executed. When the backup is
complete, issue the following command to start the tuple mover again:
select start_tuple_mover();

8.2.2 Determine the Database Directory
In Vertica, the catalog is a set of files that contain information (metadata) about the objects in a
database, such as the nodes, tables, constraints, and projections. The catalog files are replicated on all
nodes in a cluster while the data files are unique to each node. They can be found in the following
directories:

/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_catalog/

/DATABASE_HOME_DIR/DATABASE_NAME/site<xx>_data/

www.vertica.com 85 www.redhat.com

Where DATABASE_HOME_DIR is the path that can be found from the adminTools “Configuration” -
> ”View Database” menu.

To view the path from adminTools, select “Configuration” from the main menu and then
select “View Database”.

Select the database that you would like to view and click “OK” to see the database profile.

In this example, the catalog files are found in the following directory:

 www.redhat.com 86 www.vertica.com

/home/dbadmin/Stock_Schema/stock_schema_node1_hostA01_catalog/

So the directory that will need to be archived is:

/home/dbadmin/Stock_Schema

8.2.3 Archive the Database Directory

a.) Full Backup
Using the GNU utility “tar”, archive the directory tree which contains your catalog and data files for
the database to be backed up.

The following script can be used to do this in an automated fashion. Note that you will have to change
the parameters for your environment.

fullBackup.sh

SOURCE_HOSTS=(hostA01 hostA02 hostA03 hostA04)

BACKUP_HOST=hostA01 # The name of the host to store backups

BACKUP_DIR=/home/dbadmin/backup # Directory to store the backed up database.

 for host in ${SOURCE_HOSTS[*]}; do

 ssh $host tar -C /home/dbadmin/ -czf - Stock_Schema | \

 ssh $BACKUP_HOST dd of=$BACKUP_DIR/Stock_Schema.${host}.tz

 done

The Stock_Schema database has now been successfully backed up.

b.) Incremental Backup
The following incremental backup procedures are demonstrated by using the rdiff-backup tool. For
downloading information and additional documentation on the rdiff-backup utility, please refer to
http://rdiff-backup.nongnu.org/

Using the rdiff-backup tool, the following script will run an incremental backup of the /catalog
and /data directories for the specified database. This script can also be used to set up a daily cron job.

Refer to the previous section, “Determining your Database Location” for information on finding your
database directories.

incrementalBackup.sh

www.vertica.com 87 www.redhat.com

#!/bin/bash

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -b<backup_dir> -n<db_name> -d<db_dir> -u<username>"

}

BACKUP_CLUSTER_HOSTS=(); BACKUP_DIR=""; DB_NAME=""; DB_DIR=""; USERNAME=""

while getopts B:b:n:d:u: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 b) BACKUP_DIR=$OPTARG;;

 n) DB_NAME=$OPTARG;;

 d) DB_DIR=$OPTARG;;

 u) USERNAME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["$BACKUP_DIR"]] ||

 { echo "Must specify a backup directory name with -b<backup_dir>"; exit 1; }

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$DB_DIR"]] ||

 { echo "Must specify the database directory with -d<db_dir>"; exit 1; }

[["$USERNAME"]] ||

 { echo "Must specify a username with -u<username>"; exit 1; }

rdiff-backup /opt/vertica/config/users $BACKUP_DIR/users

for HOST in ${BACKUP_CLUSTER_HOSTS[*]}; do

 rdiff-backup --print-statistics --include '**/*catalog' \

 --include '**/*data' \

 --exclude $DB_DIR/$DB_NAME \

 $USERNAME@${HOST}::$DB_DIR/$DB_NAME $BACKUP_DIR/$HOST

Done

8.3 Restore Procedures

8.3.1 Restore the Database
Please note that when restoring you must restore to an empty directory. Restoring over your old
directory files may corrupt your database.

 www.redhat.com 88 www.vertica.com

a.) Restoring to a New Cluster

1. Install Vertica
If Vertica is not already installed on the target cluster, install the Vertica database with the same
configuration as the original cluster following the steps as detailed in the Vertica Product
Documentation Installation Guide. In this example, Vertica will be installed on the target cluster which
consists of hosts hostB01 through hostB04.
Note: The cluster must have the same number of nodes as the original cluster.

2. Create the Database
Once Vertica has been installed on the target cluster, create the database using the adminTools user
interface with the same database name and the same data and catalog directories. In our example, the
directories would be /home/dbadmin/Stock_Schema.
For detailed instructions on creating a database, please refer to the “Create the Database” section of the
Vertica Production Documentation DBA Guide.
During the database creation process, be sure to make note of the port number. This information will
be required when restoring the backup. For example, the following is a sample output from creating
the Stock_Schema database:
 *** Creating database: Stock_Schema ***

Running integrity checks
Will create database on port 5433
Checking that nodes are defined and installed
. . .

3. Stop the Database
Once the database is created it must be stopped before proceeding. From the adminTools utility Main
Menu, select the “Stop Database” option and then exit adminTools.

www.vertica.com 89 www.redhat.com

4A. Restore the Database
On the backup host, change to the backup directory and copy the tar files to the nodes in the destination
cluster into the restore directory (for this example, /home/dbadmin) and untar them.
The following script may be used to automate this process after it has been edited for your
environment.
fullRestore.sh

BACKUP_DIR=/home/dbadmin/backup # Where the tar files are stored.

SOURCE_HOSTS=(hostA01 hostA02 hostA03 hostA04)

DEST_HOSTS=(hostB01 hostB02 hostB03 hostB04)

NHOSTS=${#SOURCE_HOSTS[*]}

 cd $BACKUP_DIR

 i=0

 while [$i -lt $NHOSTS]; do

 scp Stock_Schema.${SOURCE_HOSTS[$i]}.tz ${DEST_HOSTS[$i]}:/home/dbadmin

 ssh ${DEST_HOSTS[$i]} tar -C /home/dbadmin -xf \

 /home/dbadmin/Stock_Schema.${SOURCE_HOSTS[$i]}.tz

 ((i++))

 done

4B. Incremental Restore

 www.redhat.com 90 www.vertica.com

Viewing Available Backups

The --list-increments option will list the times of the available backups.
This option may be useful if you need to restore an older backup of the database, but aren't sure which
one. The following is an example of the command and its output:

$ BACKUP_DIR=/backup_vertica

$ HOST=hostA01

$ rdiff-backup --list-increments $BACKUP_DIR/$HOST

Found 6 increments:

 increments.2008-02-28T18:31:39-05:00.dir Thu Feb 28 18:31:39 2008

 increments.2008-02-29T14:58:41-05:00.dir Fri Feb 29 14:58:41 2008

 increments.2008-03-01T09:38:21-05:00.dir Sat Mar 1 09:38:21 2008

 increments.2008-03-02T10:18:25-05:00.dir Sun Mar 2 10:18:25 2008

 increments.2008-03-03T10:23:46-05:00.dir Mon Mar 3 10:23:46 2008

 increments.2008-03-04T11:26:16-05:00.dir Tue Mar 4 11:26:16 2008

 Current mirror: Mon Mar 4 12:13:15 2008

Incremental Restore Procedure

Login to the host which has the backup files (hostA01). Restore the database onto the hostB cluster
using the rdiff-backup --restore-as-of option. The --restore-as-of option is used to
restore the database to a specific backup. It is recommended to specify a backup session identifier
when restoring the database. For example, a backup session valueof "0B" specifies the time of the
current backup, while "3B" specifies the time of the third newest backup.

Here is an example script which restores the database to the specified restore time.
incrRestoreNew.sh

www.vertica.com 91 www.redhat.com

#!/bin/bash

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -R<host1,host2,host3,...> -b<backup_dir> -n<db_name> -
d<db_dir> -u<username> -t<restore_time>"

}

BACKUP_CLUSTER_HOSTS=(); RESTORE_CLUSTER_HOSTS=()

BACKUP_DIR=""; DB_NAME=""; DB_DIR=""; USERNAME=""; RESTORE_TIME=""

while getopts B:R:b:n:d:u:t: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 R) RESTORE_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 b) BACKUP_DIR=$OPTARG;;

 n) DB_NAME=$OPTARG;;

 d) DB_DIR=$OPTARG;;

 u) USERNAME=$OPTARG;;

 t) RESTORE_TIME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["${#RESTORE_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the restore cluster hosts with -R<host1,host2,...>"; exit 1; }

[["$BACKUP_DIR"]] ||

 { echo "Must specify a backup directory name with -b<backup_dir>"; exit 1; }

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$DB_DIR"]] ||

 { echo "Must specify the database directory with -d<db_dir>"; exit 1; }

[["$USERNAME"]] ||

 { echo "Must specify a username with -u<username>"; exit 1; }

[["$RESTORE_TIME"]] ||

 { echo "Must specify a restore time with -t<restore_time>"; exit 1; }

i=0

for BACKUP_HOST in ${BACKUP_CLUSTER_HOSTS[*]}; do

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[$i]}

 rdiff-backup --force --restore-as-of $RESTORE_TIME \

 $BACKUP_DIR/$BACKUP_HOST $USERNAME@${RESTORE_HOST}::$DB_DIR/$DB_NAME

 ((i++))

done

 www.redhat.com 92 www.vertica.com

b.) Restoring on the Same Cluster (Incremental)
The --restore-as-of option is used to restore the database to a specific backup. It is
recommended to specify a backup session identifier when restoring the database. For example, a
backup session value of "0B" specifies the time of the current backup while "3B" specifies the time of
the third newest backup.
The following script will restore the database with the 3rd newest backup. Following the output given
from the --list-increments command found in the “Incremental Restore” -> “Viewing
Available Backups” section, this corresponds to the backup taken on Sunday March 2nd.
incrRestoreSame.sh

www.vertica.com 93 www.redhat.com

#!/bin/bash

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -b<backup_dir> -n<db_name> -d<db_dir> -u<username> -
t<restore_time>"

}

BACKUP_CLUSTER_HOSTS=(); BACKUP_DIR=""; DB_NAME=""; DB_DIR=""; USERNAME=""; RESTORE_TIME=""

while getopts B:b:n:d:u:t: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 b) BACKUP_DIR=$OPTARG;;

 n) DB_NAME=$OPTARG;;

 d) DB_DIR=$OPTARG;;

 u) USERNAME=$OPTARG;;

 t) RESTORE_TIME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["$BACKUP_DIR"]] ||

 { echo "Must specify a backup directory name with -b<backup_dir>"; exit 1; }

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$DB_DIR"]] ||

 { echo "Must specify the database directory with -d<db_dir>"; exit 1; }

[["$USERNAME"]] ||

 { echo "Must specify a username with -u<username>"; exit 1; }

[["$RESTORE_TIME"]] ||

 { echo "Must specify a restore time with -t<restore_time>"; exit 1; }

for HOST in ${BACKUP_CLUSTER_HOSTS[*]}; do

 rdiff-backup --force --restore-as-of $RESTORE_TIME $BACKUP_DIR/$HOST \

 $USERNAME@${HOST}::$DB_DIR/$DB_NAME

 sudo rdiff-backup --force --restore-as-of $RESTORE_TIME $BACKUP_DIR/users \

 root@${HOST}::/opt/vertica/config/users

done

8.3.2 Replace the Database Directories
In the case that the target and source directories are different, replace the catalog and data directories
for the target cluster on each node with the backed up ones. Ensure that the directory names accurately
reflect the target host name. For this example, the directory names on the original host were:
/home/dbadmin/Stock_Schema/stock_shema_node1_hostA01_catalog

 www.redhat.com 94 www.vertica.com

/home/dbadmin/Stock_Schema/stock_shema_node1_hostA01_data

And will need to be changed to reflect the target host name:
/home/dbadmin/Stock_Schema/stock_shema_node1_hostB01_catalog
/home/dbadmin/Stock_Schema/stock_shema_node1_hostB01_data

The following script can be used to update the directory names after it has been modified to reflect your
environment.
replaceDBDirs.sh

www.vertica.com 95 www.redhat.com

#!/bin/bash

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -R<host1,host2,host3,...> -n<db_name> -d<db_dir>"

}

BACKUP_CLUSTER_HOSTS=(); RESTORE_CLUSTER_HOSTS=()

DB_NAME=""; DB_DIR=""

while getopts B:R:n:d: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 R) RESTORE_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 n) DB_NAME=$OPTARG;;

 d) DB_DIR=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["${#RESTORE_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the restore cluster hosts with -R<host1,host2,...>"; exit 1; }

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$DB_DIR"]] ||

 { echo "Must specify the database directory with -d<db_dir>"; exit 1; }

DB_DIR=$DB_DIR/$DB_NAME

NHOSTS=${#BACKUP_CLUSTER_HOSTS[*]}

Stock_Schema -> stock_schema

DB_NAME_META=`echo $DB_NAME | tr [:upper:] [:lower:] | tr - _`

Replace the catalog and data dir for RESTORE_CLUSTER on each node with the backed up ones.

i=0; n=1

while ((i < $NHOSTS)) ;do

 BACKUP_HOST=${BACKUP_CLUSTER_HOSTS[${i}]}

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[${i}]}

 BACKUP_HOST_META=`echo $BACKUP_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 RESTORE_HOST_META=`echo $RESTORE_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 ssh ${RESTORE_HOST} "cd $DB_DIR && rm -rf ${DB_NAME_META}_node${n}_${RESTORE_HOST_META}_catalog \

 ${DB_NAME_META}_node${n}_${RESTORE_HOST_META}_data"

 ssh ${RESTORE_HOST} "cd $DB_DIR && mv ${DB_NAME_META}_node${n}_${BACKUP_HOST_META}_catalog \

 ${DB_NAME_META}_node${n}_${RESTORE_HOST_META}_catalog"

 ssh ${RESTORE_HOST} "cd $DB_DIR && mv ${DB_NAME_META}_node${n}_${BACKUP_HOST_META}_data \

 ${DB_NAME_META}_node${n}_${RESTORE_HOST_META}_data"

 ((i++)); ((n++))

done

 www.redhat.com 96 www.vertica.com

8.3.3 Change the Meta-data Definitions
Next, the path and address settings in the *_6.xml and *_7.xml meta-data files, located in the catalog
directories, will need to be modified to reflect the new environment. These files will need to be
updated on each node in the target cluster.
For this example, before updating, the original *_6.xml file will look similar to the following:
hostB01: /home/dbadmin/Stock_Schema/stock_schema_node1_hostB01_catalog/Catalog/$ cat *_6.xml

:Site

old:45035996273704964

name:stock_schema_node1_hostA01

type:6

isPersistent:true

IsTemp:fals

isMutable:false

isGlobal:true

database:0

schema:0

address:hostA01

catalogPath:/home/dbadmin//Stock_Schema/stock_schema_node1_hostA01_catalog/Catalog

hasCatalog:false

dbdPath:/home/dbadmin//Stock_Schema/stock_schema_node1_hostA01_data/SAL

siteUniqueID:10

.

Notice the references throughout to the original host, “hostA01”. These will all need to be changed to
reflect the target hostname, “hostB01”.

The following script may be used to make these updates but must first be edited for use in your
environment.
modifyMetaData.sh

#!/bin/bash

Edit the four *_6.xml and four *_7.xml on each of the hosts

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -R<host1,host2,host3,...> -n<db_name> -d<db_dir>"

}

BACKUP_CLUSTER_HOSTS=(); RESTORE_CLUSTER_HOSTS=()

DB_NAME=""; DB_DIR=""

while getopts B:R:n:d: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 R) RESTORE_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 n) DB_NAME=$OPTARG;;

 d) DB_DIR=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

www.vertica.com 97 www.redhat.com

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["${#RESTORE_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the restore cluster hosts with -R<host1,host2,...>"; exit 1; }

[["$DB_NAME"]] ||

 { echo "Must specify a database name with -n<db_name>"; exit 1; }

[["$DB_DIR"]] ||

 { echo "Must specify the database directory with -d<db_dir>"; exit 1; }

DB_DIR=$DB_DIR/$DB_NAME

NHOSTS=${#BACKUP_CLUSTER_HOSTS[*]}

Build the sed -e edits

i=0;

while ((i < $NHOSTS)) ;do

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[${i}]}

 BACKUP_HOST=${BACKUP_CLUSTER_HOSTS[${i}]}

 EDIT="$EDIT -e s%${BACKUP_HOST}%${RESTORE_HOST}%"

 ((i++))

done

i=0;

while ((i < $NHOSTS)) ;do

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[${i}]}

 # host-1.domain.com -> host_1_domain_com

 RESTORE_HOST_META=`echo $RESTORE_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 BACKUP_HOST=${BACKUP_CLUSTER_HOSTS[${i}]}

 BACKUP_HOST_META=`echo \$BACKUP_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 EDIT="$EDIT -e s%${BACKUP_HOST_META}%${RESTORE_HOST_META}%"

 ((i++))

donei=0;

while ((i < $NHOSTS)) ;do

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[${i}]}

 # fc6-1.verticacorp.com -> fc6_1_verticacorp_com

 RESTORE_HOST_META=`echo $RESTORE_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 BACKUP_HOST=${BACKUP_CLUSTER_HOSTS[${i}]}

 BACKUP_HOST_META=`echo \$BACKUP_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 EDIT="$EDIT -e s%${BACKUP_HOST_META}%${RESTORE_HOST_META}%"

 ((i++))

done

Now do the edits on each host

Stock_Schema -> stock_schema

DB_NAME_META=`echo $DB_NAME | tr [:upper:] [:lower:]`

i=0; n=1

while ((i < $NHOSTS)); do

 RESTORE_HOST=${RESTORE_CLUSTER_HOSTS[${i}]}

 RESTORE_HOST_META=`echo $RESTORE_HOST | tr [:upper:] [:lower:] | tr - _ | tr . _`

 ssh $RESTORE_HOST "

 cd ${DB_DIR}/${DB_NAME_META}_node${n}_${RESTORE_HOST_META}_catalog/Catalog

 www.redhat.com 98 www.vertica.com

 for input_file in *_6.xml *_7.xml; do

 sed -i "$EDIT" \${input_file}

 done

 "

 ((i++)); ((n++))

done

8.3.4 Start the Database
The database on the target cluster is ready to be started. This can be done either from the Admintools
utility or from the command line;

hostB01:/ $ /opt/vertica/bin/adminTools -t start_db -d Stock_Schema –p [password]
Participating hosts:

hostB01
hostB02
. . .
Checking vertica version on host hostB01
Processing host hostB1
Node Status: stock_schema_node1_hostB01: (DOWN)
. . .
Node Status: stock_schema_node1_hostB01: (UP)
. . .

Database Stock_Schema started successfully

8.3.5 Verify the Database
After the database starts, connect to it by selecting “connect to Database” through the AdminTools
main menu, and execute some commands to verify the database restore was successful.

www.vertica.com 99 www.redhat.com

 Stock_Schema => select count(*) from stocktransaction_fact;
 count

 5000000

 (1 row)

8.4 Removing Old Incremental Backups
Although rdiff-backup only stores file differences, you will probably want to remove backups
older than a certain date. The --remove-older-than option can be used to delete old backups.
The following is an example script that tells rdiff-backup to remove any backups older than the
specified backup time.
removeOldIncrBackup.sh

 www.redhat.com 100 www.vertica.com

#!/bin/bash

A script to remove old incremental backups.

usage()

{

 echo "usage: $0 -B<host1,host2,host3,...> -b<backup_dir> -t<backup_time>"

}

BACKUP_CLUSTER_HOSTS=()

BACKUP_DIR=""; BACKUP_TIME=""

while getopts B:b:t: opt

do

 case "$opt" in

 B) BACKUP_CLUSTER_HOSTS=(`echo $OPTARG | tr , " "`) ;;

 b) BACKUP_DIR=$OPTARG;;

 t) BACKUP_TIME=$OPTARG;;

 \?) # unknown flag

 usage; exit 1;;

 esac

done

[["${#BACKUP_CLUSTER_HOSTS[*]}" -gt 0]] ||

 { echo "Must specify the backup cluster hosts with -B<host1,host2,...>"; exit 1; }

[["$BACKUP_DIR"]] ||

 { echo "Must specify the backup directory with -b<backup_dir>"; exit 1; }

[["$BACKUP_TIME"]] ||

 { echo "Must specify a backup time with -t<backup_time>"; exit 1; }

for HOST in ${BACKUP_CLUSTER_HOSTS[*]}; do

 rdiff-backup --force --remove-older-than $BACKUP_TIME $BACKUP_DIR/$HOST

done

