
Scaling the LAMP Stack in a
Red Hat Enterprise Virtualization
Environment

�DVD Store� LAMP Application

Apache
HTTP
Server

PHP MySQL

Red Hat Enterprise Linux 5.4 Guest

Red Hat Enterprise Linux 5.4
(with integrated KVM Hypervisor)

HP ProLiant DL370 G6
(Intel Xeon W5580 - Nehalem)

Version 1.0
August 2009

Scaling the LAMP Stack in a Red Hat Enterprise Virtualization Environment

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

© 2009 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

 www.redhat.com 2

Table of Contents

 1 Executive Summary...4

 2 Red Hat Enterprise Virtualization (RHEV) - Overview......................................5

 2.1 Red Hat Enterprise Virtualization (RHEV) - Portfolio..5
 2.2 Kernel-based Virtualization Machine (KVM)...8

 2.2.1 Traditional Hypervisor Model..8
 2.2.2 Linux as a Hypervisor...9
 2.2.3 A Minimal System...9
 2.2.4 KVM Summary...9

 3 LAMP Stack - Overview...10

 3.1 Linux...11
 3.2 Apache..11
 3.3 MySQL..14
 3.4 PHP..14

 4 Test Configuration...15

 4.1 Hardware Configuration ...15
 4.2 Software Configuration...15

 5 Test Methodology ...16

 5.1 Workload...16
 5.2 Configuration & Workload...18
 5.3 Performance Test Plan ..19
 5.4 Tuning & Optimizations...20

 6 Test Results...23

 6.1 Scaling Multiple 2-vCPU Guests...24
 6.2 Scaling Multiple 4-vCPU Guests...26
 6.3 Scaling Multiple 8-vCPU Guests...28
 6.4 Scaling-Up by Increasing the Number of vCPUs in a Single Guest..............................30
 6.5 Virtualization Efficiency in Consolidation Scenarios..32

 7 Conclusions...33

 8 References..33

 3 www.redhat.com

 1 Executive Summary

This paper describes the performance and scaling of the industry-standard LAMP web
application stack running in Red Hat Enterprise Linux 5.4 guests on a Red Hat Enterprise
Linux 5.4 host with the KVM hypervisor. The host system was deployed on an HP ProLiant
DL370 G6 server equipped with 48 GB of RAM and comprising dual sockets each with a 3.2
GHz Intel Xeon W5580 Nehalem processor with support for hyper-threading technology,
totaling 8 cores and 16 hyper-threads.

The workload used to exercise the LAMP stack was the open source DVD-Store application.
DVD-Store is a complete three tiered e-commerce test application, representing an on-line
DVD-Store. The Presentation Layer represents customers using web browsers to search for
and purchase DVDs on the on-line DVD-Store. The Application Layer consists of the Apache
HTTP web server which hosts the web pages that constitute the application. The web pages,
written in PHP contain code that read the requests submitted by the user, access the back-
end MySQL database and write the appropriate HTML code back to the browser. The
Database Layer consists of the MySQL Database Server.

Scaling Up A Virtual Machine
First, the performance of the DVD-Store application was measured by loading a single VM on
the server, and assigning it 1, 2, 4, 6 or 8 vCPUs. The performance scales over 420% as the
VM expands from 1 hyper-thread to a complete 4 core/8 hyper-thread server.

Scaling Out Virtual Machines
A second series of tests involved scaling out multiple independent VMs each comprising 2, 4
or 8 vCPUs up to a total of 16 vCPUs on an 8 core/16 hyper-thread Nehalem server. As an
example, Red Hat tested the performance one to four concurrent 4-vCPU VMs running DVD-
Store. The four VMs performed over 350% of the operations rate of the single VM, with each
of the guests retaining nearly an average 90% of the single guest rate.

The data presented in this paper clearly establishes that Red Hat Enterprise Linux 5.4 virtual
machines using the KVM hypervisor on a HP ProLiant DL370 provide an effective production-
ready platform for hosting multiple virtualized LAMP web application stacks. The combination
of low virtualization overhead and the ability to both scale-up and scale-out contribute to the
effectiveness of KVM for LAMP web application stack. The number of actual users and
throughput supported in any specific customer situation will, of course, depend on the
specifics of the customer application used and the intensity of user activity. However, the
results demonstrate that in a heavily virtualized environment, good throughput was retained
even as the number and size of guests/virtual-machines was increased up until the physical
server was fully subscribed.

 www.redhat.com 4

 2 Red Hat Enterprise Virtualization (RHEV) -
Overview

 2.1 Red Hat Enterprise Virtualization (RHEV) - Portfolio
Server virtualization offers tremendous benefits for enterprise IT organizations � server
consolidation, hardware abstraction, and internal clouds deliver a high degree of operational
efficiency. However, today, server virtualization is not used pervasively in the production
enterprise datacenter. Some of the barriers preventing wide-spread adoption of existing
proprietary virtualization solutions are performance, scalability, security, cost, and ecosystem
challenges.

The Red Hat Enterprise Virtualization portfolio is an end-to-end virtualization solution, with
use cases for both servers and desktops, that is designed to overcome these challenges,
enable pervasive datacenter virtualization, and unlock unprecedented capital and operational
efficiency. The Red Hat Enterprise Virtualization portfolio builds upon the Red Hat Enterprise
Linux platform that is trusted by millions of organizations around the world for their most
mission-critical workloads. Combined with KVM, the latest generation of virtualization
technology, Red Hat Enterprise Virtualization delivers a secure, robust virtualization platform
with unmatched performance and scalability for Red Hat Enterprise Linux and Windows
guests.

Red Hat Enterprise Virtualization consists of the following server-focused products:

1. Red Hat Enterprise Virtualization Manager (RHEV-M) for Servers: A feature-rich server
virtualization management system that provides advanced management capabilities for
hosts and guests, including high availability, live migration, storage management,
system scheduler, and more.

2. A modern hypervisor based on KVM (Kernel-based Virtualization Machine) which can
be deployed either as:

� Red Hat Enterprise Virtualization Hypervisor (RHEV-H): A standalone, small
footprint, high performance, secure hypervisor based on the Red Hat Enterprise
Linux kernel.

Or

� Red Hat Enterprise Linux 5.4: The latest Red Hat Enterprise Linux platform
release that integrates KVM hypervisor technology, allowing customers to
increase their operational and capital efficiency by leveraging the same hosts to
run both native Red Hat Enterprise Linux applications and virtual machines
running supported guest operating systems.

 5 www.redhat.com

 www.redhat.com 6

Figure 1: Red Hat Enterprise Virtualization Hypervisor

 7 www.redhat.com

Figure 2: Red Hat Enterprise Virtualization Manager for Servers

 2.2 Kernel-based Virtualization Machine (KVM)
A hypervisor, also called virtual machine monitor (VMM), is a computer software platform that
allows multiple (�guest�) operating systems to run concurrently on a host computer. The guest
virtual machines interact with the hypervisor which translates guest I/O and memory requests
into corresponding requests for resources on the host computer.

Running fully-virtualized guests, i.e., guests with unmodified guest operating systems, used to
require complex hypervisors and used to incur a performance penalty for emulation and
translation of I/O and memory requests.

Over the last couple of years as chip vendors (Intel and AMD) have been steadily adding
CPU features that offer hardware enhancements to the support virtualization. Most notable
are:

1. First generation hardware assisted virtualization: Removes the need for hypervisor to
scan and rewrite privileged kernel instructions using Intel VT (Virtualization
Technology) and AMD's SVM (Secure Virtual Machine) technology.

2. Second generation hardware assisted virtualization: Offloads virtual to physical
memory address translation to CPU/chip-set using Intel EPT (Extended Page Tables)
and AMD RVI (Rapid Virtualization Indexing) technology. This provides significant
reduction in memory address translation overhead in virtualized environments.

3. Third generation hardware assisted virtualization: Allows PCI I/O devices to be
attached directly to virtual machines using Intel VT-d (Virtualization Technology for
directed I/O) and AMD IOMMU. And SR-IOV (Single Root I/O Virtualization) which
allows special PCI devices to be split into multiple virtual devices. This provides
significant improvement in guest I/O performance.

The great interest in virtualization has led to the creation of several different hypervisors.
However, many of these predate hardware-assisted virtualization, and are therefore some-
what complex pieces of software. With the advent of the above hardware extensions, writing a
hypervisor has become significantly easier and it is now possible to enjoy the benefits of
virtualization while leveraging existing open source achievements to date.

Kernel-based Virtual Machine (KVM) turns a Linux kernel into a hypervisor. Red Hat
Enterprise Linux 5.4 provides the first commercial-strength implementation of KVM, which is
developed as part of the upstream Linux kernel.

 2.2.1 Traditional Hypervisor Model
The traditional hypervisor model consists of a software layer which multiplexes the hardware
among several guest operating systems. The hypervisor performs basic scheduling and
memory management, and typically delegates management and I/O functions to a special,
privileged, guest.

Today's hardware, however is becoming increasingly complex. The so-called �basic�
scheduling operations have to take into account multiple hardware threads on a core, multiple

 www.redhat.com 8

cores on a socket, and multiple sockets on a system. Similarly, on-chip memory controllers
require that memory management take into effect the Non-Uniform Memory Access (NUMA)
characteristics of a system. While great effort is invested into adding these capabilities to
hypervisors, we already have a mature scheduler and memory management system that
handles these issues very well � the Linux kernel.

 2.2.2 Linux as a Hypervisor
By adding virtualization capabilities to a standard Linux kernel, we can enjoy all the fine-
tuning work that has gone (and is going) into the kernel, and bring that benefit into a
virtualized environment. Under this model, every virtual machine is a regular Linux process
scheduled by the standard Linux scheduler. Its memory is allocated by the Linux memory
allocator, with its knowledge of NUMA and integration into the scheduler.

By integrating into the kernel, the KVM 'hypervisor' automatically tracks the latest hardware
and scalability features without additional effort.

 2.2.3 A Minimal System
One of the advantages of the traditional hypervisor model is that it is a minimal system,
consisting of only a few hundred thousands lines of code. However, this view does not take
into account the privileged guest. This guest has access to all system memory, either through
hypercalls or by programming the DMA hardware. A failure of the privileged guest is not
recoverable as the hypervisor is not able to restart it if it fails.

A KVM based system's privilege footprint is truly minimal: only the host kernel plus a few
thousand lines of the kernel mode driver have unlimited hardware access.

 2.2.4 KVM Summary
Leveraging new silicon capabilities, the KVM model introduces an approach to virtualization
that is fully aligned with the Linux architecture and all of its latest achievements. Furthermore,
integrating the hypervisor capabilities into a host Linux kernel as a loadable module simplifies
management and improves performance in virtualized environments, while minimizing impact
on existing systems.

Red Hat Enterprise Linux 5.4 incorporates KVM-based virtualization in addition to the existing
Xen-based virtualization. Xen-based virtualization, of course, remains fully supported for the
life of the Red Hat Enterprise Linux 5 family.

An important feature of any Red Hat Enterprise Linux update is that kernel and user APIs are
unchanged, so that Red Hat Enterprise Linux 5 applications do not need to be rebuilt or re-
certified. This extends to virtualized environments: with a fully integrated hypervisor, the
application binary interface (ABI) consistency offered by Red Hat Enterprise Linux means that
applications certified to run on Red Hat Enterprise Linux on physical machines are also
certified when run in virtual machines. So the portfolio of thousands of certified applications
for Red Hat Enterprise Linux applies to both environments.

 9 www.redhat.com

 3 LAMP Stack - Overview

LAMP is an acronym which stands for:

1. Linux, the operating system

2. Apache HTTP server, the web server

3. MySQL, the database management system or database server (sometimes
substituted with PostgreSQL)

4. PHP, the scripting language (sometimes substituted with other
scripting/programming languages - Python, Perl, Ruby)

As the web has evolved from initially serving static web pages to its current state where the
ability to handle dynamic pages and web services is a standard requirement, many solution
stacks designed to augment the basic (HTTP) web server have become available. The
following lists include some of the more popular web server stacks.

Non-Microsoft (also available on Windows):

1. LAMP stack

2. Tomcat Java-based stack

3. Full JEE (Java Enterprise Edition) stack

Microsoft (available only on Windows):

1. WISA stack � Windows (operating system), Internet Information Services (web
server), Microsoft SQL Server (database) and ASP (scripting language).

2. Full .NET stack

Despite the feature-richness of J2EE and .NET, and the fact that LAMP has not had the same
level of commercial promotion, LAMP continues to enjoy unprecedented success and market
share.

What is the attraction to the LAMP stack for developers around the world? In part, it is the
open source underpinnings of LAMP components. They are freely available, easily
configured, and very robust. They are in a constant state of development and improvement,
adding features suggested by the user community at large. They can be easily deployed, fully
configured, and maintained with a minimal amount of effort. In short, the LAMP stack allows
developers to do what they do best: develop, without spending a disproportionate amount of
time in the administrative details.

All these elements are addressed in the package of LAMP components provided by Red Hat
Enterprise Linux. Red Hat Enterprise Linux helps to assure that configuring and administering
a LAMP server will be as painless a process as is possible.

 www.redhat.com 10

 3.1 Linux
The most important element of the LAMP stack is the Linux operating system installed on the
server. With dozens of Linux distributions available, the choice can be a bit perplexing. Of the
available distributions, however, Red Hat Enterprise Linux maintains a stronghold the in
enterprise-grade LAMP servers for several reasons. It offers a huge ecosystem of hardware
and software partners, offering both services and certified solutions, making Red Hat the
industry leader. This powerful combination provides:

� Thousands of certified applications from Independent Software Vendors (ISVs)

� Hundreds of certified hardware systems and peripherals from leading OEM vendors
spanning multiple processor architectures

� A range of partner programs

� Comprehensive service offerings, up to 24x7 support with 1-hour response, available
from Red Hat and selected ISV/OEM partners

� Excellent performance, security, scalability, and availability, with audited industry
benchmarks

� Open source technologies rigorously tested and matured through the Red Hat
sponsored Fedora project

� With each major version, stable application interfaces and seven years of product
support

 3.2 Apache
The second element of the LAMP stack is the Apache web server. The web server is the
application that accepts request for pages from a browser, interprets the request, and returns
the results. For static HTML pages, it simply retrieves the HTML file that the browser
requests. For dynamic pages, when a browser requests a page, the web server transfers
control to a program or module that interprets the script and returns the results.

Apache is another open source tool with a rich and mature code base. Created in the early
1990s, the HTTP daemon (httpd) package today operates nearly 50% of the web servers
worldwide.

Apache is highly configurable and modular. A completely customized configuration can be
achieved simply by modifying the text configuration file, /etc/httpd/conf/httpd.conf. This file is
commented in depth, providing configuration guidance to both the novice and expert
webmaster. The code base can also be extended by means of modules, chunks of code that
can be loaded at the time the server is started or dynamically, as needed. Hundreds of these
modules � most developed by interested third parties � exist in the official Apache code
base today.

Apache is part of the default installation of Red Hat Enterprise Linux. In short, installing
Apache does not require the additional action of selecting it as an optional package during
installation. The Apache package is referred to as httpd in the standard Red Hat Enterprise
Linux configuration. Configuration and related files are named accordingly.

 11 www.redhat.com

The following June 2009 survey from Netcraft Ltd. (of 238,027,855 sites) shows market share
of web servers across all domains. Apache remains in the lead, as it has since 1996!
http://www.netcraft.com/survey/

 www.redhat.com 12

Figure 3: Apache Market Share

Also, the clear leader amongst web servers used by the million busiest websites is Apache
with a 66% share. It has a 47% lead over its closest competitor, Microsoft-IIS, much greater
than on the web as a whole.

Server Share amongst the Million Busiest Sites, March 2009

 13 www.redhat.com

Figure 4: Apache Market Share Among
Busiest Sites

 3.3 MySQL

The third element of the LAMP tool set is the MySQL database, another robust open source
tool that has revolutionized the way web pages, graphics, tables, and data sets of all sorts are
served on the web. Databases in general, and MySQL in particular, have made it possible to
build and present fully dynamic websites, capable of presenting content in real time. They
have also helped to further the goal of separating content from formatting, speeding the web
site load time while making them far more manageable than in the past.

 3.4 PHP

PHP was originally an acronym for Personal Home Page. It began in 1994 as a set of
Common Gateway Interface (CGI) binaries written in the C programming language. Today,
PHP is a general-purpose scripting language that is especially suited for web development
and can be easily embedded into HTML. PHP generally runs on a web server, taking PHP
code for input and creating web pages as output. It can also be used for command-line
scripting and client-side GUI applications.

In just a few short years, PHP has become one of the predominant scripting languages on the
web. It is another integral element of LAMP development and can be found anywhere from
personal homepages to content management systems (such as Drupal) to large-scale
corporate intranets. With a relatively easy syntax and open source licensing, webmasters and
developers around the world have migrated to PHP from more difficult and syntactically
challenging scripting languages like Perl.

The latest version of PHP fully supports object-oriented syntax and provides a command line
capability for quick code testing.

PHP is part of the default installation of Red Hat Enterprise Linux. However, in order to
interact properly with a MySQL database, the php_mysql module must be chosen at install
time. This module provides the interaction between PHP and MySQL in the form of an
Apache module.

According to a recent survey by Nexen.net, PHP has a market share of more than 30%. The
number of internet sites using PHP was around 20 million in 2006. However, this figure does
not take into consideration the growing number of internal corporate servers used for intranet
applications or development purposes � statistics about this usage are still unclear.

 www.redhat.com 14

 4 Test Configuration

 4.1 Hardware Configuration

HP ProLiant DL370 G6

Dual Socket, Quad Core, Hyper Threading Technology
(Total of 16 processing threads)
Intel(R) Xeon(R) CPU W5580 @ 3.20GHz

12 x 4 GB DIMMs- total: 48 GB

6 x 146 GB SAS 15K dual port drives

Table 1: Hardware

 4.2 Software Configuration

Red Hat Enterprise Linux 5.4 - Beta 2.6.18-155.el5

KVM kvm-83-80.el5

Apache Httpd v2.2.3

MySQL v5.0.77

PHP v5.1.6

APC v3.0.19

Table 2: Software

 15 www.redhat.com

 5 Test Methodology

 5.1 Workload
The software system used to demonstrate the successful deployment of the LAMP stack is
the DVD-Store Application. The DVD-Store Application is a complete three tiered e-
commerce test application, representing an on-line DVD-Store. The Presentation Layer
represents customers using web browsers to search for and purchase DVDs on the on-line
DVD-Store. The Application Layer consists of the Apache HTTP web server (from the Apache
Software Foundation) which hosts the web pages that constitute the application. The web
pages, written in PHP contain code that read the requests submitted by the user, access the
backend MySQL database and write the appropriate Hypertext Markup Language (HTML)
code back to the browser. The Database Layer consists of the MySQL® Database Server
(from MySQL AB).

The DVD-Store Release 2 (DS2) is available from http://linux.dell.com/dvdstore. It includes
support for a backend database component, a PHP web application layer, and driver
programs to simulate users. The goal in designing the database component as well as the
mid-tier application was to utilize many advanced database features (transactions, stored
procedures, triggers, referential integrity) while keeping the database easy to install and
understand. The DS2 workload may be used to test databases or as a stress tool for any
purpose. The code is licensed under the GNU General Public License (GPL).

The DS2 distribution includes code for the MySQL database. Included are data generation
programs, shell scripts to build data for the DVD-Store, database build scripts and stored
procedures, PHP web pages, and a driver program to simulate web browser users.

DS2 comes in 3 standard sizes:

Database Size Customers Orders Products

Small 10 MB 20,000 1,000/month 10,000

Medium 1 GB 2,000,000 100,000/month 100,000

Large 100 GB 200,000,000 10,000,000/month 1000000

Table 3: DVD Store Standard Sizes

A customized 4 GB database size was used for the majority of the testing, while the large
database size was used for the scale up data. This custom 4 GB database consisted of
8,000,000 customers, 400,000 orders per month, and 140,000 products.

The workload used in this paper simulates an on-line transaction processing environment
using the DVD-Store application.

The DVD-Store application consists of four web pages or transaction types:

1. Login,

 www.redhat.com 16

2. NewCustomer,
3. Browse and
4. Purchase.

Customers who have already created an account access the Login page to start a new order.

The code in the Login page checks the user name and password entered by the customer,
and verifies the customer�s account number. Additionally, the page returns the previous ten
titles ordered by the customer and, for each title, a title recommended by others who also
enjoyed the ordered title.

New customers use the NewCustomer page to create a new account by entering a username,
personal data and credit card information. The NewCustomer code first checks that the new
username is not already in use, and then inserts a new row in the CUSTOMERS table with all
the information entered on the page.

After successful login or new account creation, the customer is presented the Browse page,
which enables the customer to search for DVDs by title, lead actor or category. Titles returned
by the searches may be added to the customer�s shopping cart.

Finally, the Purchase page allows the user to specify quantities, optionally delete titles from
the shopping cart, and finally complete the purchase. The code in the Purchase page first
checks that there is sufficient quantity in stock for every title in the order, then updates the
appropriate database tables. For simplicity, there is no partial order handling in this version.

The entire LAMP Stack configuration is a three-tier model. Tier 1 executes the driver that
emulates the activities of Web users. Tier 2 comprises Web application servers that intercept
the requests and send database transactions to a DB2 9 data server. All three tiers were
configured to run within the same virtual machine instance.

The simulated workload ran 35 users for each vCPU used in the test. As additional vCPUs
were added the number of simulated users was increased in increments of 35 users, starting
with 35 users for a one vCPU guest and increasing to 280 users for a eight vCPU guest. To
simulate a real-world scenario, the think time was set to a default of 0.25 seconds. Each test
ran for 10 minutes.

The throughput metric used was the DVD-Sore Operations Per Minute (OPMs) reported by
the application. OPMs can also be thought of as transactions per minute.

 17 www.redhat.com

 5.2 Configuration & Workload
Demonstrating the scaling of KVM based virtualization meant several aspects of the workload
and configuration were scaled with the size of the guest. The database was held constant to
demonstrate that the scaling was the effect of scaling the guests and not the application.

A constant database size was used for all the testing in this paper. While DVD Store is
distributed with support for 10 MB, 1GB, and 100GB, a customized database size of 4GB was
used.

The system is configured with two Intel W5580 processors. These are 3.2 GHz quad-core
processors that support Hyper-Threading Technology. While each thread is a CPU for Red
Hat Enterprise Linux, two threads share the processing power of the hyper threaded core with
hardware support. For 2-vCPU guests, a core was assigned to each virtual machine using the
numactl command. Two cores from the same processor were assigned to 4-vCPU guests. A

full processor was allocated to 8-vCPU guests.

The host system has 48 GB of memory. Evenly distributing this to the vCPUs would allow
3GB per vCPU, however, only 2.5GB was used leaving some memory for the hypervisor and
for guests that may have oversubscribed the available CPUs. The MySQL option
innodb_buffer_pool_size was set to 80% of the guest memory.

Since the amount of memory and the number vCPUs changed for various tests, the workload
applied to the system was correspondingly scaled. A load of 35 users per vCPU was
selected after some test trials demonstrate that this sufficiently loaded a guest.

vCPUs
per

 Guest

Guest
Memory

User
Load

InnoDB
Buffer
Pool

1 2.5 GB 35 2 GB

2 5 GB 70 4 GB

4 10 GB 140 8 GB

6 15 GB 210 12 GB

8 20 GB 280 16 GB

Table 4: Guest Configuration and Workload Parameters

 www.redhat.com 18

 5.3 Performance Test Plan
Using the guidance of the parameters set forth in the previous section (Configuration &
Workload), limited additional tuning was performed as the test configurations were changed.

Scale-out:
The scale-out data highlights the results of the increasing of the number of independent
concurrent 2-vCPU, 4-vCPU, or 8-vCPU guests running the DVD Store LAMP application.
The single guest numbers reported are the average of the data from single instance runs for
all the guest of the same size.

Scale-up:
The scale-up data was collected by increasing the number of vCPUs and the amount of
memory when running the workload for a single guest.

Virtualization Efficiency:
Virtualization efficiency is the data when all the 8 cores (16 hyper-threads) are allocated to
executing the DVD Store LAMP application using bare metal (no virtualization), eight 2-vCPU
guests, four 4-vCPU guests, and two 8-vCPU guests.

The DVD Store load driver specified the parameters specified in Table 6, otherwise the
default values were used for the remaining parameters.

Parameter Value

run_time 10

n_threads 35 * #vCPUs

db_size_str custom

warmup_time 0

ramp_rate 0

think_time 0.25

pct_newcustomers 10

Table 5: DVD Store Driver Options

 19 www.redhat.com

 5.4 Tuning & Optimizations

Host:
The host was installed with the first Red Hat Enterprise Linux 5.4 Beta which was available
via RHN. The primary purpose of this server is to be a KVM hypervisor to guest virtual
machines. Several processes that are unnecessary for this role were disabled using
chkconfig. Additionally, SELinux was disabled. The services which were disabled were the

following:

 cpuspeed
 haldaemon
 yum-updatesd
 smartd
 setroubleshoot
 sendmail
 rpcgssd
 rpcidmapd
 rpcsvcgssd
 rhnsd
 pcscd
 mdmonitor
 mcstrans

 kdump
 isdn
 iptables
 ip6tables
 hplip
 hidd
 gpm
 cups
 bluetooth
 avahi-daemon
 restorecond
 auditd
 xinetd

 xfs
 saslauthd
 ricci
 pcscd
 iscsi
 iscsid
 libvirtd
 modclusterd
 cmirror
 xend
 xendomains

The host allocated memory in the form of Huge Pages (2048 kB) which was then made
available to guests. With the guest using memory backed by huge pages, the number of
accesses to translation lookaside buffers (TLB) should be reduced, thereby improving
performance. To allocate huge pages, the following commands were issued on the host. First,
the current allocation of huge pages is checked, then over 40 GB were allocated and
confirmed. The last command mounts the huge table file system which will be passed to the
guest.

tail /proc/meminfo
Bounce: 0 kB
CommitLimit: 33115432 kB
Committed_AS: 99592 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 284828 kB
VmallocChunk: 34359451703 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
Hugepagesize: 2048 kB

echo 20500 > /proc/sys/vm/nr_hugepages

tail /proc/meminfo

 www.redhat.com 20

Bounce: 0 kB
CommitLimit: 12123432 kB
Committed_AS: 97028 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 284828 kB
VmallocChunk: 34359451703 kB
HugePages_Total: 20500
HugePages_Free: 20500
HugePages_Rsvd: 0
Hugepagesize: 2048 kB

mount -t hugetlbfs hugetlbfs /mnt/libhugetblfs

The host was equipped with six internal drives. One was used for the OS installation. Four
drives were configured into four equal partitions for use by the guests. The remaining drive
was unused.

Guest:
The guests were also installed with the Red Hat Enterprise Linux 5.4 Beta. The same set of
services disabled on the host were disabled on each guest.

The guests were started using the qemu-kvm command line. This allowed for the use of
numactl to specify CPU and memory locality, the use of huge pages, and specifying the

cache mechanism of the disks. The example which follows following allocates a guest with:

� two CPUs (-smp 2)
� bound CPUs a single core (--physcpubind=7,15)
� 5GB of memory(-m 5120)
� restricting memory from NUMA node 1 (-m 1)
� huge page memory (--mem-path /mnt/libhugetblfs)
� two drives using writethrough cache (cache=writethrough)
� a single network

numactl -m 1 --physcpubind=7,15 /usr/libexec/qemu-kvm -M pc -m 5120 -smp 2 -name ra-
vm8 -uuid 58dbf832-fbc4-443a-9bbc-94c71f220369 -monitor pty -pidfile
/var/run/libvirt/qemu/ra-vm8.pid -boot c -drive
file=/dev/cciss/c0d2p4,if=virtio,index=0,boot=on,cache=writethrough -drive
file=/dev/cciss/c0d3p4,if=virtio,index=1,cache=writethrough -net
nic,macaddr=00:16:3e:10:de:ff,vlan=0,model=virtio -net tap,script=/kvm/qemu-ifup,vlan=0,if-
name=qnet7 -serial pty -parallel none -usb -vnc 127.0.0.1:7 -k en-us --mem-path /mnt/libhuget-
blfs

The following, which is the contents of /kvm/qemu-ifup, was used to add guest network interfaces to
bridge br0.

 #!/bin/sh
/sbin/ifconfig $1 0.0.0.0 up
/usr/sbin/brctl addif br0 $1

 21 www.redhat.com

LAMP:

The �Deploying the LAMP Stack on Red Hat Enterprise Linux 5� Reference Architecture
paper was used as a reference for the installation of the LAMP stack, however further tweaks
were performed to increase performance. First, the small 10 MB database was not used and
a customized 4 GB database was created using the tools provided with the DVD distribution.
MySQL was configured with the Innodb storage engine with innodb_buffer_pool_size being
assigned 80% of the available memory of the guest. The data disk was on a separate file
system from the OS, each using one of the partitions that were created on the host.

For the Apache httpd daemon, KeepAlive was enabled, the number of started servers were
adjusted, and logging was disabled.

PHP performance was increased with the installation of Alternative PHP Cache (APC). The
steps required to install APC were as follows:

� Install compiler, PHP pear, http and PHP development packages
yum install php-pear php-devel httpd-devel gcc

� Use pear (PHP Extension and Application Repository) to compile and install APC
Answer no to the �Use apxs to set compile flags� question
pear install pecl/apc

� Tell PHP to include APC
echo extension=apc.so > /etc/php.d/apc.ini

 www.redhat.com 22

 6 Test Results
Multiple factors can effect scaling. Among these are hardware characteristics, application
characteristics and virtualization overhead.

Hardware Characteristics:
The most prominent hardware characteristics relevant to the tests in this paper include limited
storage throughput and system architecture. While the disk IO requirements of a single
instance of the LAMP stack were not extravagant, this quickly compounds as multiple
systems were executed in parallel on the limited set of disks that were available.

The system's architecture includes Intel's Hyper Threading Technology which provides a
boost in performance over eight cores, however the performance to the two threads on any
hyper threaded core is not expected to be equal to the performance of two non-hyper
threaded cores. Linux treats each processing thread as a separate CPU. By assigning a
complete core to each 2-vCPUs, the impact of hyper-threading is minimized.

The system was designed with Non-Uniform Memory Architecture (NUMA), which allows
quicker access to nearby memory, but conversely, slower accesses to remote memory. This
architecture has two NUMA nodes, one for each processor. Assigning a process within a
NUMA node allows cache sharing and memory access performance boots.

Application Characteristics:
The type of scaling, up (increased amounts of memory and increased CPU count per guest)
or out (multiple instances of similar sized guests), can effect various applications in different
ways. The added memory and CPU power will typically help applications that do not contend
for a limited resource, where scaling out may provided a multiple of a limited resource.
However, scaling out may not be suited for applications requiring a high degree of
coordination for the application, which would occur in memory for a scale-up configuration.

Additionally, virtualization can be used to consolidate multiple independent homogenous or
heterogeneous workloads onto a single server.

Virtualization Overhead:
As it is not completely running directly on hardware and requires the hypervisor layer, which
consumes some processing cycles, some overhead is associated with any virtualization. The
amount of virtualization overhead can vary depending on the efficiency of the hypervisor and
the use of drivers of varying efficiency.

 23 www.redhat.com

 6.1 Scaling Multiple 2-vCPU Guests
This section presents the results obtained when running multiple 2-vCPU guests (each
running an independent LAMP Stack with the DVD Store workload) on a two-socket, quad-
core HP ProLiant DL370 G6 host which has 8 cores = 16 hyper-threads. Note: 1 vCPU = 1
hyper-thread. Figure 5 is a schematic depicting the configuration as multiple 2-vCPU guests
are added.

 www.redhat.com 24

Figure 5: Scaling Multiple 2-vCPU Guests

HP ProLiant DL370 G6
(with 2 x Quad-Core Intel Xeon W5580 - Nehalem)

Red Hat Enterprise Linux 5.4

KVM Hypervisor

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.4
Guest (2 vCPUs)

Oracle 10g

OLTP Workload

Scale-Out

Figure 6 graphs the scalability achieved by increasing the number of 2-vCPU guests from
one up to eight running the LAMP based DVD Store application. The throughput
demonstrates good scalability despite increased I/O contention and virtualization overhead.
The limited disk farm (4 disks) resulted in the host processors reporting under 1% of the CPU
in IO Wait for the single guest up to 28% for the eight guests.

 25 www.redhat.com

 6.2 Scaling Multiple 4-vCPU Guests
This section provides the results obtained when running multiple 4-vCPU guests (each
running an independent LAMP Stack with the DVD Store workload) on a two-socket, quad-
core HP ProLiant DL370 G6 host which has 8 cores = 16 hyper-threads. Note: 1 vCPU = 1
hyper-thread. Figure 7 is a schematic depicting the configuration as multiple 4-vCPU guests
are added.

 www.redhat.com 26

Figure 7: Scaling Multiple 4-vCPU Guests

HP ProLiant DL370 G6
(with 2 x Quad-Core Intel Xeon W5580 - Nehalem)

Red Hat Enterprise Linux 5.4

KVM Hypervisor

RHEL 5.3
Guest (4 vCPUs)

Oracle 10g

OLTP Workload

Scale-Out

RHEL 5.3
Guest (4 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.3
Guest (4 vCPUs)

Oracle 10g

OLTP Workload

RHEL 5.4
Guest (4 vCPUs)

Oracle 10g

OLTP Workload

Figure 8 plots the scalability achieved by incrementally increasing the number of 4-vCPU
guests from one to four running the LAMP based DVD Store application. The throughput
demonstrates excellent scalability despite increased I/O contention and virtualization
overhead.

 27 www.redhat.com

 6.3 Scaling Multiple 8-vCPU Guests
This section supplies the results obtained when running one and two 8-vCPU guests (each
running an independent LAMP Stack with the DVD Store workload) on a two-socket, quad-
core HP ProLiant DL370 G6 host which has 8 cores = 16 hyper-threads. Note: 1 vCPU = 1
hyper-thread. Figure 9 is a schematic depicting the configuration as a second 8-vCPU guest
is added.

 www.redhat.com 28

Figure 9: Scaling One & Two 8-vCPU Guests

HP ProLiant DL370 G6
(with 2 x Quad-Core Intel Xeon W5580 - Nehalem)

Red Hat Enterprise Linux 5.4

KVM Hypervisor

RHEL 5.4
Guest (8 vCPUs)

Oracle 10g

OLTP Workload

Scale-Out

RHEL 5.4
Guest (8 vCPUs)

Oracle 10g

OLTP Workload

Figure 10 plots the scalability achieved by adding a second 8-vCPU guest running the LAMP
based DVD Store application. The throughput demonstrates excellent (near-linear) scalability.

 29 www.redhat.com

 6.4 Scaling-Up by Increasing the Number of vCPUs in a
Single Guest

This section demonstrates the results obtained when running the LAMP Stack on a single
guest with increased amounts of memory and number of vCPUs. Figure 11 illustrates the
configuration as vCPUs and memory are added.

 www.redhat.com 30

Figure 11: Scale-Up of a RHEV Guest

HP ProLiant DL370 G6
(wit h 2 x Quad-Core Int el
Xeon W5580 - Nehalem)

Red Hat Ent erprise Linux 5.4

KVM Hypervisor

RHEL 5.4
Guest (2 vCPUs)

LAMP St ack

DVD St ore App

Scale-Up

HP ProLiant DL370 G6
(wit h 2 x Quad-Core Int el Xeon

W5580 - Nehalem)

Red Hat Enterprise Linux 5.4

KVM Hypervisor

RHEL 5.4
Guest (8 vCPUs)

LAMP Stack

DVD Store App

Figure 12 plots the results when the LAMP Workload was run on a guest with 1, 2, 4, 6, and
8 vCPUs with 2.5GB of memory for each vCPU. The one vCPU result is the only
measurement in this paper when a single thread of a vCPU was loaded. Increasing the
number of vCPUs and amount of memory resulted in an increase in throughput. The rate of
increase decreases as the guest becomes larger. This is mostly attributed to characteristics of
the LAMP stack, which with the versions of software used does not scale up well. Even with a
better scaling application stack, changes to the size of the database and disk layout may
need to be made to take better advantage of the increased processing power and memory.

 31 www.redhat.com

 6.5 Virtualization Efficiency in Consolidation Scenarios
Figure 13 compares the throughput performance of an eight-core (16 hyper-thread) bare-
metal configuration to various virtual machine configurations totaling sixteen vCPUs. In the
virtual environment, this test was run with 8 x 2-vCPU guests, 4 x 4-vCPU guests, and 2 x 8-
vCPU guests. The virtualization results achieving better throughput as compared to bare
metal is indicative that LAMP is a better candidate for scaling-out versus scaling-up. The four
instances of 4-vCPUs appears to identify a sweet spot. The limited guest memory, limited
storage bandwidth, and virtualization overhead affected the eight instances of 2-vCPUs, while
the application scaling issues seen in the bare metal result affected the two instances of 8-
vCPUS.

 www.redhat.com 32

 7 Conclusions
This paper describes the performance and scaling of the industry-standard LAMP web
application stack running in Red Hat Enterprise Linux 5.4 guests on a Red Hat Enterprise
Linux 5.4 host with the KVM hypervisor. The host system was deployed on an HP ProLiant
DL370 G6 server equipped with 48 GB of RAM and comprising dual sockets each with a 3.2
GHz Intel Xeon W5580 Nehalem processor with support for hyper-threading technology. Total
of 8 cores and 16 hyper-threads.

The data presented in this paper clearly establishes that Red Hat Enterprise Linux 5.4 virtual
machines using the KVM hypervisor on a HP ProLiant 370 provide an effective production-
ready platform for hosting multiple virtualized LAMP web application stacks. The combination
of low virtualization overhead and the ability to both scale-up and scale-out contribute to the
effectiveness of KVM for LAMP web application stack. The number of actual users and
throughput supported in any specific customer situation will, of course, depend on the
specifics of the customer application used and the intensity of user activity. However, the
results demonstrate that in a heavily virtualized environment, good throughput was retained
even as the number and size of guests/virtual-machines was increased up until the physical
server was fully subscribed.

 8 References

1.Qumranet White paper: KVM � Kernel-based Virtualization Machine
2. Red Hat Reference Architecture: Deploying the LAMP Stack on Red Hat Enterprise Linux 5

 33 www.redhat.com

