

re?

About the Presenter

Leader of Aurora SPARC Linux team
(Fedora/SPARC)

Primary Author of Fedora Packaging
Guidelines

Packager and maintainer for 120+ packages in
Fedora Extras

Chair of Fedora Packaging Committee,
member of Fedora Engineering Steering
Committee

Wild and crazy guy

Good Packaging: Important!

Standardize deployments

Know that you installed it
Simplify environment

Know how to find it
Standards compliance

Know what is present
Sanity retention

Know where it is

Packaging in the Red Hat context

Red Hat uses RPM

RPM format is Linux Standard (LSB)
10+ years of refinements

Database driven solution
Dependency tracking

Built in package verification

Integrated into RHEL/Fedora

RPM Myths

Doesn't work well

Hard to create packages

Hard to install packages

Hard to remove packages

Dependency nightmare
(Dependency Hell)

3™ ,
R

- " ;h
b
ﬁﬂ

Don't Slay The Dragon \

RPM is mostly misunderstood

Works extremely well

Package creation is easier than you think
Easy to install

Easy to remove

Good Packages + Good Tools = Profit!

\\

Dependency Resolution: Yum

RPM Pain Point: Dependency resolution

Dependencies make RPM useful, but also
complicated. u
RHEL 5 and Fedora use yum to ease the pain yellowdog updater modified

Metadata is generated from tree of RPM
packages

Yum uses metadata to resolve dependencies
Only install what you need
Remove what you don't need anymore

HAT :: SAN DIEGO :: 2007

Red Hat Network uses yum (RHEL 5) SUI«»MIT

Packaging as a Standard

Auditing software usage
What, when, where?
Version control
Kickstart integration
Minimizes risk
Security

Rogue applications

Crash Course in RPM Usage

Binary Package (goldfish-1.0.0-1.i386.rpm)
* File name is different from package name

Install package with file name

* rpm -ivh goldfish-1.0.0-1.i386.rpm
(i for install, v for verbose, h for process hash)

Query installed package with package name

* rpm -qgl goldfish
(q for query, | for list files)

Remove package with package name

rpm -e goldfish
(e for erase)

Source RPM overview

Source Package (goldfish-1.0.0-1.src.rpm)

* SRPMs contain sources/components/spec
file used to generate binary RPM packages

Install SRPM package with SRPM file name

rom -ivh goldfish-1.0.0-1.src.rpm
(i for install, v for verbose, h for process hash)

Source packages just install source into
defined source directory

Red Hat default:
/usr/src/redhat/'SOURCES

SRPMs do not go into the RPM database

Remove installed SRPM with spec file name

rombuild --rmsource --rmspec goldfish.spec

More Source RPM overview

Making a binary rpm from SRPM:
rombuild --rebuild goldfish-1.0.0-1.src.rpm
Making a binary rpm from spec file

rombuild -ba goldfish.spec
(-b for build, -a for all packages, src and bin)

Making a patched source tree from spec file

rombuild -bp goldfish.spec
(-b for build, -p for patch only)

Patched source trees go into the builddir
Red Hat default is /usr/src/redhat/BUILD
Building for a different architecture
rombuild —target sparc —rebuild goldfish-1.0.0-1.src.rpm

Be careful! Many software programs detect the system type in
configure and ignore what rpm told it.

~/.rpmmacros: Use it or else

Do it now. You'll thank me later. So will the kittens.

Having an ~/.rpmmacros file enables custom macros for your
user.

Do NOT EVER build RPMS as root.
Let me repeat, do NOT EVER build RPMS as root.

Make a rpmbuild tree in your home directory:
mkdir -p ~/rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}
mkdir -p ~/rpmbuild/RPMS/{noarch,i386,i686}

SAN DIEGO :: 2007

Make an ~/.rpommacros file:
%_topdir %(echo $HOME)/rpmbuild

Other useful ~/rpmmacros additions

%_smp_mflags -j3

If your package SPEC has “make %{?_smp_mflags}, then
this will tell it to try to build across three CPUs.

Why three? Three is a nice odd number that isn't too harsh
for uniprocessor systems but enough to expose code that
doesn't build well in SMP environments.

% ___arch_install_post /usr/lib/rpm/check-rpaths
/ust/lib/rpm/check-buildroot

Fedora has an rpmdevtools package full of, well, rpm
development tools.

HAT :: SAN DIEGO :: 2007

Check-rpaths will make sure that your package doesn't have SU NMIT
any hardcoded rpaths (a bad thing)

Check-buildroot will make sure none of the packaged files
have the buildroot hardcoded (also a bad thing)

COOking Wlth Spec Files BAKED Araska Por1ock
fx--'f'//f’ ﬁ/ cerbens

Think of a spec file as a recipe

Lists the contents of the RPMS

Describes the process to build, install the sources
2 (3 to 5 oz. each) Ai,amu pm]ock iiileis,

Required to make packages thawed if necessary
Salt and pepper
Very similar to shell script 2 cups shredded zucchini

3 tablespoons grated Parmesan
cheese, divided

Stag es: 2 tablespoons fine dry bread crumbs
. I tablespoon each finely chopped
Preamble -> Setup -> Build -> Install -> Clean -> parsley and green onion
i Y teaspoon basil, crushed
Files -> Change|og 2 tablespoons dry white wine
or water

RED HAT :: SAN DIEGO == 2007

SUM“IIT

Understanding the Spec File: Preamble

Initial section

Defines package characteristics

Name/Version/Group/License
Release tracks build changes
Sources/Patches
Requirements

* Build & Install
Summary/Description

Custom macro definitions

4 @%%{%

e #wﬁr?? Cdnabitne

L |

Preamble example

Name: helloworld

Version: 1.1

Release: 2

Summary: An application that prints “Hello World!”
License: GPL

Group: System Environment/Base

Source0: helloworld-1.1.tar.gz

PatchO: fixtypo.patch

BuildRoot: %{_tmppath}/%{name}-%{version}-Y%{release}-root-%(%{ id_u} -n)
BuildArch: noarch

Y%description
This program prints hello world on the screen to avoid the “programmers
curse”. The Programmmers Curse states that unless your first example is
“Hello World!”, then you will be cursed, and never able to use that tool.

Understanding the Spec: Setup

Source tree is generated
Sources unpacked here
Patches applied

Any pre-build actions

Example of a %setup stage:

Yoprep
Y%setup -q
Y%patchO -p1

Understanding the Spec: Build

Binary components created
Use the %configure macro for good defaults

Build binary bits in sourcedir:
rombuild -bc helloworld.spec
(-b for build, -c for compile and stop)

Example of a %build section

Y%build

Y%configure

make

If your package uses scons, cmake, alter accordingly. SUMIT
i

=

Understanding the Spec: Install

Creates buildroot

. PersonaIDeskmn
Installation Type @ Peee o personal camaues o o, skt s rstalaton e o

ngphldktp tdtytudlf
h

LayS OUt fileSyStem StrUCture Choose the type of installation me or desktop use.

that will best meet your needs.

0 Workstation
. . . This option installs a graphical desktop environment with tools for
P t b 1 It f. | 1 b 1 |d t An n:lslallatlon WII_I dESIIOY any software development and system administration.

U S U I I eS I n U I rOO previously saved information on

the selected partitions.
Server
Selenh tIIt wpelfyuwnid\kt tpﬂeh gpt

: . F informati i O
Cleans up unnecessary installed files s Ao R ey et)
installation classes, refer to the
product documentation. N c“smm
© ?l}

Example of an %install section B e

Y%install

rm -rf $RPM_BUILD_ROOT

mkdir -p $RPM_BUILD _ROOT%{ bindir}
cp helloworld.sh $RPM_BUILD ROOT%{ bindir}/helloworld

%{_bindir} ?1? SUNMIT

That's just a macro for /usr/bin.

|mHldeﬂelp| |EﬂeleaseNutes‘ |Q Back ‘ |D Next |

rom —showrc will show you all the defined macros

rom —eval %{ macroname} will show you what it means

Understanding the Spec: Clean & Files

Clean removes the buildroot

Files: List of package contents

If its not in %files, its not in the package.
RPM WILL complain about unpackaged files

Please, please, please. Don't ever hack
around this and generate files in %post.

Example of %clean & %files sections

%clean
rm -rf $RPM_BUILD ROOT

Y%files
Y%defattr(-,root,root)
Y%attr(0755,gold,fish) %{ bindir}/helloworld

Understanding the Spec: Changelog

Used to track package changes

Not intended to replace source code Changelog
Provides explanation, audit tralil

Update on EVERY change

Example of Changelog section:

%changelog
* Mon Apr 16 2007 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-2
- update example package

* Sun May 14 2006 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-1
- initial package for Red Hat Summit Presentation

HAT :: SAN DIEGO :: 2007

mailto:tcallawa@redhat.com
mailto:tcallawa@redhat.com

Best Practices

K.I.S.S.

Use patches, not rom hacks

Avoid scriptlets, minimize pre/post wherever possible
Use Changelog

Look to Fedora package

Be consistent with macros

Better than Best Practices

Use rpmlint, fix warnings/errors
Include configs/scripts as Source files
Comment!

...but keep it legible

Think of the guy who will have to fix
your package when you leave.

Don't ever call rpm from inside a spec file.

Remember Ghostbusters? Crossing
the streams? Bad.

Good Packages Put You In Control

Practice makes perfect

Integration with yum, Red Hat Network
Satellite

Simplify, standardize, save time and
sanity

Build once, install many.

Useful Links

Fedora Packaging Guidelines:
http://fedoraproject.org/wiki/Packaging/Guidelines
http://fedoraproject.org/wiki/Packaging/ReviewGuidelines

Maximum RPM:
http://www.rpm.org/max-rpm-snapshot/

Fedora Extras CVS Tree (contains lots of example specs)
http://cvs.fedora.redhat.com/viewcvs/rpms/?root=extras

Rpmlint website:
http://rpmlint.zarb.org/cgi-bin/trac.cqi

http://fedoraproject.org/wiki/Packaging/Guidelines
http://fedoraproject.org/wiki/Packaging/ReviewGuidelines
http://www.rpm.org/max-rpm-snapshot/
http://cvs.fedora.redhat.com/viewcvs/rpms/?root=extras
http://rpmlint.zarb.org/cgi-bin/trac.cgi

