[dm-devel] [PATCH 2/9] Use system-provided regex implementation

Hannes Reinecke hare at suse.de
Tue Nov 26 11:41:23 UTC 2013


There is zero value in carrying our own (old) regex implementation
around; we're far better off using the system-provided one.

Signed-off-by: Hannes Reinecke <hare at suse.de>
---
 libmultipath/Makefile |    2 +-
 libmultipath/regex.c  | 4032 -------------------------------------------------
 libmultipath/regex.h  |  252 ----
 3 files changed, 1 insertion(+), 4285 deletions(-)
 delete mode 100644 libmultipath/regex.c
 delete mode 100644 libmultipath/regex.h

diff --git a/libmultipath/Makefile b/libmultipath/Makefile
index ae1d8a3..f760f24 100644
--- a/libmultipath/Makefile
+++ b/libmultipath/Makefile
@@ -12,7 +12,7 @@ LIBDEPS = -lpthread -ldl -ldevmapper -ludev
 OBJS = memory.o parser.o vector.o devmapper.o callout.o \
        hwtable.o blacklist.o util.o dmparser.o config.o \
        structs.o discovery.o propsel.o dict.o \
-       pgpolicies.o debug.o regex.o defaults.o uevent.o \
+       pgpolicies.o debug.o defaults.o uevent.o \
        switchgroup.o uxsock.o print.o alias.o log_pthread.o \
        log.o configure.o structs_vec.o sysfs.o prio.o checkers.o \
        lock.o waiter.o file.o wwids.o prioritizers/alua_rtpg.o
diff --git a/libmultipath/regex.c b/libmultipath/regex.c
deleted file mode 100644
index 0e13c62..0000000
--- a/libmultipath/regex.c
+++ /dev/null
@@ -1,4032 +0,0 @@
-/* Extended regular expression matching and search library,
-   version 0.12.
-   (Implements POSIX draft P10003.2/D11.2, except for
-   internationalization features.)
-
-   Copyright (C) 1993 Free Software Foundation, Inc.
-
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
-
-   This program is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
-
-#ifndef _GNU_SOURCE
-#define _GNU_SOURCE
-#endif
-
-#include <sys/types.h>
-#include <stdlib.h>
-#include <string.h>
-
-#ifndef bcmp
-#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
-#endif
-#ifndef bcopy
-#define bcopy(s, d, n)  memcpy ((d), (s), (n))
-#endif
-#ifndef bzero
-#define bzero(s, n)     memset ((s), 0, (n))
-#endif
-
-/* Define the syntax stuff for \<, \>, etc.  */
-
-#ifndef Sword
-#define Sword 1
-#endif
-
-#define CHAR_SET_SIZE 256
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void init_syntax_once(void)
-{
-	register int c;
-	static int done = 0;
-
-	if (done)
-		return;
-
-	bzero(re_syntax_table, sizeof re_syntax_table);
-
-	for (c = 'a'; c <= 'z'; c++)
-		re_syntax_table[c] = Sword;
-
-	for (c = 'A'; c <= 'Z'; c++)
-		re_syntax_table[c] = Sword;
-
-	for (c = '0'; c <= '9'; c++)
-		re_syntax_table[c] = Sword;
-
-	re_syntax_table['_'] = Sword;
-
-	done = 1;
-}
-
-#define SYNTAX(c) re_syntax_table[c]
-
-#include "regex.h"
-#include <ctype.h>
-
-#ifdef isblank
-#define ISBLANK(c) (isascii (c) && isblank (c))
-#else
-#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-#endif
-#ifdef isgraph
-#define ISGRAPH(c) (isascii (c) && isgraph (c))
-#else
-#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
-#endif
-
-#define ISPRINT(c) (isascii (c) && isprint (c))
-#define ISDIGIT(c) (isascii (c) && isdigit (c))
-#define ISALNUM(c) (isascii (c) && isalnum (c))
-#define ISALPHA(c) (isascii (c) && isalpha (c))
-#define ISCNTRL(c) (isascii (c) && iscntrl (c))
-#define ISLOWER(c) (isascii (c) && islower (c))
-#define ISPUNCT(c) (isascii (c) && ispunct (c))
-#define ISSPACE(c) (isascii (c) && isspace (c))
-#define ISUPPER(c) (isascii (c) && isupper (c))
-#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
-
-#undef SIGN_EXTEND_CHAR
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-
-#ifndef alloca
-#ifdef __GNUC__
-#define alloca __builtin_alloca
-#endif				/* not __GNUC__ */
-#endif				/* not alloca */
-
-#define REGEX_ALLOCATE alloca
-
-/* Assumes a `char *destination' variable.  */
-#define REGEX_REALLOCATE(source, osize, nsize)				\
-	(destination = (char *) alloca (nsize),				\
-	 bcopy (source, destination, osize),				\
-	 destination)
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
-   `string1' or just past its end.  This works if PTR is NULL, which is
-   a good thing.  */
-#define FIRST_STRING_P(ptr)						\
-	(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail.  */
-#define TALLOC(n, t)	     ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define REGEX_TALLOC(n, t)   ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8		/* In bits.  */
-
-#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-
-typedef char boolean;
-#define false 0
-#define true 1
-
-typedef enum {
-	no_op = 0,
-	exactn = 1,
-	anychar,
-	charset,
-	charset_not,
-	start_memory,
-	stop_memory,
-	duplicate,
-	begline,
-	endline,
-	begbuf,
-	endbuf,
-	jump,
-	jump_past_alt,
-	on_failure_jump,
-	on_failure_keep_string_jump,
-	pop_failure_jump,
-	maybe_pop_jump,
-	dummy_failure_jump,
-	push_dummy_failure,
-	succeed_n,
-	jump_n,
-	set_number_at,
-	wordchar,
-	notwordchar,
-	wordbeg,
-	wordend,
-	wordbound,
-	notwordbound
-} re_opcode_t;
-
-#define STORE_NUMBER(destination, number)				\
-  do {									\
-    (destination)[0] = (number) & 0377;					\
-    (destination)[1] = (number) >> 8;					\
-  } while (0)
-
-#define STORE_NUMBER_AND_INCR(destination, number)			\
-  do {									\
-    STORE_NUMBER (destination, number);					\
-    (destination) += 2;							\
-  } while (0)
-
-#define EXTRACT_NUMBER(destination, source)				\
-  do {									\
-    (destination) = *(source) & 0377;					\
-    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
-  } while (0)
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
-  do {									\
-    EXTRACT_NUMBER (destination, source);				\
-    (source) += 2;							\
-  } while (0)
-
-#undef assert
-#define assert(e)
-
-#define DEBUG_STATEMENT(e)
-#define DEBUG_PRINT1(x)
-#define DEBUG_PRINT2(x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
-reg_syntax_t re_set_syntax(syntax)
-reg_syntax_t syntax;
-{
-	reg_syntax_t ret = re_syntax_options;
-
-	re_syntax_options = syntax;
-	return ret;
-}
-
-/* This table gives an error message for each of the error codes listed
-   in regex.h.  Obviously the order here has to be same as there.  */
-
-static const char *re_error_msg[] = { NULL,	/* REG_NOERROR */
-	"No match",		/* REG_NOMATCH */
-	"Invalid regular expression",	/* REG_BADPAT */
-	"Invalid collation character",	/* REG_ECOLLATE */
-	"Invalid character class name",	/* REG_ECTYPE */
-	"Trailing backslash",	/* REG_EESCAPE */
-	"Invalid back reference",	/* REG_ESUBREG */
-	"Unmatched [ or [^",	/* REG_EBRACK */
-	"Unmatched ( or \\(",	/* REG_EPAREN */
-	"Unmatched \\{",	/* REG_EBRACE */
-	"Invalid content of \\{\\}",	/* REG_BADBR */
-	"Invalid range end",	/* REG_ERANGE */
-	"Memory exhausted",	/* REG_ESPACE */
-	"Invalid preceding regular expression",	/* REG_BADRPT */
-	"Premature end of regular expression",	/* REG_EEND */
-	"Regular expression too big",	/* REG_ESIZE */
-	"Unmatched ) or \\)",	/* REG_ERPAREN */
-};
-
-/* Subroutine declarations and macros for regex_compile.  */
-
-static reg_errcode_t regex_compile (const char *pattern, size_t size,
-				    reg_syntax_t syntax,
-				    struct re_pattern_buffer * bufp);
-
-static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
-
-static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
-
-static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
-			unsigned char *end);
-
-static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
-			unsigned char *end);
-
-static boolean at_begline_loc_p (const char *pattern, const char *p,
-				 reg_syntax_t syntax);
-
-static boolean at_endline_loc_p (const char *p, const char *pend,
-				 reg_syntax_t syntax);
-
-static reg_errcode_t compile_range (const char **p_ptr, const char *pend,
-				    char *translate, reg_syntax_t syntax,
-				    unsigned char *b);
-
-/* Fetch the next character in the uncompiled pattern---translating it
-   if necessary.  Also cast from a signed character in the constant
-   string passed to us by the user to an unsigned char that we can use
-   as an array index (in, e.g., `translate').  */
-#define PATFETCH(c)							\
-  do {if (p == pend) return REG_EEND;					\
-    c = (unsigned char) *p++;						\
-    if (translate) c = translate[c];					\
-  } while (0)
-
-/* Fetch the next character in the uncompiled pattern, with no
-   translation.  */
-#define PATFETCH_RAW(c)							\
-  do {if (p == pend) return REG_EEND;					\
-    c = (unsigned char) *p++;						\
-  } while (0)
-
-/* Go backwards one character in the pattern.  */
-#define PATUNFETCH p--
-
-
-/* If `translate' is non-null, return translate[D], else just D.  We
-   cast the subscript to translate because some data is declared as
-   `char *', to avoid warnings when a string constant is passed.  But
-   when we use a character as a subscript we must make it unsigned.  */
-#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
-
-
-/* Macros for outputting the compiled pattern into `buffer'.  */
-
-/* If the buffer isn't allocated when it comes in, use this.  */
-#define INIT_BUF_SIZE  32
-
-/* Make sure we have at least N more bytes of space in buffer.  */
-#define GET_BUFFER_SPACE(n)						\
-    while (b - bufp->buffer + (n) > bufp->allocated)			\
-      EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it.  */
-#define BUF_PUSH(c)							\
-  do {									\
-    GET_BUFFER_SPACE (1);						\
-    *b++ = (unsigned char) (c);						\
-  } while (0)
-
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
-#define BUF_PUSH_2(c1, c2)						\
-  do {									\
-    GET_BUFFER_SPACE (2);						\
-    *b++ = (unsigned char) (c1);					\
-    *b++ = (unsigned char) (c2);					\
-  } while (0)
-
-
-/* As with BUF_PUSH_2, except for three bytes.  */
-#define BUF_PUSH_3(c1, c2, c3)						\
-  do {									\
-    GET_BUFFER_SPACE (3);						\
-    *b++ = (unsigned char) (c1);					\
-    *b++ = (unsigned char) (c2);					\
-    *b++ = (unsigned char) (c3);					\
-  } while (0)
-
-
-/* Store a jump with opcode OP at LOC to location TO.  We store a
-   relative address offset by the three bytes the jump itself occupies.  */
-#define STORE_JUMP(op, loc, to) \
-  store_op1 (op, loc, (int)((to) - (loc) - 3))
-
-/* Likewise, for a two-argument jump.  */
-#define STORE_JUMP2(op, loc, to, arg) \
-  store_op2 (op, loc, (int)((to) - (loc) - 3), arg)
-
-/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP(op, loc, to) \
-  insert_op1 (op, loc, (int)((to) - (loc) - 3), b)
-
-/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP2(op, loc, to, arg) \
-  insert_op2 (op, loc, (int)((to) - (loc) - 3), arg, b)
-
-
-/* This is not an arbitrary limit: the arguments which represent offsets
-   into the pattern are two bytes long.  So if 2^16 bytes turns out to
-   be too small, many things would have to change.  */
-#define MAX_BUF_SIZE (1L << 16)
-#define REALLOC realloc
-
-/* Extend the buffer by twice its current size via realloc and
-   reset the pointers that pointed into the old block to point to the
-   correct places in the new one.  If extending the buffer results in it
-   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
-#define EXTEND_BUFFER()							\
-  do {									\
-    unsigned char *old_buffer = bufp->buffer;				\
-    if (bufp->allocated == MAX_BUF_SIZE)				\
-      return REG_ESIZE;							\
-    bufp->allocated <<= 1;						\
-    if (bufp->allocated > MAX_BUF_SIZE)					\
-      bufp->allocated = MAX_BUF_SIZE;					\
-    bufp->buffer = (unsigned char *) REALLOC(bufp->buffer, bufp->allocated);\
-    if (bufp->buffer == NULL)						\
-      return REG_ESPACE;						\
-    /* If the buffer moved, move all the pointers into it.  */		\
-    if (old_buffer != bufp->buffer)					\
-      {									\
-	b = (b - old_buffer) + bufp->buffer;				\
-	begalt = (begalt - old_buffer) + bufp->buffer;			\
-	if (fixup_alt_jump)						\
-	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
-	if (laststart)							\
-	  laststart = (laststart - old_buffer) + bufp->buffer;		\
-	if (pending_exact)						\
-	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
-      }									\
-  } while (0)
-
-
-/* Since we have one byte reserved for the register number argument to
-   {start,stop}_memory, the maximum number of groups we can report
-   things about is what fits in that byte.  */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers.  We just
-   ignore the excess.  */
-typedef unsigned regnum_t;
-
-
-/* Macros for the compile stack.  */
-
-/* Since offsets can go either forwards or backwards, this type needs to
-   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
-/* int may be not enough when sizeof(int) == 2                           */
-typedef long pattern_offset_t;
-
-typedef struct {
-	pattern_offset_t begalt_offset;
-	pattern_offset_t fixup_alt_jump;
-	pattern_offset_t inner_group_offset;
-	pattern_offset_t laststart_offset;
-	regnum_t regnum;
-} compile_stack_elt_t;
-
-
-typedef struct {
-	compile_stack_elt_t *stack;
-	unsigned size;
-	unsigned avail;		/* Offset of next open position.  */
-} compile_stack_type;
-
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
-#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
-
-/* The next available element.  */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-
-/* Set the bit for character C in a list.  */
-#define SET_LIST_BIT(c)                               \
-  (b[((unsigned char) (c)) / BYTEWIDTH]               \
-   |= 1 << (((unsigned char) c) % BYTEWIDTH))
-
-
-/* Get the next unsigned number in the uncompiled pattern.  */
-#define GET_UNSIGNED_NUMBER(num)					\
-  { if (p != pend)							\
-     {									\
-       PATFETCH (c);							\
-       while (ISDIGIT (c))						\
-	 {								\
-	   if (num < 0)							\
-	      num = 0;							\
-	   num = num * 10 + c - '0';					\
-	   if (p == pend)						\
-	      break;							\
-	   PATFETCH (c);						\
-	 }								\
-       }								\
-    }
-
-#define CHAR_CLASS_MAX_LENGTH  6	/* Namely, `xdigit'.  */
-
-#define IS_CHAR_CLASS(string)						\
-   (STREQ (string, "alpha") || STREQ (string, "upper")			\
-    || STREQ (string, "lower") || STREQ (string, "digit")		\
-    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
-    || STREQ (string, "space") || STREQ (string, "print")		\
-    || STREQ (string, "punct") || STREQ (string, "graph")		\
-    || STREQ (string, "cntrl") || STREQ (string, "blank"))
-
-static boolean group_in_compile_stack (compile_stack_type
-				       compile_stack, regnum_t regnum);
-
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
-   Returns one of error codes defined in `regex.h', or zero for success  */
-
-static reg_errcode_t regex_compile(pattern, size, syntax, bufp)
-const char *pattern;
-size_t size;
-reg_syntax_t syntax;
-struct re_pattern_buffer *bufp;
-{
-	/* We fetch characters from PATTERN here.  Even though PATTERN is
-	   `char *' (i.e., signed), we declare these variables as unsigned, so
-	   they can be reliably used as array indices.  */
-	register unsigned char c, c1;
-
-	/* A random tempory spot in PATTERN.  */
-	const char *p1;
-
-	/* Points to the end of the buffer, where we should append.  */
-	register unsigned char *b;
-
-	/* Keeps track of unclosed groups.  */
-	compile_stack_type compile_stack;
-
-	/* Points to the current (ending) position in the pattern.  */
-	const char *p = pattern;
-	const char *pend = pattern + size;
-
-	/* How to translate the characters in the pattern.  */
-	char *translate = bufp->translate;
-
-	/* Address of the count-byte of the most recently inserted `exactn'
-	   command.  This makes it possible to tell if a new exact-match
-	   character can be added to that command or if the character requires
-	   a new `exactn' command.  */
-	unsigned char *pending_exact = 0;
-
-	/* Address of start of the most recently finished expression.
-	   This tells, e.g., postfix * where to find the start of its
-	   operand.  Reset at the beginning of groups and alternatives.  */
-	unsigned char *laststart = 0;
-
-	/* Address of beginning of regexp, or inside of last group.  */
-	unsigned char *begalt;
-
-	/* Place in the uncompiled pattern (i.e., the {) to
-	   which to go back if the interval is invalid.  */
-	const char *beg_interval;
-
-	/* Address of the place where a forward jump should go to the end of
-	   the containing expression.  Each alternative of an `or' -- except the
-	   last -- ends with a forward jump of this sort.  */
-	unsigned char *fixup_alt_jump = 0;
-
-	/* Counts open-groups as they are encountered.  Remembered for the
-	   matching close-group on the compile stack, so the same register
-	   number is put in the stop_memory as the start_memory.  */
-	regnum_t regnum = 0;
-
-	/* Initialize the compile stack.  */
-	compile_stack.stack =
-	    TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
-	if (compile_stack.stack == NULL)
-		return REG_ESPACE;
-
-	compile_stack.size = INIT_COMPILE_STACK_SIZE;
-	compile_stack.avail = 0;
-
-	/* Initialize the pattern buffer.  */
-	bufp->syntax = syntax;
-	bufp->fastmap_accurate = 0;
-	bufp->not_bol = bufp->not_eol = 0;
-
-	/* Set `used' to zero, so that if we return an error, the pattern
-	   printer (for debugging) will think there's no pattern.  We reset it
-	   at the end.  */
-	bufp->used = 0;
-
-	/* Always count groups, whether or not bufp->no_sub is set.  */
-	bufp->re_nsub = 0;
-
-	/* Initialize the syntax table.  */
-	init_syntax_once();
-
-	if (bufp->allocated == 0) {
-		if (bufp->buffer) {
-			RETALLOC(bufp->buffer, INIT_BUF_SIZE,
-				 unsigned char);
-		} else { /* Caller did not allocate a buffer. Do it for them. */
-			bufp->buffer =
-			    TALLOC(INIT_BUF_SIZE, unsigned char);
-		}
-		if (!bufp->buffer)
-			return REG_ESPACE;
-
-		bufp->allocated = INIT_BUF_SIZE;
-	}
-
-	begalt = b = bufp->buffer;
-
-	/* Loop through the uncompiled pattern until we're at the end.  */
-	while (p != pend) {
-		PATFETCH(c);
-
-		switch (c) {
-		case '^':
-		{
-			if (p == pattern + 1 ||
-			    syntax & RE_CONTEXT_INDEP_ANCHORS ||
-			    at_begline_loc_p(pattern, p, syntax))
-				BUF_PUSH(begline);
-			else
-				goto normal_char;
-		}
-		break;
-
-		case '$':
-		{
-			if (p == pend ||
-			    syntax & RE_CONTEXT_INDEP_ANCHORS ||
-			    at_endline_loc_p(p, pend, syntax))
-				BUF_PUSH(endline);
-			else
-				goto normal_char;
-		}
-		break;
-
-		case '+':
-
-		case '?':
-		if ((syntax & RE_BK_PLUS_QM) ||
-		    (syntax & RE_LIMITED_OPS))
-			goto normal_char;
-		handle_plus:
-
-		case '*':
-		/* If there is no previous pattern... */
-		if (!laststart) {
-			if (syntax & RE_CONTEXT_INVALID_OPS)
-				return REG_BADRPT;
-			else if (!(syntax & RE_CONTEXT_INDEP_OPS))
-				goto normal_char;
-		}
-
-		{
-			/* Are we optimizing this jump?  */
-			boolean keep_string_p = false;
-
-			/* 1 means zero (many) matches is allowed.  */
-			char zero_times_ok = 0, many_times_ok = 0;
-
-			for (;;) {
-				zero_times_ok |= c != '+';
-				many_times_ok |= c != '?';
-
-				if (p == pend)
-					break;
-
-				PATFETCH(c);
-
-				if (c == '*' || (!(syntax & RE_BK_PLUS_QM) &&
-				    (c == '+' || c == '?')));
-
-				else if (syntax & RE_BK_PLUS_QM && c == '\\') {
-					if (p == pend)
-						return REG_EESCAPE;
-
-					PATFETCH(c1);
-					if (!(c1 == '+' || c1 == '?')) {
-						PATUNFETCH;
-						PATUNFETCH;
-						break;
-					}
-
-					c = c1;
-				} else {
-					PATUNFETCH;
-					break;
-				}
-			}
-
-			if (!laststart)
-				break;
-
-			if (many_times_ok) {
-				assert(p - 1 > pattern);
-
-				/* Allocate the space for the jump.  */
-				GET_BUFFER_SPACE(3);
-
-				if (TRANSLATE(*(p - 2)) == TRANSLATE('.') &&
-				    zero_times_ok && p < pend &&
-				    TRANSLATE(*p) == TRANSLATE('\n') &&
-				    !(syntax & RE_DOT_NEWLINE)) {
-					/* We have .*\n.  */
-					STORE_JUMP(jump, b, laststart);
-					keep_string_p = true;
-				} else
-					STORE_JUMP(maybe_pop_jump, b,
-						   laststart - 3);
-
-					b += 3;
-				}
-
-				GET_BUFFER_SPACE(3);
-				INSERT_JUMP(keep_string_p ?
-					    on_failure_keep_string_jump :
-					    on_failure_jump, laststart,
-					    b + 3);
-				pending_exact = 0;
-				b += 3;
-
-				if (!zero_times_ok) {
-					GET_BUFFER_SPACE(3);
-					INSERT_JUMP(dummy_failure_jump,
-						    laststart,
-						    laststart + 6);
-					b += 3;
-				}
-			}
-			break;
-
-
-		case '.':
-		laststart = b;
-		BUF_PUSH(anychar);
-		break;
-
-		case '[':
-		{
-			boolean had_char_class = false;
-
-			if (p == pend)
-				return REG_EBRACK;
-
-			GET_BUFFER_SPACE(34);
-
-			laststart = b;
-
-			/* We test `*p == '^' twice, instead of using an if
-			   statement, so we only need one BUF_PUSH.  */
-			BUF_PUSH(*p == '^' ? charset_not : charset);
-			if (*p == '^')
-				p++;
-
-			p1 = p;
-
-			/* Push the number of bytes in the bitmap.  */
-			BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
-
-			/* Clear the whole map.  */
-			bzero(b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
-			if ((re_opcode_t) b[-2] == charset_not
-			    && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
-				SET_LIST_BIT('\n');
-
-			/* Read in characters and ranges, setting map bits.  */
-			for (;;) {
-				if (p == pend)
-					return REG_EBRACK;
-
-				PATFETCH(c);
-
-				if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) &&
-				    c == '\\') {
-					if (p == pend)
-						return REG_EESCAPE;
-
-					PATFETCH(c1);
-					SET_LIST_BIT(c1);
-					continue;
-				}
-
-				if (c == ']' && p != p1 + 1)
-					break;
-
-				if (had_char_class && c == '-' && *p != ']')
-					return REG_ERANGE;
-
-				if (c == '-' && !(p - 2 >= pattern &&
-				    p[-2] == '[') && !(p - 3 >= pattern &&
-				    p[-3] == '[' && p[-2] == '^') &&
-				    *p != ']') {
-					reg_errcode_t ret =
-					    compile_range(&p, pend, translate,
-							  syntax, b);
-					if (ret != REG_NOERROR)
-						return ret;
-				}
-
-				else if (p[0] == '-' && p[1] != ']') {
-					reg_errcode_t ret;
-
-					/* Move past the `-'.  */
-					PATFETCH(c1);
-
-					ret = compile_range(&p, pend, translate,
-							    syntax, b);
-					if (ret != REG_NOERROR)
-						return ret;
-				}
-
-				else if (syntax & RE_CHAR_CLASSES &&
-					 c == '[' && *p == ':') {
-					char str[CHAR_CLASS_MAX_LENGTH + 1];
-
-					PATFETCH(c);
-					c1 = 0;
-
-					/* If pattern is `[[:'.  */
-					if (p == pend)
-						return REG_EBRACK;
-
-					for (;;) {
-						PATFETCH(c);
-						if (c == ':' || c == ']' ||
-						    p == pend || c1 ==
-						    CHAR_CLASS_MAX_LENGTH)
-							break;
-						str[c1++] = c;
-					}
-					str[c1] = '\0';
-
-					if (c == ':' && *p == ']') {
-						int ch;
-						boolean is_alnum =
-						    STREQ(str, "alnum");
-						boolean is_alpha =
-						    STREQ(str, "alpha");
-						boolean is_blank =
-						    STREQ(str, "blank");
-						boolean is_cntrl =
-						    STREQ(str, "cntrl");
-						boolean is_digit =
-						    STREQ(str, "digit");
-						boolean is_graph =
-						    STREQ(str, "graph");
-						boolean is_lower =
-						    STREQ(str, "lower");
-						boolean is_print =
-						    STREQ(str, "print");
-						boolean is_punct =
-						    STREQ(str, "punct");
-						boolean is_space =
-						    STREQ(str, "space");
-						boolean is_upper =
-						    STREQ(str, "upper");
-						boolean is_xdigit =
-						    STREQ(str, "xdigit");
-
-						if (!IS_CHAR_CLASS(str))
-							return REG_ECTYPE;
-
-						PATFETCH(c);
-
-						if (p == pend)
-							return REG_EBRACK;
-
-						for (ch = 0; ch < 1 <<
-						     BYTEWIDTH; ch++) {
-							if ((is_alnum &&
-							     ISALNUM(ch)) ||
-							    (is_alpha &&
-							     ISALPHA(ch)) ||
-							    (is_blank &&
-							     ISBLANK(ch)) ||
-							    (is_cntrl &&
-							     ISCNTRL(ch)) ||
-							    (is_digit &&
-							     ISDIGIT(ch)) ||
-							    (is_graph &&
-							     ISGRAPH(ch)) ||
-							    (is_lower &&
-							     ISLOWER(ch)) ||
-							    (is_print &&
-							     ISPRINT(ch)) ||
-							    (is_punct &&
-							     ISPUNCT(ch)) ||
-							    (is_space &&
-							     ISSPACE(ch)) ||
-							    (is_upper &&
-							     ISUPPER(ch)) ||
-							    (is_xdigit &&
-							     ISXDIGIT(ch)))
-								SET_LIST_BIT(ch);
-						}
-						had_char_class =
-						    true;
-					} else {
-						c1++;
-						while (c1--)
-							PATUNFETCH;
-						SET_LIST_BIT('[');
-						SET_LIST_BIT(':');
-						had_char_class = false;
-					}
-				} else {
-					had_char_class = false;
-					SET_LIST_BIT(c);
-				}
-			}
-
-			while ((int) b[-1] > 0
-			       && b[b[-1] - 1] == 0)
-				b[-1]--;
-			b += b[-1];
-		}
-		break;
-
-		case '(':
-		if (syntax & RE_NO_BK_PARENS)
-			goto handle_open;
-		else
-			goto normal_char;
-
-
-		case ')':
-		if (syntax & RE_NO_BK_PARENS)
-			goto handle_close;
-		else
-			goto normal_char;
-
-
-		case '\n':
-		if (syntax & RE_NEWLINE_ALT)
-			goto handle_alt;
-		else
-			goto normal_char;
-
-
-		case '|':
-		if (syntax & RE_NO_BK_VBAR)
-			goto handle_alt;
-		else
-			goto normal_char;
-
-
-		case '{':
-		if (syntax & RE_INTERVALS
-		    && syntax & RE_NO_BK_BRACES)
-			goto handle_interval;
-		else
-			goto normal_char;
-
-
-		case '\\':
-		if (p == pend)
-			return REG_EESCAPE;
-
-		PATFETCH_RAW(c);
-
-		switch (c) {
-			case '(':
-			if (syntax & RE_NO_BK_PARENS)
-				goto normal_backslash;
-
-		      handle_open:
-			bufp->re_nsub++;
-			regnum++;
-
-			if (COMPILE_STACK_FULL) {
-				RETALLOC(compile_stack.stack,
-					 compile_stack.size << 1,
-					 compile_stack_elt_t);
-				if (compile_stack.stack == NULL)
-					return REG_ESPACE;
-
-				compile_stack.size <<= 1;
-			}
-
-			COMPILE_STACK_TOP.begalt_offset =
-			    begalt - bufp->buffer;
-			COMPILE_STACK_TOP.fixup_alt_jump =
-			    fixup_alt_jump ? fixup_alt_jump -
-			    bufp->buffer + 1 : 0;
-			COMPILE_STACK_TOP.laststart_offset =
-			    b - bufp->buffer;
-			COMPILE_STACK_TOP.regnum = regnum;
-
-			if (regnum <= MAX_REGNUM) {
-				COMPILE_STACK_TOP.inner_group_offset =
-				    b - bufp->buffer + 2;
-				BUF_PUSH_3(start_memory, regnum, 0);
-			}
-
-			compile_stack.avail++;
-
-			fixup_alt_jump = 0;
-			laststart = 0;
-			begalt = b;
-			pending_exact = 0;
-			break;
-
-			case ')':
-			if (syntax & RE_NO_BK_PARENS)
-				goto normal_backslash;
-
-			if (COMPILE_STACK_EMPTY) {
-				if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-					goto normal_backslash;
-				else
-					return REG_ERPAREN;
-			}
-
-		      handle_close:
-			if (fixup_alt_jump) {
-				BUF_PUSH(push_dummy_failure);
-				STORE_JUMP(jump_past_alt,
-					   fixup_alt_jump, b - 1);
-			}
-
-			if (COMPILE_STACK_EMPTY) {
-				if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-					goto normal_char;
-				else
-					return REG_ERPAREN;
-			}
-
-			assert(compile_stack.avail != 0);
-			{
-				regnum_t this_group_regnum;
-
-				compile_stack.avail--;
-				begalt = bufp->buffer +
-					    COMPILE_STACK_TOP.begalt_offset;
-				fixup_alt_jump =
-					    COMPILE_STACK_TOP.fixup_alt_jump ?
-					    bufp->buffer + COMPILE_STACK_TOP.
-					    fixup_alt_jump - 1 : 0;
-				laststart = bufp->buffer +
-					    COMPILE_STACK_TOP.laststart_offset;
-				this_group_regnum = COMPILE_STACK_TOP.regnum;
-				pending_exact = 0;
-
-				if (this_group_regnum <= MAX_REGNUM) {
-					unsigned char
-					*inner_group_loc = bufp->buffer +
-						COMPILE_STACK_TOP.
-						inner_group_offset;
-
-					*inner_group_loc = regnum -
-						this_group_regnum;
-					BUF_PUSH_3(stop_memory,
-						   this_group_regnum,
-						   regnum - this_group_regnum);
-				}
-			}
-			break;
-
-
-			case '|':	/* `\|'.  */
-			if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
-				goto normal_backslash;
-		      handle_alt:
-			if (syntax & RE_LIMITED_OPS)
-				goto normal_char;
-
-			GET_BUFFER_SPACE(3);
-			INSERT_JUMP(on_failure_jump, begalt, b + 6);
-			pending_exact = 0;
-			b += 3;
-
-			if (fixup_alt_jump)
-				STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
-
-			fixup_alt_jump = b;
-			GET_BUFFER_SPACE(3);
-			b += 3;
-
-			laststart = 0;
-			begalt = b;
-			break;
-
-
-			case '{':
-			/* If \{ is a literal.  */
-			if (!(syntax & RE_INTERVALS) || ((syntax & RE_INTERVALS)
-			    && (syntax & RE_NO_BK_BRACES))
-			    || (p - 2 == pattern && p == pend))
-				goto normal_backslash;
-
-		      handle_interval:
-			{
-				int lower_bound = -1, upper_bound = -1;
-				beg_interval = p - 1;
-
-				if (p == pend) {
-					if (syntax & RE_NO_BK_BRACES)
-						goto unfetch_interval;
-					else
-						return REG_EBRACE;
-				}
-
-				GET_UNSIGNED_NUMBER(lower_bound);
-
-				if (c == ',') {
-					GET_UNSIGNED_NUMBER(upper_bound);
-					if (upper_bound < 0)
-						upper_bound = RE_DUP_MAX;
-				} else
-					upper_bound = lower_bound;
-
-				if (lower_bound < 0 || upper_bound > RE_DUP_MAX
-				    || lower_bound > upper_bound) {
-					if (syntax & RE_NO_BK_BRACES)
-						goto unfetch_interval;
-					else
-						return REG_BADBR;
-				}
-
-				if (!(syntax & RE_NO_BK_BRACES)) {
-					if (c != '\\')
-						return REG_EBRACE;
-
-					PATFETCH(c);
-				}
-
-				if (c != '}') {
-					if (syntax & RE_NO_BK_BRACES)
-						goto unfetch_interval;
-					else
-						return REG_BADBR;
-				}
-
-				if (!laststart) {
-					if (syntax & RE_CONTEXT_INVALID_OPS)
-						return REG_BADRPT;
-					else if (syntax & RE_CONTEXT_INDEP_OPS)
-						laststart = b;
-					else
-						goto unfetch_interval;
-				}
-
-				if (upper_bound == 0) {
-					GET_BUFFER_SPACE(3);
-					INSERT_JUMP(jump, laststart, b + 3);
-					b += 3;
-				}
-
-				else {
-					unsigned nbytes =
-					    10 + (upper_bound > 1) * 10;
-
-					GET_BUFFER_SPACE(nbytes);
-
-					INSERT_JUMP2(succeed_n, laststart,
-						     b + 5 + (upper_bound >
-						      1) * 5, lower_bound);
-					b += 5;
-
-					insert_op2(set_number_at, laststart, 5,
-						   lower_bound, b);
-					b += 5;
-
-					if (upper_bound > 1) {
-						STORE_JUMP2(jump_n, b,
-							    laststart + 5,
-							    upper_bound - 1);
-						b += 5;
-
-						insert_op2(set_number_at,
-							   laststart,
-							   b - laststart,
-							   upper_bound - 1, b);
-						b += 5;
-					}
-				}
-				pending_exact = 0;
-				beg_interval = NULL;
-			}
-			break;
-
-		      unfetch_interval:
-			assert(beg_interval);
-			p = beg_interval;
-			beg_interval = NULL;
-
-			/* normal_char and normal_backslash need `c'.  */
-			PATFETCH(c);
-
-			if (!(syntax & RE_NO_BK_BRACES)) {
-				if (p > pattern && p[-1] == '\\')
-					goto normal_backslash;
-			}
-			goto normal_char;
-
-			case 'w':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				laststart = b;
-				BUF_PUSH(wordchar);
-				break;
-
-
-			case 'W':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				laststart = b;
-				BUF_PUSH(notwordchar);
-				break;
-
-
-			case '<':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordbeg);
-				break;
-
-			case '>':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordend);
-				break;
-
-			case 'b':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(wordbound);
-				break;
-
-			case 'B':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(notwordbound);
-				break;
-
-			case '`':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(begbuf);
-				break;
-
-			case '\'':
-				if (re_syntax_options & RE_NO_GNU_OPS)
-					goto normal_char;
-				BUF_PUSH(endbuf);
-				break;
-
-			case '1':
-			case '2':
-			case '3':
-			case '4':
-			case '5':
-			case '6':
-			case '7':
-			case '8':
-			case '9':
-				if (syntax & RE_NO_BK_REFS)
-					goto normal_char;
-
-				c1 = c - '0';
-
-				if (c1 > regnum)
-					return REG_ESUBREG;
-
-				/* Can't back reference to a subexpression if inside of it.  */
-				if (group_in_compile_stack
-				    (compile_stack, (regnum_t) c1))
-					goto normal_char;
-
-				laststart = b;
-				BUF_PUSH_2(duplicate, c1);
-				break;
-
-
-			case '+':
-			case '?':
-				if (syntax & RE_BK_PLUS_QM)
-					goto handle_plus;
-				else
-					goto normal_backslash;
-
-			default:
-			      normal_backslash:
-				/* You might think it would be useful for \ to mean
-				   not to translate; but if we don't translate it
-				   it will never match anything.  */
-				c = TRANSLATE(c);
-				goto normal_char;
-			}
-			break;
-
-
-		default:
-			/* Expects the character in `c'.  */
-		      normal_char:
-			/* If no exactn currently being built.  */
-			if (!pending_exact
-			    /* If last exactn not at current position.  */
-			    || pending_exact + *pending_exact + 1 != b
-			    /* We have only one byte following the exactn for the count.  */
-			    || *pending_exact == (1 << BYTEWIDTH) - 1
-			    /* If followed by a repetition operator.  */
-			    || *p == '*' || *p == '^'
-			    || ((syntax & RE_BK_PLUS_QM)
-				? *p == '\\' && (p[1] == '+'
-						 || p[1] == '?')
-				: (*p == '+' || *p == '?'))
-			    || ((syntax & RE_INTERVALS)
-				&& ((syntax & RE_NO_BK_BRACES)
-				    ? *p == '{'
-				    : (p[0] == '\\' && p[1] == '{')))) {
-				/* Start building a new exactn.  */
-
-				laststart = b;
-
-				BUF_PUSH_2(exactn, 0);
-				pending_exact = b - 1;
-			}
-
-			BUF_PUSH(c);
-			(*pending_exact)++;
-			break;
-		}		/* switch (c) */
-	}			/* while p != pend */
-
-
-	/* Through the pattern now.  */
-
-	if (fixup_alt_jump)
-		STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
-
-	if (!COMPILE_STACK_EMPTY)
-		return REG_EPAREN;
-
-	free(compile_stack.stack);
-
-	/* We have succeeded; set the length of the buffer.  */
-	bufp->used = b - bufp->buffer;
-
-	return REG_NOERROR;
-}				/* regex_compile */
-
-/* Subroutines for `regex_compile'.  */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG.  */
-
-static void store_op1(op, loc, arg)
-re_opcode_t op;
-unsigned char *loc;
-int arg;
-{
-	*loc = (unsigned char) op;
-	STORE_NUMBER(loc + 1, arg);
-}
-
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void store_op2(op, loc, arg1, arg2)
-re_opcode_t op;
-unsigned char *loc;
-int arg1, arg2;
-{
-	*loc = (unsigned char) op;
-	STORE_NUMBER(loc + 1, arg1);
-	STORE_NUMBER(loc + 3, arg2);
-}
-
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
-   for OP followed by two-byte integer parameter ARG.  */
-
-static void insert_op1(op, loc, arg, end)
-re_opcode_t op;
-unsigned char *loc;
-int arg;
-unsigned char *end;
-{
-	register unsigned char *pfrom = end;
-	register unsigned char *pto = end + 3;
-
-	while (pfrom != loc)
-		*--pto = *--pfrom;
-
-	store_op1(op, loc, arg);
-}
-
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void insert_op2(op, loc, arg1, arg2, end)
-re_opcode_t op;
-unsigned char *loc;
-int arg1, arg2;
-unsigned char *end;
-{
-	register unsigned char *pfrom = end;
-	register unsigned char *pto = end + 5;
-
-	while (pfrom != loc)
-		*--pto = *--pfrom;
-
-	store_op2(op, loc, arg1, arg2);
-}
-
-
-/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
-   after an alternative or a begin-subexpression.  We assume there is at
-   least one character before the ^.  */
-
-static boolean at_begline_loc_p(pattern, p, syntax)
-const char *pattern, *p;
-reg_syntax_t syntax;
-{
-	const char *prev = p - 2;
-	boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
-
-	return
-	    /* After a subexpression?  */
-	    (*prev == '('
-	     && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
-	    /* After an alternative?  */
-	    || (*prev == '|'
-		&& (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
-}
-
-
-/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
-   at least one character after the $, i.e., `P < PEND'.  */
-
-static boolean at_endline_loc_p(p, pend, syntax)
-const char *p, *pend;
-reg_syntax_t syntax;
-{
-	const char *next = p;
-	boolean next_backslash = *next == '\\';
-	const char *next_next = p + 1 < pend ? p + 1 : NULL;
-
-	return
-	    /* Before a subexpression?  */
-	    (syntax & RE_NO_BK_PARENS ? *next == ')'
-	     : next_backslash && next_next && *next_next == ')')
-	    /* Before an alternative?  */
-	    || (syntax & RE_NO_BK_VBAR ? *next == '|'
-		: next_backslash && next_next && *next_next == '|');
-}
-
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
-   false if it's not.  */
-
-static boolean group_in_compile_stack(compile_stack, regnum)
-compile_stack_type compile_stack;
-regnum_t regnum;
-{
-	int this_element;
-
-	for (this_element = compile_stack.avail - 1;
-	     this_element >= 0; this_element--)
-		if (compile_stack.stack[this_element].regnum == regnum)
-			return true;
-
-	return false;
-}
-
-
-/* Read the ending character of a range (in a bracket expression) from the
-   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
-   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
-   Then we set the translation of all bits between the starting and
-   ending characters (inclusive) in the compiled pattern B.
-
-   Return an error code.
-
-   We use these short variable names so we can use the same macros as
-   `regex_compile' itself.  */
-
-static reg_errcode_t compile_range(p_ptr, pend, translate, syntax, b)
-const char **p_ptr, *pend;
-char *translate;
-reg_syntax_t syntax;
-unsigned char *b;
-{
-	unsigned this_char;
-
-	const char *p = *p_ptr;
-	int range_start, range_end;
-
-	if (p == pend)
-		return REG_ERANGE;
-
-	/* Even though the pattern is a signed `char *', we need to fetch
-	   with unsigned char *'s; if the high bit of the pattern character
-	   is set, the range endpoints will be negative if we fetch using a
-	   signed char *.
-
-	   We also want to fetch the endpoints without translating them; the
-	   appropriate translation is done in the bit-setting loop below.  */
-	range_start = ((unsigned char *) p)[-2];
-	range_end = ((unsigned char *) p)[0];
-
-	/* Have to increment the pointer into the pattern string, so the
-	   caller isn't still at the ending character.  */
-	(*p_ptr)++;
-
-	/* If the start is after the end, the range is empty.  */
-	if (range_start > range_end)
-		return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE :
-		    REG_NOERROR;
-
-	/* Here we see why `this_char' has to be larger than an `unsigned
-	   char' -- the range is inclusive, so if `range_end' == 0xff
-	   (assuming 8-bit characters), we would otherwise go into an infinite
-	   loop, since all characters <= 0xff.  */
-	for (this_char = range_start; this_char <= range_end; this_char++) {
-		SET_LIST_BIT(TRANSLATE(this_char));
-	}
-	return REG_NOERROR;
-}
-
-/* Failure stack declarations and macros; both re_compile_fastmap and
-   re_match_2 use a failure stack.  These have to be macros because of
-   REGEX_ALLOCATE.  */
-
-
-/* Number of failure points for which to initially allocate space
-   when matching.  If this number is exceeded, we allocate more
-   space, so it is not a hard limit.  */
-#define INIT_FAILURE_ALLOC 5
-
-/* Roughly the maximum number of failure points on the stack.  Would be
-   exactly that if always used MAX_FAILURE_SPACE each time we failed.
-   This is a variable only so users of regex can assign to it; we never
-   change it ourselves.  */
-int re_max_failures = 2000;
-
-typedef const unsigned char *fail_stack_elt_t;
-
-typedef struct {
-	fail_stack_elt_t *stack;
-	unsigned size;
-	unsigned avail;		/* Offset of next open position.  */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
-#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
-#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
-#define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
-
-
-/* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
-
-#define INIT_FAIL_STACK()						\
-  do {									\
-    fail_stack.stack = (fail_stack_elt_t *)				\
-      REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
-									\
-    if (fail_stack.stack == NULL)					\
-      return -2;							\
-									\
-    fail_stack.size = INIT_FAILURE_ALLOC;				\
-    fail_stack.avail = 0;						\
-  } while (0)
-
-
-/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
-
-   Return 1 if succeeds, and 0 if either ran out of memory
-   allocating space for it or it was already too large.
-
-   REGEX_REALLOCATE requires `destination' be declared.   */
-
-#define DOUBLE_FAIL_STACK(fail_stack)					\
-  ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
-   ? 0									\
-   : ((fail_stack).stack = (fail_stack_elt_t *)				\
-	REGEX_REALLOCATE ((fail_stack).stack,				\
-	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
-	  ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
-									\
-      (fail_stack).stack == NULL					\
-      ? 0								\
-      : ((fail_stack).size <<= 1,					\
-	 1)))
-
-
-/* Push PATTERN_OP on FAIL_STACK.
-
-   Return 1 if was able to do so and 0 if ran out of memory allocating
-   space to do so.  */
-#define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
-  ((FAIL_STACK_FULL ()							\
-    && !DOUBLE_FAIL_STACK (fail_stack))					\
-    ? 0									\
-    : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
-       1))
-
-/* This pushes an item onto the failure stack.  Must be a four-byte
-   value.  Assumes the variable `fail_stack'.  Probably should only
-   be called from within `PUSH_FAILURE_POINT'.  */
-#define PUSH_FAILURE_ITEM(item)						\
-  fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
-
-/* The complement operation.  Assumes `fail_stack' is nonempty.  */
-#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
-
-/* Used to omit pushing failure point id's when we're not debugging.  */
-#define DEBUG_PUSH(item)
-#define DEBUG_POP(item_addr)
-
-
-/* Push the information about the state we will need
-   if we ever fail back to it.
-
-   Requires variables fail_stack, regstart, regend, reg_info, and
-   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
-   declared.
-
-   Does `return FAILURE_CODE' if runs out of memory.  */
-
-#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
-  do {									\
-    char *destination;							\
-    /* Must be int, so when we don't save any registers, the arithmetic	\
-       of 0 + -1 isn't done as unsigned.  */				\
-    /* Can't be int, since there is not a shred of a guarantee that int \
-       is wide enough to hold a value of something to which pointer can \
-       be assigned */							\
-    s_reg_t this_reg;							\
-									\
-    DEBUG_STATEMENT (failure_id++);					\
-    DEBUG_STATEMENT (nfailure_points_pushed++);				\
-    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
-    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
-    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
-									\
-    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
-    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
-									\
-    /* Ensure we have enough space allocated for what we will push.  */	\
-    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
-      {									\
-	if (!DOUBLE_FAIL_STACK (fail_stack))			\
-	  return failure_code;						\
-									\
-	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
-		       (fail_stack).size);				\
-	DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
-      }
-
-#define PUSH_FAILURE_POINT2(pattern_place, string_place, failure_code)	\
-    /* Push the info, starting with the registers.  */			\
-    DEBUG_PRINT1 ("\n");						\
-									\
-    PUSH_FAILURE_POINT_LOOP ();						\
-									\
-    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
-    PUSH_FAILURE_ITEM (lowest_active_reg);				\
-									\
-    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
-    PUSH_FAILURE_ITEM (highest_active_reg);				\
-									\
-    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
-    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
-    PUSH_FAILURE_ITEM (pattern_place);					\
-									\
-    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
-    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
-				 size2);				\
-    DEBUG_PRINT1 ("'\n");						\
-    PUSH_FAILURE_ITEM (string_place);					\
-									\
-    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
-    DEBUG_PUSH (failure_id);						\
-  } while (0)
-
-/*  Pulled out of PUSH_FAILURE_POINT() to shorten the definition
-    of that macro.  (for VAX C) */
-#define PUSH_FAILURE_POINT_LOOP()					\
-    for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
-	 this_reg++)							\
-      {									\
-	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
-	DEBUG_STATEMENT (num_regs_pushed++);				\
-									\
-	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
-	PUSH_FAILURE_ITEM (regstart[this_reg]);				\
-									\
-	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
-	PUSH_FAILURE_ITEM (regend[this_reg]);				\
-									\
-	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
-	DEBUG_PRINT2 (" match_null=%d",					\
-		      REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
-	DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
-	DEBUG_PRINT2 (" matched_something=%d",				\
-		      MATCHED_SOMETHING (reg_info[this_reg]));		\
-	DEBUG_PRINT2 (" ever_matched=%d",				\
-		      EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
-	DEBUG_PRINT1 ("\n");						\
-	PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
-      }
-
-/* This is the number of items that are pushed and popped on the stack
-   for each register.  */
-#define NUM_REG_ITEMS  3
-
-/* Individual items aside from the registers.  */
-#define NUM_NONREG_ITEMS 4
-
-/* We push at most this many items on the stack.  */
-#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
-
-/* We actually push this many items.  */
-#define NUM_FAILURE_ITEMS						\
-  ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS		\
-    + NUM_NONREG_ITEMS)
-
-/* How many items can still be added to the stack without overflowing it.  */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-
-/* Pops what PUSH_FAIL_STACK pushes.
-
-   We restore into the parameters, all of which should be lvalues:
-     STR -- the saved data position.
-     PAT -- the saved pattern position.
-     LOW_REG, HIGH_REG -- the highest and lowest active registers.
-     REGSTART, REGEND -- arrays of string positions.
-     REG_INFO -- array of information about each subexpression.
-
-   Also assumes the variables `fail_stack' and (if debugging), `bufp',
-   `pend', `string1', `size1', `string2', and `size2'.  */
-
-#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
-{									\
-  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
-  s_reg_t this_reg;							\
-  const unsigned char *string_temp;					\
-									\
-  assert (!FAIL_STACK_EMPTY ());					\
-									\
-  /* Remove failure points and point to how many regs pushed.  */	\
-  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
-  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
-  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
-									\
-  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
-									\
-  DEBUG_POP (&failure_id);						\
-  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
-									\
-  /* If the saved string location is NULL, it came from an		\
-     on_failure_keep_string_jump opcode, and we want to throw away the	\
-     saved NULL, thus retaining our current position in the string.  */	\
-  string_temp = POP_FAILURE_ITEM ();					\
-  if (string_temp != NULL)						\
-    str = (const char *) string_temp;					\
-									\
-  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
-  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
-  DEBUG_PRINT1 ("'\n");							\
-									\
-  pat = (unsigned char *) POP_FAILURE_ITEM ();				\
-  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
-  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
-									\
-  POP_FAILURE_POINT2 (low_reg, high_reg, regstart, regend, reg_info);
-
-/*  Pulled out of POP_FAILURE_POINT() to shorten the definition
-    of that macro.  (for MSC 5.1) */
-#define POP_FAILURE_POINT2(low_reg, high_reg, regstart, regend, reg_info) \
-									\
-  /* Restore register info.  */						\
-  high_reg = (active_reg_t) POP_FAILURE_ITEM ();			\
-  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
-									\
-  low_reg = (active_reg_t) POP_FAILURE_ITEM ();				\
-  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
-									\
-  for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
-    {									\
-      DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
-									\
-      reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
-      DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
-									\
-      regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
-      DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
-									\
-      regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
-      DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
-    }									\
-									\
-  DEBUG_STATEMENT (nfailure_points_popped++);				\
-}				/* POP_FAILURE_POINT */
-
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
-   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
-   characters can start a string that matches the pattern.  This fastmap
-   is used by re_search to skip quickly over impossible starting points.
-
-   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
-   area as BUFP->fastmap.
-
-   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
-   the pattern buffer.
-
-   Returns 0 if we succeed, -2 if an internal error.   */
-
-int re_compile_fastmap(bufp)
-struct re_pattern_buffer *bufp;
-{
-	int j, k;
-	fail_stack_type fail_stack;
-	char *destination;
-	/* We don't push any register information onto the failure stack.  */
-	unsigned num_regs = 0;
-
-	register char *fastmap = bufp->fastmap;
-	unsigned char *pattern = bufp->buffer;
-	const unsigned char *p = pattern;
-	register unsigned char *pend = pattern + bufp->used;
-
-	/* Assume that each path through the pattern can be null until
-	   proven otherwise.  We set this false at the bottom of switch
-	   statement, to which we get only if a particular path doesn't
-	   match the empty string.  */
-	boolean path_can_be_null = true;
-
-	/* We aren't doing a `succeed_n' to begin with.  */
-	boolean succeed_n_p = false;
-
-	assert(fastmap != NULL && p != NULL);
-
-	INIT_FAIL_STACK();
-	bzero(fastmap, 1 << BYTEWIDTH);	/* Assume nothing's valid.  */
-	bufp->fastmap_accurate = 1;	/* It will be when we're done.  */
-	bufp->can_be_null = 0;
-
-	while (p != pend || !FAIL_STACK_EMPTY()) {
-		if (p == pend) {
-			bufp->can_be_null |= path_can_be_null;
-
-			/* Reset for next path.  */
-			path_can_be_null = true;
-
-			p = fail_stack.stack[--fail_stack.avail];
-		}
-
-		/* We should never be about to go beyond the end of the pattern.  */
-		assert(p < pend);
-
-		switch ((re_opcode_t) * p++) {
-
-			/* I guess the idea here is to simply not bother with a fastmap
-			   if a backreference is used, since it's too hard to figure out
-			   the fastmap for the corresponding group.  Setting
-			   `can_be_null' stops `re_search_2' from using the fastmap, so
-			   that is all we do.  */
-		case duplicate:
-			bufp->can_be_null = 1;
-			return 0;
-
-
-			/* Following are the cases which match a character.  These end
-			   with `break'.  */
-
-		case exactn:
-			fastmap[p[1]] = 1;
-			break;
-
-
-		case charset:
-			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-				if (p[j / BYTEWIDTH] &
-				    (1 << (j % BYTEWIDTH)))
-					fastmap[j] = 1;
-			break;
-
-
-		case charset_not:
-			/* Chars beyond end of map must be allowed.  */
-			for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
-				fastmap[j] = 1;
-
-			for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-				if (!
-				    (p[j / BYTEWIDTH] &
-				     (1 << (j % BYTEWIDTH))))
-					fastmap[j] = 1;
-			break;
-
-
-		case wordchar:
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) == Sword)
-					fastmap[j] = 1;
-			break;
-
-
-		case notwordchar:
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				if (SYNTAX(j) != Sword)
-					fastmap[j] = 1;
-			break;
-
-
-		case anychar:
-			/* `.' matches anything ...  */
-			for (j = 0; j < (1 << BYTEWIDTH); j++)
-				fastmap[j] = 1;
-
-			/* ... except perhaps newline.  */
-			if (!(bufp->syntax & RE_DOT_NEWLINE))
-				fastmap['\n'] = 0;
-
-			/* Return if we have already set `can_be_null'; if we have,
-			   then the fastmap is irrelevant.  Something's wrong here.  */
-			else if (bufp->can_be_null)
-				return 0;
-
-			/* Otherwise, have to check alternative paths.  */
-			break;
-
-		case no_op:
-		case begline:
-		case endline:
-		case begbuf:
-		case endbuf:
-		case wordbound:
-		case notwordbound:
-		case wordbeg:
-		case wordend:
-		case push_dummy_failure:
-			continue;
-
-
-		case jump_n:
-		case pop_failure_jump:
-		case maybe_pop_jump:
-		case jump:
-		case jump_past_alt:
-		case dummy_failure_jump:
-			EXTRACT_NUMBER_AND_INCR(j, p);
-			p += j;
-			if (j > 0)
-				continue;
-
-			/* Jump backward implies we just went through the body of a
-			   loop and matched nothing.  Opcode jumped to should be
-			   `on_failure_jump' or `succeed_n'.  Just treat it like an
-			   ordinary jump.  For a * loop, it has pushed its failure
-			   point already; if so, discard that as redundant.  */
-			if ((re_opcode_t) * p != on_failure_jump
-			    && (re_opcode_t) * p != succeed_n)
-				continue;
-
-			p++;
-			EXTRACT_NUMBER_AND_INCR(j, p);
-			p += j;
-
-			/* If what's on the stack is where we are now, pop it.  */
-			if (!FAIL_STACK_EMPTY()
-			    && fail_stack.stack[fail_stack.avail - 1] == p)
-				fail_stack.avail--;
-
-			continue;
-
-
-		case on_failure_jump:
-		case on_failure_keep_string_jump:
-		      handle_on_failure_jump:
-			EXTRACT_NUMBER_AND_INCR(j, p);
-
-			/* For some patterns, e.g., `(a?)?', `p+j' here points to the
-			   end of the pattern.  We don't want to push such a point,
-			   since when we restore it above, entering the switch will
-			   increment `p' past the end of the pattern.  We don't need
-			   to push such a point since we obviously won't find any more
-			   fastmap entries beyond `pend'.  Such a pattern can match
-			   the null string, though.  */
-			if (p + j < pend) {
-				if (!PUSH_PATTERN_OP(p + j, fail_stack))
-					return -2;
-			} else
-				bufp->can_be_null = 1;
-
-			if (succeed_n_p) {
-				EXTRACT_NUMBER_AND_INCR(k, p);	/* Skip the n.  */
-				succeed_n_p = false;
-			}
-
-			continue;
-
-
-		case succeed_n:
-			/* Get to the number of times to succeed.  */
-			p += 2;
-
-			/* Increment p past the n for when k != 0.  */
-			EXTRACT_NUMBER_AND_INCR(k, p);
-			if (k == 0) {
-				p -= 4;
-				succeed_n_p = true;	/* Spaghetti code alert.  */
-				goto handle_on_failure_jump;
-			}
-			continue;
-
-
-		case set_number_at:
-			p += 4;
-			continue;
-
-
-		case start_memory:
-		case stop_memory:
-			p += 2;
-			continue;
-
-
-		default:
-			abort();	/* We have listed all the cases.  */
-		}		/* switch *p++ */
-
-		/* Getting here means we have found the possible starting
-		   characters for one path of the pattern -- and that the empty
-		   string does not match.  We need not follow this path further.
-		   Instead, look at the next alternative (remembered on the
-		   stack), or quit if no more.  The test at the top of the loop
-		   does these things.  */
-		path_can_be_null = false;
-		p = pend;
-	}			/* while p */
-
-	/* Set `can_be_null' for the last path (also the first path, if the
-	   pattern is empty).  */
-	bufp->can_be_null |= path_can_be_null;
-	return 0;
-}				/* re_compile_fastmap */
-
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
-   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
-   this memory for recording register information.  STARTS and ENDS
-   must be allocated using the malloc library routine, and must each
-   be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
-   If NUM_REGS == 0, then subsequent matches should allocate their own
-   register data.
-
-   Unless this function is called, the first search or match using
-   PATTERN_BUFFER will allocate its own register data, without
-   freeing the old data.  */
-
-void re_set_registers(bufp, regs, num_regs, starts, ends)
-struct re_pattern_buffer *bufp;
-struct re_registers *regs;
-unsigned num_regs;
-regoff_t *starts, *ends;
-{
-	if (num_regs) {
-		bufp->regs_allocated = REGS_REALLOCATE;
-		regs->num_regs = num_regs;
-		regs->start = starts;
-		regs->end = ends;
-	} else {
-		bufp->regs_allocated = REGS_UNALLOCATED;
-		regs->num_regs = 0;
-		regs->start = regs->end = 0;
-	}
-}
-
-/* Searching routines.  */
-
-/* Like re_search_2, below, but only one string is specified, and
-   doesn't let you say where to stop matching. */
-
-int re_search(bufp, string, size, startpos, range, regs)
-struct re_pattern_buffer *bufp;
-const char *string;
-int size, startpos, range;
-struct re_registers *regs;
-{
-	return re_search_2(bufp, NULL, 0, string, size, startpos, range,
-			   regs, size);
-}
-
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
-   virtual concatenation of STRING1 and STRING2, starting first at index
-   STARTPOS, then at STARTPOS + 1, and so on.
-
-   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
-   RANGE is how far to scan while trying to match.  RANGE = 0 means try
-   only at STARTPOS; in general, the last start tried is STARTPOS +
-   RANGE.
-
-   In REGS, return the indices of the virtual concatenation of STRING1
-   and STRING2 that matched the entire BUFP->buffer and its contained
-   subexpressions.
-
-   Do not consider matching one past the index STOP in the virtual
-   concatenation of STRING1 and STRING2.
-
-   We return either the position in the strings at which the match was
-   found, -1 if no match, or -2 if error (such as failure
-   stack overflow).  */
-
-int
-re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs,
-	    stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int startpos;
-int range;
-struct re_registers *regs;
-int stop;
-{
-	int val;
-	register char *fastmap = bufp->fastmap;
-	register char *translate = bufp->translate;
-	int total_size = size1 + size2;
-	int endpos = startpos + range;
-
-	/* Check for out-of-range STARTPOS.  */
-	if (startpos < 0 || startpos > total_size)
-		return -1;
-
-	/* Fix up RANGE if it might eventually take us outside
-	   the virtual concatenation of STRING1 and STRING2.  */
-	if (endpos < -1)
-		range = -1 - startpos;
-	else if (endpos > total_size)
-		range = total_size - startpos;
-
-	/* If the search isn't to be a backwards one, don't waste time in a
-	   search for a pattern that must be anchored.  */
-	if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf
-	    && range > 0) {
-		if (startpos > 0)
-			return -1;
-		else
-			range = 1;
-	}
-
-	/* Update the fastmap now if not correct already.  */
-	if (fastmap && !bufp->fastmap_accurate)
-		if (re_compile_fastmap(bufp) == -2)
-			return -2;
-
-	/* Loop through the string, looking for a place to start matching.  */
-	for (;;) {
-		/* If a fastmap is supplied, skip quickly over characters that
-		   cannot be the start of a match.  If the pattern can match the
-		   null string, however, we don't need to skip characters; we want
-		   the first null string.  */
-		if (fastmap && startpos < total_size && !bufp->can_be_null) {
-			if (range > 0) {	/* Searching forwards.  */
-				register const char *d;
-				register int lim = 0;
-				int irange = range;
-
-				if (startpos < size1
-				    && startpos + range >= size1)
-					lim = range - (size1 - startpos);
-
-				d = (startpos >=
-				     size1 ? string2 - size1 : string1) +
-				    startpos;
-
-				/* Written out as an if-else to avoid testing `translate'
-				   inside the loop.  */
-				if (translate)
-					while (range > lim
-					       && !fastmap[(unsigned char)
-							   translate[(unsigned char) *d++]])
-						range--;
-				else
-					while (range > lim
-					       && !fastmap[(unsigned char)
-							   *d++])
-						range--;
-
-				startpos += irange - range;
-			} else {	/* Searching backwards.  */
-
-				register char c = (size1 == 0
-						   || startpos >=
-						   size1 ? string2[startpos
-								   - size1]
-						   : string1[startpos]);
-
-				if (!fastmap[(unsigned char) TRANSLATE(c)])
-					goto advance;
-			}
-		}
-
-		/* If can't match the null string, and that's all we have left, fail.  */
-		if (range >= 0 && startpos == total_size && fastmap
-		    && !bufp->can_be_null)
-			return -1;
-
-		val = re_match_2(bufp, string1, size1, string2, size2,
-				 startpos, regs, stop);
-		if (val >= 0)
-			return startpos;
-
-		if (val == -2)
-			return -2;
-
-	      advance:
-		if (!range)
-			break;
-		else if (range > 0) {
-			range--;
-			startpos++;
-		} else {
-			range++;
-			startpos--;
-		}
-	}
-	return -1;
-}				/* re_search_2 */
-
-/* Structure for per-register (a.k.a. per-group) information.
-   This must not be longer than one word, because we push this value
-   onto the failure stack.  Other register information, such as the
-   starting and ending positions (which are addresses), and the list of
-   inner groups (which is a bits list) are maintained in separate
-   variables.
-
-   We are making a (strictly speaking) nonportable assumption here: that
-   the compiler will pack our bit fields into something that fits into
-   the type of `word', i.e., is something that fits into one item on the
-   failure stack.  */
-
-/* Declarations and macros for re_match_2.  */
-
-typedef union {
-	fail_stack_elt_t word;
-	struct {
-		/* This field is one if this group can match the empty string,
-		   zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
-#define MATCH_NULL_UNSET_VALUE 3
-		unsigned match_null_string_p:2;
-		unsigned is_active:1;
-		unsigned matched_something:1;
-		unsigned ever_matched_something:1;
-	} bits;
-} register_info_type;
-
-#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
-#define IS_ACTIVE(R)  ((R).bits.is_active)
-#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
-#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
-
-static boolean group_match_null_string_p (unsigned char **p,
-					  unsigned char *end,
-					  register_info_type *
-					  reg_info);
-
-static boolean alt_match_null_string_p (unsigned char *p, unsigned char *end,
-					register_info_type * reg_info);
-
-static boolean common_op_match_null_string_p (unsigned char **p,
-					      unsigned char *end,
-					      register_info_type * reg_info);
-
-static int bcmp_translate (const char *s1, const char *s2,
-			   int len, char *translate);
-
-/* Call this when have matched a real character; it sets `matched' flags
-   for the subexpressions which we are currently inside.  Also records
-   that those subexprs have matched.  */
-#define SET_REGS_MATCHED()						\
-  do									\
-    {									\
-      active_reg_t r;							\
-      for (r = lowest_active_reg; r <= highest_active_reg; r++)		\
-        {								\
-          MATCHED_SOMETHING (reg_info[r])				\
-            = EVER_MATCHED_SOMETHING (reg_info[r])			\
-            = 1;							\
-        }								\
-    }									\
-  while (0)
-
-
-/* This converts PTR, a pointer into one of the search strings `string1'
-   and `string2' into an offset from the beginning of that string.  */
-#define POINTER_TO_OFFSET(ptr)						\
-  (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
-
-/* Registers are set to a sentinel when they haven't yet matched.  */
-#define REG_UNSET_VALUE ((char *) -1)
-#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
-
-
-/* Macros for dealing with the split strings in re_match_2.  */
-
-#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
-
-/* Call before fetching a character with *d.  This switches over to
-   string2 if necessary.  */
-#define PREFETCH()							\
-  while (d == dend)							\
-    {									\
-      /* End of string2 => fail.  */					\
-      if (dend == end_match_2)						\
-	goto fail;							\
-      /* End of string1 => advance to string2.  */			\
-      d = string2;							\
-      dend = end_match_2;						\
-    }
-
-
-/* Test if at very beginning or at very end of the virtual concatenation
-   of `string1' and `string2'.  If only one string, it's `string2'.  */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-
-
-/* Test if D points to a character which is word-constituent.  We have
-   two special cases to check for: if past the end of string1, look at
-   the first character in string2; and if before the beginning of
-   string2, look at the last character in string1.  */
-#define WORDCHAR_P(d)							\
-  (SYNTAX ((d) == end1 ? *string2					\
-	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
-   == Sword)
-
-/* Test if the character before D and the one at D differ with respect
-   to being word-constituent.  */
-#define AT_WORD_BOUNDARY(d)						\
-  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
-   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-
-
-/* Free everything we malloc.  */
-#define FREE_VARIABLES() alloca (0)
-
-/* These values must meet several constraints.  They must not be valid
-   register values; since we have a limit of 255 registers (because
-   we use only one byte in the pattern for the register number), we can
-   use numbers larger than 255.  They must differ by 1, because of
-   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
-   be larger than the value for the highest register, so we do not try
-   to actually save any registers when none are active.  */
-#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
-#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-
-/* Matching routines.  */
-
-/* re_match is like re_match_2 except it takes only a single string.  */
-
-int re_match(bufp, string, size, pos, regs)
-struct re_pattern_buffer *bufp;
-const char *string;
-int size, pos;
-struct re_registers *regs;
-{
-	return re_match_2(bufp, NULL, 0, string, size, pos, regs, size);
-}
-
-/* re_match_2 matches the compiled pattern in BUFP against the
-   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
-   and SIZE2, respectively).  We start matching at POS, and stop
-   matching at STOP.
-
-   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
-   store offsets for the substring each group matched in REGS.  See the
-   documentation for exactly how many groups we fill.
-
-   We return -1 if no match, -2 if an internal error (such as the
-   failure stack overflowing).  Otherwise, we return the length of the
-   matched substring.  */
-
-int re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int pos;
-struct re_registers *regs;
-int stop;
-{
-	/* General temporaries.  */
-	int mcnt;
-	unsigned char *p1;
-
-	/* Just past the end of the corresponding string.  */
-	const char *end1, *end2;
-
-	/* Pointers into string1 and string2, just past the last characters in
-	   each to consider matching.  */
-	const char *end_match_1, *end_match_2;
-
-	/* Where we are in the data, and the end of the current string.  */
-	const char *d, *dend;
-
-	/* Where we are in the pattern, and the end of the pattern.  */
-	unsigned char *p = bufp->buffer;
-	register unsigned char *pend = p + bufp->used;
-
-	/* We use this to map every character in the string.  */
-	char *translate = bufp->translate;
-
-	/* Failure point stack.  Each place that can handle a failure further
-	   down the line pushes a failure point on this stack.  It consists of
-	   restart, regend, and reg_info for all registers corresponding to
-	   the subexpressions we're currently inside, plus the number of such
-	   registers, and, finally, two char *'s.  The first char * is where
-	   to resume scanning the pattern; the second one is where to resume
-	   scanning the strings.  If the latter is zero, the failure point is
-	   a ``dummy''; if a failure happens and the failure point is a dummy,
-	   it gets discarded and the next next one is tried.  */
-	fail_stack_type fail_stack;
-
-	/* We fill all the registers internally, independent of what we
-	   return, for use in backreferences.  The number here includes
-	   an element for register zero.  */
-	size_t num_regs = bufp->re_nsub + 1;
-
-	/* The currently active registers.  */
-	active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-	active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-
-	/* Information on the contents of registers. These are pointers into
-	   the input strings; they record just what was matched (on this
-	   attempt) by a subexpression part of the pattern, that is, the
-	   regnum-th regstart pointer points to where in the pattern we began
-	   matching and the regnum-th regend points to right after where we
-	   stopped matching the regnum-th subexpression.  (The zeroth register
-	   keeps track of what the whole pattern matches.)  */
-	const char **regstart = 0, **regend = 0;
-
-	/* If a group that's operated upon by a repetition operator fails to
-	   match anything, then the register for its start will need to be
-	   restored because it will have been set to wherever in the string we
-	   are when we last see its open-group operator.  Similarly for a
-	   register's end.  */
-	const char **old_regstart = 0, **old_regend = 0;
-
-	/* The is_active field of reg_info helps us keep track of which (possibly
-	   nested) subexpressions we are currently in. The matched_something
-	   field of reg_info[reg_num] helps us tell whether or not we have
-	   matched any of the pattern so far this time through the reg_num-th
-	   subexpression.  These two fields get reset each time through any
-	   loop their register is in.  */
-	register_info_type *reg_info = 0;
-
-	/* The following record the register info as found in the above
-	   variables when we find a match better than any we've seen before.
-	   This happens as we backtrack through the failure points, which in
-	   turn happens only if we have not yet matched the entire string. */
-	unsigned best_regs_set = false;
-	const char **best_regstart = 0, **best_regend = 0;
-
-	/* Logically, this is `best_regend[0]'.  But we don't want to have to
-	   allocate space for that if we're not allocating space for anything
-	   else (see below).  Also, we never need info about register 0 for
-	   any of the other register vectors, and it seems rather a kludge to
-	   treat `best_regend' differently than the rest.  So we keep track of
-	   the end of the best match so far in a separate variable.  We
-	   initialize this to NULL so that when we backtrack the first time
-	   and need to test it, it's not garbage.  */
-	const char *match_end = NULL;
-
-	/* Used when we pop values we don't care about.  */
-	const char **reg_dummy = 0;
-	register_info_type *reg_info_dummy = 0;
-
-	DEBUG_PRINT1("\n\nEntering re_match_2.\n");
-
-	INIT_FAIL_STACK();
-
-	/* Do not bother to initialize all the register variables if there are
-	   no groups in the pattern, as it takes a fair amount of time.  If
-	   there are groups, we include space for register 0 (the whole
-	   pattern), even though we never use it, since it simplifies the
-	   array indexing.  We should fix this.  */
-	if (bufp->re_nsub) {
-		regstart = REGEX_TALLOC(num_regs, const char *);
-		regend = REGEX_TALLOC(num_regs, const char *);
-		old_regstart = REGEX_TALLOC(num_regs, const char *);
-		old_regend = REGEX_TALLOC(num_regs, const char *);
-		best_regstart = REGEX_TALLOC(num_regs, const char *);
-		best_regend = REGEX_TALLOC(num_regs, const char *);
-		reg_info = REGEX_TALLOC(num_regs, register_info_type);
-		reg_dummy = REGEX_TALLOC(num_regs, const char *);
-		reg_info_dummy =
-		    REGEX_TALLOC(num_regs, register_info_type);
-
-		if (!
-		    (regstart && regend && old_regstart && old_regend
-		     && reg_info && best_regstart && best_regend
-		     && reg_dummy && reg_info_dummy)) {
-			FREE_VARIABLES();
-			return -2;
-		}
-	}
-
-	/* The starting position is bogus.  */
-	if (pos < 0 || pos > size1 + size2) {
-		FREE_VARIABLES();
-		return -1;
-	}
-
-	/* Initialize subexpression text positions to -1 to mark ones that no
-	   start_memory/stop_memory has been seen for. Also initialize the
-	   register information struct.  */
-	for (mcnt = 1; mcnt < num_regs; mcnt++) {
-		regstart[mcnt] = regend[mcnt]
-		    = old_regstart[mcnt] = old_regend[mcnt] =
-		    REG_UNSET_VALUE;
-
-		REG_MATCH_NULL_STRING_P(reg_info[mcnt]) =
-		    MATCH_NULL_UNSET_VALUE;
-		IS_ACTIVE(reg_info[mcnt]) = 0;
-		MATCHED_SOMETHING(reg_info[mcnt]) = 0;
-		EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
-	}
-
-	/* We move `string1' into `string2' if the latter's empty -- but not if
-	   `string1' is null.  */
-	if (size2 == 0 && string1 != NULL) {
-		string2 = string1;
-		size2 = size1;
-		string1 = 0;
-		size1 = 0;
-	}
-	end1 = string1 + size1;
-	end2 = string2 + size2;
-
-	/* Compute where to stop matching, within the two strings.  */
-	if (stop <= size1) {
-		end_match_1 = string1 + stop;
-		end_match_2 = string2;
-	} else {
-		end_match_1 = end1;
-		end_match_2 = string2 + stop - size1;
-	}
-
-	/* `p' scans through the pattern as `d' scans through the data.
-	   `dend' is the end of the input string that `d' points within.  `d'
-	   is advanced into the following input string whenever necessary, but
-	   this happens before fetching; therefore, at the beginning of the
-	   loop, `d' can be pointing at the end of a string, but it cannot
-	   equal `string2'.  */
-	if (size1 > 0 && pos <= size1) {
-		d = string1 + pos;
-		dend = end_match_1;
-	} else {
-		d = string2 + pos - size1;
-		dend = end_match_2;
-	}
-
-	DEBUG_PRINT1("The compiled pattern is: ");
-	DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
-	DEBUG_PRINT1("The string to match is: `");
-	DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
-	DEBUG_PRINT1("'\n");
-
-	/* This loops over pattern commands.  It exits by returning from the
-	   function if the match is complete, or it drops through if the match
-	   fails at this starting point in the input data.  */
-	for (;;) {
-		DEBUG_PRINT2("\n0x%x: ", p);
-
-		if (p == pend) {	/* End of pattern means we might have succeeded.  */
-			DEBUG_PRINT1("end of pattern ... ");
-
-			/* If we haven't matched the entire string, and we want the
-			   longest match, try backtracking.  */
-			if (d != end_match_2) {
-				DEBUG_PRINT1("backtracking.\n");
-
-				if (!FAIL_STACK_EMPTY()) {	/* More failure points to try.  */
-					boolean same_str_p =
-					    (FIRST_STRING_P(match_end)
-					     == MATCHING_IN_FIRST_STRING);
-
-					/* If exceeds best match so far, save it.  */
-					if (!best_regs_set
-					    || (same_str_p
-						&& d > match_end)
-					    || (!same_str_p
-						&&
-						!MATCHING_IN_FIRST_STRING))
-					{
-						best_regs_set = true;
-						match_end = d;
-
-						DEBUG_PRINT1
-						    ("\nSAVING match as best so far.\n");
-
-						for (mcnt = 1;
-						     mcnt < num_regs;
-						     mcnt++) {
-							best_regstart[mcnt]
-							    =
-							    regstart[mcnt];
-							best_regend[mcnt] =
-							    regend[mcnt];
-						}
-					}
-					goto fail;
-				}
-
-				/* If no failure points, don't restore garbage.  */
-				else if (best_regs_set) {
-				      restore_best_regs:
-					/* Restore best match.  It may happen that `dend ==
-					   end_match_1' while the restored d is in string2.
-					   For example, the pattern `x.*y.*z' against the
-					   strings `x-' and `y-z-', if the two strings are
-					   not consecutive in memory.  */
-					DEBUG_PRINT1
-					    ("Restoring best registers.\n");
-
-					d = match_end;
-					dend = ((d >= string1 && d <= end1)
-						? end_match_1 :
-						end_match_2);
-
-					for (mcnt = 1; mcnt < num_regs;
-					     mcnt++) {
-						regstart[mcnt] =
-						    best_regstart[mcnt];
-						regend[mcnt] =
-						    best_regend[mcnt];
-					}
-				}
-			}
-			/* d != end_match_2 */
-			DEBUG_PRINT1("Accepting match.\n");
-
-			/* If caller wants register contents data back, do it.  */
-			if (regs && !bufp->no_sub) {
-				/* Have the register data arrays been allocated?  */
-				if (bufp->regs_allocated == REGS_UNALLOCATED) {	/* No.  So allocate them with malloc.  We need one
-										   extra element beyond `num_regs' for the `-1' marker
-										   GNU code uses.  */
-					regs->num_regs =
-					    MAX(RE_NREGS, num_regs + 1);
-					regs->start =
-					    TALLOC(regs->num_regs,
-						   regoff_t);
-					regs->end =
-					    TALLOC(regs->num_regs,
-						   regoff_t);
-					if (regs->start == NULL
-					    || regs->end == NULL)
-						return -2;
-					bufp->regs_allocated =
-					    REGS_REALLOCATE;
-				} else if (bufp->regs_allocated == REGS_REALLOCATE) {	/* Yes.  If we need more elements than were already
-											   allocated, reallocate them.  If we need fewer, just
-											   leave it alone.  */
-					if (regs->num_regs < num_regs + 1) {
-						regs->num_regs =
-						    num_regs + 1;
-						RETALLOC(regs->start,
-							 regs->num_regs,
-							 regoff_t);
-						RETALLOC(regs->end,
-							 regs->num_regs,
-							 regoff_t);
-						if (regs->start == NULL
-						    || regs->end == NULL)
-							return -2;
-					}
-				} else {
-					/* These braces fend off a "empty body in an else-statement"
-					   warning under GCC when assert expands to nothing.  */
-					assert(bufp->regs_allocated ==
-					       REGS_FIXED);
-				}
-
-				/* Convert the pointer data in `regstart' and `regend' to
-				   indices.  Register zero has to be set differently,
-				   since we haven't kept track of any info for it.  */
-				if (regs->num_regs > 0) {
-					regs->start[0] = pos;
-					regs->end[0] =
-					    (MATCHING_IN_FIRST_STRING ? d -
-					     string1 : d - string2 +
-					     size1);
-				}
-
-				/* Go through the first `min (num_regs, regs->num_regs)'
-				   registers, since that is all we initialized.  */
-				for (mcnt = 1;
-				     mcnt < MIN(num_regs, regs->num_regs);
-				     mcnt++) {
-					if (REG_UNSET(regstart[mcnt])
-					    || REG_UNSET(regend[mcnt]))
-						regs->start[mcnt] =
-						    regs->end[mcnt] = -1;
-					else {
-						regs->start[mcnt] =
-						    POINTER_TO_OFFSET
-						    (regstart[mcnt]);
-						regs->end[mcnt] =
-						    POINTER_TO_OFFSET
-						    (regend[mcnt]);
-					}
-				}
-
-				/* If the regs structure we return has more elements than
-				   were in the pattern, set the extra elements to -1.  If
-				   we (re)allocated the registers, this is the case,
-				   because we always allocate enough to have at least one
-				   -1 at the end.  */
-				for (mcnt = num_regs;
-				     mcnt < regs->num_regs; mcnt++)
-					regs->start[mcnt] =
-					    regs->end[mcnt] = -1;
-			}
-			/* regs && !bufp->no_sub */
-			FREE_VARIABLES();
-			DEBUG_PRINT4
-			    ("%u failure points pushed, %u popped (%u remain).\n",
-			     nfailure_points_pushed,
-			     nfailure_points_popped,
-			     nfailure_points_pushed -
-			     nfailure_points_popped);
-			DEBUG_PRINT2("%u registers pushed.\n",
-				     num_regs_pushed);
-
-			mcnt = d - pos - (MATCHING_IN_FIRST_STRING
-					  ? string1 : string2 - size1);
-
-			DEBUG_PRINT2("Returning %d from re_match_2.\n",
-				     mcnt);
-
-			return mcnt;
-		}
-
-		/* Otherwise match next pattern command.  */
-		switch ((re_opcode_t) * p++) {
-			/* Ignore these.  Used to ignore the n of succeed_n's which
-			   currently have n == 0.  */
-		case no_op:
-			DEBUG_PRINT1("EXECUTING no_op.\n");
-			break;
-
-
-			/* Match the next n pattern characters exactly.  The following
-			   byte in the pattern defines n, and the n bytes after that
-			   are the characters to match.  */
-		case exactn:
-			mcnt = *p++;
-			DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
-
-			/* This is written out as an if-else so we don't waste time
-			   testing `translate' inside the loop.  */
-			if (translate) {
-				do {
-					PREFETCH();
-					if (translate[(unsigned char) *d++]
-					    != (char) *p++)
-						goto fail;
-				}
-				while (--mcnt);
-			} else {
-				do {
-					PREFETCH();
-					if (*d++ != (char) *p++)
-						goto fail;
-				}
-				while (--mcnt);
-			}
-			SET_REGS_MATCHED();
-			break;
-
-
-			/* Match any character except possibly a newline or a null.  */
-		case anychar:
-			DEBUG_PRINT1("EXECUTING anychar.\n");
-
-			PREFETCH();
-
-			if ((!(bufp->syntax & RE_DOT_NEWLINE)
-			     && TRANSLATE(*d) == '\n')
-			    || (bufp->syntax & RE_DOT_NOT_NULL
-				&& TRANSLATE(*d) == '\000'))
-				goto fail;
-
-			SET_REGS_MATCHED();
-			DEBUG_PRINT2("  Matched `%d'.\n", *d);
-			d++;
-			break;
-
-
-		case charset:
-		case charset_not:
-			{
-				register unsigned char c;
-				boolean not =
-				    (re_opcode_t) * (p - 1) == charset_not;
-
-				DEBUG_PRINT2("EXECUTING charset%s.\n",
-					     not ? "_not" : "");
-
-				PREFETCH();
-				c = TRANSLATE(*d);	/* The character to match.  */
-
-				/* Cast to `unsigned' instead of `unsigned char' in case the
-				   bit list is a full 32 bytes long.  */
-				if (c < (unsigned) (*p * BYTEWIDTH)
-				    && p[1 +
-					 c / BYTEWIDTH] & (1 << (c %
-								 BYTEWIDTH)))
-					not = !not;
-
-				p += 1 + *p;
-
-				if (!not)
-					goto fail;
-
-				SET_REGS_MATCHED();
-				d++;
-				break;
-			}
-
-
-			/* The beginning of a group is represented by start_memory.
-			   The arguments are the register number in the next byte, and the
-			   number of groups inner to this one in the next.  The text
-			   matched within the group is recorded (in the internal
-			   registers data structure) under the register number.  */
-		case start_memory:
-			DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n",
-				     *p, p[1]);
-
-			/* Find out if this group can match the empty string.  */
-			p1 = p;	/* To send to group_match_null_string_p.  */
-
-			if (REG_MATCH_NULL_STRING_P(reg_info[*p]) ==
-			    MATCH_NULL_UNSET_VALUE)
-				REG_MATCH_NULL_STRING_P(reg_info[*p])
-				    = group_match_null_string_p(&p1, pend,
-								reg_info);
-
-			/* Save the position in the string where we were the last time
-			   we were at this open-group operator in case the group is
-			   operated upon by a repetition operator, e.g., with `(a*)*b'
-			   against `ab'; then we want to ignore where we are now in
-			   the string in case this attempt to match fails.  */
-			old_regstart[*p] =
-			    REG_MATCH_NULL_STRING_P(reg_info[*p])
-			    ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
-			    : regstart[*p];
-			DEBUG_PRINT2("  old_regstart: %d\n",
-				     POINTER_TO_OFFSET(old_regstart[*p]));
-
-			regstart[*p] = d;
-			DEBUG_PRINT2("  regstart: %d\n",
-				     POINTER_TO_OFFSET(regstart[*p]));
-
-			IS_ACTIVE(reg_info[*p]) = 1;
-			MATCHED_SOMETHING(reg_info[*p]) = 0;
-
-			/* This is the new highest active register.  */
-			highest_active_reg = *p;
-
-			/* If nothing was active before, this is the new lowest active
-			   register.  */
-			if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-				lowest_active_reg = *p;
-
-			/* Move past the register number and inner group count.  */
-			p += 2;
-			break;
-
-
-			/* The stop_memory opcode represents the end of a group.  Its
-			   arguments are the same as start_memory's: the register
-			   number, and the number of inner groups.  */
-		case stop_memory:
-			DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n",
-				     *p, p[1]);
-
-			/* We need to save the string position the last time we were at
-			   this close-group operator in case the group is operated
-			   upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
-			   against `aba'; then we want to ignore where we are now in
-			   the string in case this attempt to match fails.  */
-			old_regend[*p] =
-			    REG_MATCH_NULL_STRING_P(reg_info[*p])
-			    ? REG_UNSET(regend[*p]) ? d : regend[*p]
-			    : regend[*p];
-			DEBUG_PRINT2("      old_regend: %d\n",
-				     POINTER_TO_OFFSET(old_regend[*p]));
-
-			regend[*p] = d;
-			DEBUG_PRINT2("      regend: %d\n",
-				     POINTER_TO_OFFSET(regend[*p]));
-
-			/* This register isn't active anymore.  */
-			IS_ACTIVE(reg_info[*p]) = 0;
-
-			/* If this was the only register active, nothing is active
-			   anymore.  */
-			if (lowest_active_reg == highest_active_reg) {
-				lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-				highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-			} else {	/* We must scan for the new highest active register, since
-					   it isn't necessarily one less than now: consider
-					   (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
-					   new highest active register is 1.  */
-				unsigned char r = *p - 1;
-				while (r > 0 && !IS_ACTIVE(reg_info[r]))
-					r--;
-
-				/* If we end up at register zero, that means that we saved
-				   the registers as the result of an `on_failure_jump', not
-				   a `start_memory', and we jumped to past the innermost
-				   `stop_memory'.  For example, in ((.)*) we save
-				   registers 1 and 2 as a result of the *, but when we pop
-				   back to the second ), we are at the stop_memory 1.
-				   Thus, nothing is active.  */
-				if (r == 0) {
-					lowest_active_reg =
-					    NO_LOWEST_ACTIVE_REG;
-					highest_active_reg =
-					    NO_HIGHEST_ACTIVE_REG;
-				} else
-					highest_active_reg = r;
-			}
-
-			/* If just failed to match something this time around with a
-			   group that's operated on by a repetition operator, try to
-			   force exit from the ``loop'', and restore the register
-			   information for this group that we had before trying this
-			   last match.  */
-			if ((!MATCHED_SOMETHING(reg_info[*p])
-			     || (re_opcode_t) p[-3] == start_memory)
-			    && (p + 2) < pend) {
-				boolean is_a_jump_n = false;
-
-				p1 = p + 2;
-				mcnt = 0;
-				switch ((re_opcode_t) * p1++) {
-				case jump_n:
-					is_a_jump_n = true;
-				case pop_failure_jump:
-				case maybe_pop_jump:
-				case jump:
-				case dummy_failure_jump:
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					if (is_a_jump_n)
-						p1 += 2;
-					break;
-
-				default:
-					/* do nothing */ ;
-				}
-				p1 += mcnt;
-
-				/* If the next operation is a jump backwards in the pattern
-				   to an on_failure_jump right before the start_memory
-				   corresponding to this stop_memory, exit from the loop
-				   by forcing a failure after pushing on the stack the
-				   on_failure_jump's jump in the pattern, and d.  */
-				if (mcnt < 0
-				    && (re_opcode_t) * p1 ==
-				    on_failure_jump
-				    && (re_opcode_t) p1[3] == start_memory
-				    && p1[4] == *p) {
-					/* If this group ever matched anything, then restore
-					   what its registers were before trying this last
-					   failed match, e.g., with `(a*)*b' against `ab' for
-					   regstart[1], and, e.g., with `((a*)*(b*)*)*'
-					   against `aba' for regend[3].
-
-					   Also restore the registers for inner groups for,
-					   e.g., `((a*)(b*))*' against `aba' (register 3 would
-					   otherwise get trashed).  */
-
-					if (EVER_MATCHED_SOMETHING
-					    (reg_info[*p])) {
-						unsigned r;
-
-						EVER_MATCHED_SOMETHING
-						    (reg_info[*p]) = 0;
-
-						/* Restore this and inner groups' (if any) registers.  */
-						for (r = *p;
-						     r < *p + *(p + 1);
-						     r++) {
-							regstart[r] =
-							    old_regstart
-							    [r];
-
-							/* xx why this test?  */
-							if ((s_reg_t)
-							    old_regend[r]
-							    >=
-							    (s_reg_t)
-							    regstart[r])
-								regend[r] =
-								    old_regend
-								    [r];
-						}
-					}
-					p1++;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					PUSH_FAILURE_POINT(p1 + mcnt, d,
-							   -2);
-					PUSH_FAILURE_POINT2(p1 + mcnt, d,
-							    -2);
-
-					goto fail;
-				}
-			}
-
-			/* Move past the register number and the inner group count.  */
-			p += 2;
-			break;
-
-
-			/* \<digit> has been turned into a `duplicate' command which is
-			   followed by the numeric value of <digit> as the register number.  */
-		case duplicate:
-			{
-				register const char *d2, *dend2;
-				int regno = *p++;	/* Get which register to match against.  */
-				DEBUG_PRINT2("EXECUTING duplicate %d.\n",
-					     regno);
-
-				/* Can't back reference a group which we've never matched.  */
-				if (REG_UNSET(regstart[regno])
-				    || REG_UNSET(regend[regno]))
-					goto fail;
-
-				/* Where in input to try to start matching.  */
-				d2 = regstart[regno];
-
-				/* Where to stop matching; if both the place to start and
-				   the place to stop matching are in the same string, then
-				   set to the place to stop, otherwise, for now have to use
-				   the end of the first string.  */
-
-				dend2 = ((FIRST_STRING_P(regstart[regno])
-					  == FIRST_STRING_P(regend[regno]))
-					 ? regend[regno] : end_match_1);
-				for (;;) {
-					/* If necessary, advance to next segment in register
-					   contents.  */
-					while (d2 == dend2) {
-						if (dend2 == end_match_2)
-							break;
-						if (dend2 == regend[regno])
-							break;
-
-						/* End of string1 => advance to string2. */
-						d2 = string2;
-						dend2 = regend[regno];
-					}
-					/* At end of register contents => success */
-					if (d2 == dend2)
-						break;
-
-					/* If necessary, advance to next segment in data.  */
-					PREFETCH();
-
-					/* How many characters left in this segment to match.  */
-					mcnt = dend - d;
-
-					/* Want how many consecutive characters we can match in
-					   one shot, so, if necessary, adjust the count.  */
-					if (mcnt > dend2 - d2)
-						mcnt = dend2 - d2;
-
-					/* Compare that many; failure if mismatch, else move
-					   past them.  */
-					if (translate
-					    ? bcmp_translate(d, d2, mcnt,
-							     translate)
-					    : bcmp(d, d2, mcnt))
-						goto fail;
-					d += mcnt, d2 += mcnt;
-				}
-			}
-			break;
-
-
-			/* begline matches the empty string at the beginning of the string
-			   (unless `not_bol' is set in `bufp'), and, if
-			   `newline_anchor' is set, after newlines.  */
-		case begline:
-			DEBUG_PRINT1("EXECUTING begline.\n");
-
-			if (AT_STRINGS_BEG(d)) {
-				if (!bufp->not_bol)
-					break;
-			} else if (d[-1] == '\n' && bufp->newline_anchor) {
-				break;
-			}
-			/* In all other cases, we fail.  */
-			goto fail;
-
-
-			/* endline is the dual of begline.  */
-		case endline:
-			DEBUG_PRINT1("EXECUTING endline.\n");
-
-			if (AT_STRINGS_END(d)) {
-				if (!bufp->not_eol)
-					break;
-			}
-
-			/* We have to ``prefetch'' the next character.  */
-			else if ((d == end1 ? *string2 : *d) == '\n'
-				 && bufp->newline_anchor) {
-				break;
-			}
-			goto fail;
-
-
-			/* Match at the very beginning of the data.  */
-		case begbuf:
-			DEBUG_PRINT1("EXECUTING begbuf.\n");
-			if (AT_STRINGS_BEG(d))
-				break;
-			goto fail;
-
-
-			/* Match at the very end of the data.  */
-		case endbuf:
-			DEBUG_PRINT1("EXECUTING endbuf.\n");
-			if (AT_STRINGS_END(d))
-				break;
-			goto fail;
-
-
-			/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
-			   pushes NULL as the value for the string on the stack.  Then
-			   `pop_failure_point' will keep the current value for the
-			   string, instead of restoring it.  To see why, consider
-			   matching `foo\nbar' against `.*\n'.  The .* matches the foo;
-			   then the . fails against the \n.  But the next thing we want
-			   to do is match the \n against the \n; if we restored the
-			   string value, we would be back at the foo.
-
-			   Because this is used only in specific cases, we don't need to
-			   check all the things that `on_failure_jump' does, to make
-			   sure the right things get saved on the stack.  Hence we don't
-			   share its code.  The only reason to push anything on the
-			   stack at all is that otherwise we would have to change
-			   `anychar's code to do something besides goto fail in this
-			   case; that seems worse than this.  */
-		case on_failure_keep_string_jump:
-			DEBUG_PRINT1
-			    ("EXECUTING on_failure_keep_string_jump");
-
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-			DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
-
-			PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
-			PUSH_FAILURE_POINT2(p + mcnt, NULL, -2);
-			break;
-
-
-			/* Uses of on_failure_jump:
-
-			   Each alternative starts with an on_failure_jump that points
-			   to the beginning of the next alternative.  Each alternative
-			   except the last ends with a jump that in effect jumps past
-			   the rest of the alternatives.  (They really jump to the
-			   ending jump of the following alternative, because tensioning
-			   these jumps is a hassle.)
-
-			   Repeats start with an on_failure_jump that points past both
-			   the repetition text and either the following jump or
-			   pop_failure_jump back to this on_failure_jump.  */
-		case on_failure_jump:
-		      on_failure:
-			DEBUG_PRINT1("EXECUTING on_failure_jump");
-
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-			DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
-
-			/* If this on_failure_jump comes right before a group (i.e.,
-			   the original * applied to a group), save the information
-			   for that group and all inner ones, so that if we fail back
-			   to this point, the group's information will be correct.
-			   For example, in \(a*\)*\1, we need the preceding group,
-			   and in \(\(a*\)b*\)\2, we need the inner group.  */
-
-			/* We can't use `p' to check ahead because we push
-			   a failure point to `p + mcnt' after we do this.  */
-			p1 = p;
-
-			/* We need to skip no_op's before we look for the
-			   start_memory in case this on_failure_jump is happening as
-			   the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
-			   against aba.  */
-			while (p1 < pend && (re_opcode_t) * p1 == no_op)
-				p1++;
-
-			if (p1 < pend
-			    && (re_opcode_t) * p1 == start_memory) {
-				/* We have a new highest active register now.  This will
-				   get reset at the start_memory we are about to get to,
-				   but we will have saved all the registers relevant to
-				   this repetition op, as described above.  */
-				highest_active_reg = *(p1 + 1) + *(p1 + 2);
-				if (lowest_active_reg ==
-				    NO_LOWEST_ACTIVE_REG)
-					lowest_active_reg = *(p1 + 1);
-			}
-
-			DEBUG_PRINT1(":\n");
-			PUSH_FAILURE_POINT(p + mcnt, d, -2);
-			PUSH_FAILURE_POINT2(p + mcnt, d, -2);
-			break;
-
-
-			/* A smart repeat ends with `maybe_pop_jump'.
-			   We change it to either `pop_failure_jump' or `jump'.  */
-		case maybe_pop_jump:
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);
-			DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n",
-				     mcnt);
-			{
-				register unsigned char *p2 = p;
-
-				/* Compare the beginning of the repeat with what in the
-				   pattern follows its end. If we can establish that there
-				   is nothing that they would both match, i.e., that we
-				   would have to backtrack because of (as in, e.g., `a*a')
-				   then we can change to pop_failure_jump, because we'll
-				   never have to backtrack.
-
-				   This is not true in the case of alternatives: in
-				   `(a|ab)*' we do need to backtrack to the `ab' alternative
-				   (e.g., if the string was `ab').  But instead of trying to
-				   detect that here, the alternative has put on a dummy
-				   failure point which is what we will end up popping.  */
-
-				/* Skip over open/close-group commands.  */
-				while (p2 + 2 < pend
-				       && ((re_opcode_t) * p2 ==
-					   stop_memory
-					   || (re_opcode_t) * p2 ==
-					   start_memory))
-					p2 += 3;	/* Skip over args, too.  */
-
-				/* If we're at the end of the pattern, we can change.  */
-				if (p2 == pend) {
-					/* Consider what happens when matching ":\(.*\)"
-					   against ":/".  I don't really understand this code
-					   yet.  */
-					p[-3] =
-					    (unsigned char)
-					    pop_failure_jump;
-					DEBUG_PRINT1
-					    ("  End of pattern: change to `pop_failure_jump'.\n");
-				}
-
-				else if ((re_opcode_t) * p2 == exactn
-					 || (bufp->newline_anchor
-					     && (re_opcode_t) * p2 ==
-					     endline)) {
-					register unsigned char c =
-					    *p2 ==
-					    (unsigned char) endline ? '\n'
-					    : p2[2];
-					p1 = p + mcnt;
-
-					/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
-					   to the `maybe_finalize_jump' of this case.  Examine what
-					   follows.  */
-					if ((re_opcode_t) p1[3] == exactn
-					    && p1[5] != c) {
-						p[-3] =
-						    (unsigned char)
-						    pop_failure_jump;
-						DEBUG_PRINT3
-						    ("  %c != %c => pop_failure_jump.\n",
-						     c, p1[5]);
-					}
-
-					else if ((re_opcode_t) p1[3] ==
-						 charset
-						 || (re_opcode_t) p1[3] ==
-						 charset_not) {
-						int not =
-						    (re_opcode_t) p1[3] ==
-						    charset_not;
-
-						if (c <
-						    (unsigned char) (p1[4]
-								     *
-								     BYTEWIDTH)
-						    && p1[5 +
-							  c /
-							  BYTEWIDTH] & (1
-									<<
-									(c
-									 %
-									 BYTEWIDTH)))
-							not = !not;
-
-						/* `not' is equal to 1 if c would match, which means
-						   that we can't change to pop_failure_jump.  */
-						if (!not) {
-							p[-3] =
-							    (unsigned char)
-							    pop_failure_jump;
-							DEBUG_PRINT1
-							    ("  No match => pop_failure_jump.\n");
-						}
-					}
-				}
-			}
-			p -= 2;	/* Point at relative address again.  */
-			if ((re_opcode_t) p[-1] != pop_failure_jump) {
-				p[-1] = (unsigned char) jump;
-				DEBUG_PRINT1("  Match => jump.\n");
-				goto unconditional_jump;
-			}
-			/* Note fall through.  */
-
-
-			/* The end of a simple repeat has a pop_failure_jump back to
-			   its matching on_failure_jump, where the latter will push a
-			   failure point.  The pop_failure_jump takes off failure
-			   points put on by this pop_failure_jump's matching
-			   on_failure_jump; we got through the pattern to here from the
-			   matching on_failure_jump, so didn't fail.  */
-		case pop_failure_jump:
-			{
-				/* We need to pass separate storage for the lowest and
-				   highest registers, even though we don't care about the
-				   actual values.  Otherwise, we will restore only one
-				   register from the stack, since lowest will == highest in
-				   `pop_failure_point'.  */
-				active_reg_t dummy_low_reg, dummy_high_reg;
-				unsigned char *pdummy;
-				const char *sdummy;
-
-				DEBUG_PRINT1
-				    ("EXECUTING pop_failure_jump.\n");
-				POP_FAILURE_POINT(sdummy, pdummy,
-						  dummy_low_reg,
-						  dummy_high_reg,
-						  reg_dummy, reg_dummy,
-						  reg_info_dummy);
-			}
-			/* Note fall through.  */
-
-
-			/* Unconditionally jump (without popping any failure points).  */
-		case jump:
-		      unconditional_jump:
-			EXTRACT_NUMBER_AND_INCR(mcnt, p);	/* Get the amount to jump.  */
-			DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
-			p += mcnt;	/* Do the jump.  */
-			DEBUG_PRINT2("(to 0x%x).\n", p);
-			break;
-
-
-			/* We need this opcode so we can detect where alternatives end
-			   in `group_match_null_string_p' et al.  */
-		case jump_past_alt:
-			DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
-			goto unconditional_jump;
-
-
-			/* Normally, the on_failure_jump pushes a failure point, which
-			   then gets popped at pop_failure_jump.  We will end up at
-			   pop_failure_jump, also, and with a pattern of, say, `a+', we
-			   are skipping over the on_failure_jump, so we have to push
-			   something meaningless for pop_failure_jump to pop.  */
-		case dummy_failure_jump:
-			DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
-			/* It doesn't matter what we push for the string here.  What
-			   the code at `fail' tests is the value for the pattern.  */
-			PUSH_FAILURE_POINT(0, 0, -2);
-			PUSH_FAILURE_POINT2(0, 0, -2);
-			goto unconditional_jump;
-
-
-			/* At the end of an alternative, we need to push a dummy failure
-			   point in case we are followed by a `pop_failure_jump', because
-			   we don't want the failure point for the alternative to be
-			   popped.  For example, matching `(a|ab)*' against `aab'
-			   requires that we match the `ab' alternative.  */
-		case push_dummy_failure:
-			DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
-			/* See comments just above at `dummy_failure_jump' about the
-			   two zeroes.  */
-			PUSH_FAILURE_POINT(0, 0, -2);
-			PUSH_FAILURE_POINT2(0, 0, -2);
-			break;
-
-			/* Have to succeed matching what follows at least n times.
-			   After that, handle like `on_failure_jump'.  */
-		case succeed_n:
-			EXTRACT_NUMBER(mcnt, p + 2);
-			DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
-
-			assert(mcnt >= 0);
-			/* Originally, this is how many times we HAVE to succeed.  */
-			if (mcnt > 0) {
-				mcnt--;
-				p += 2;
-				STORE_NUMBER_AND_INCR(p, mcnt);
-				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p,
-					     mcnt);
-			} else if (mcnt == 0) {
-				DEBUG_PRINT2
-				    ("  Setting two bytes from 0x%x to no_op.\n",
-				     p + 2);
-				p[2] = (unsigned char) no_op;
-				p[3] = (unsigned char) no_op;
-				goto on_failure;
-			}
-			break;
-
-		case jump_n:
-			EXTRACT_NUMBER(mcnt, p + 2);
-			DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
-
-			/* Originally, this is how many times we CAN jump.  */
-			if (mcnt) {
-				mcnt--;
-				STORE_NUMBER(p + 2, mcnt);
-				goto unconditional_jump;
-			}
-			/* If don't have to jump any more, skip over the rest of command.  */
-			else
-				p += 4;
-			break;
-
-		case set_number_at:
-			{
-				DEBUG_PRINT1("EXECUTING set_number_at.\n");
-
-				EXTRACT_NUMBER_AND_INCR(mcnt, p);
-				p1 = p + mcnt;
-				EXTRACT_NUMBER_AND_INCR(mcnt, p);
-				DEBUG_PRINT3("  Setting 0x%x to %d.\n", p1,
-					     mcnt);
-				STORE_NUMBER(p1, mcnt);
-				break;
-			}
-
-		case wordbound:
-			DEBUG_PRINT1("EXECUTING wordbound.\n");
-			if (AT_WORD_BOUNDARY(d))
-				break;
-			goto fail;
-
-		case notwordbound:
-			DEBUG_PRINT1("EXECUTING notwordbound.\n");
-			if (AT_WORD_BOUNDARY(d))
-				goto fail;
-			break;
-
-		case wordbeg:
-			DEBUG_PRINT1("EXECUTING wordbeg.\n");
-			if (WORDCHAR_P(d)
-			    && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
-				break;
-			goto fail;
-
-		case wordend:
-			DEBUG_PRINT1("EXECUTING wordend.\n");
-			if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
-			    && (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
-				break;
-			goto fail;
-
-		case wordchar:
-			DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
-			PREFETCH();
-			if (!WORDCHAR_P(d))
-				goto fail;
-			SET_REGS_MATCHED();
-			d++;
-			break;
-
-		case notwordchar:
-			DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
-			PREFETCH();
-			if (WORDCHAR_P(d))
-				goto fail;
-			SET_REGS_MATCHED();
-			d++;
-			break;
-
-		default:
-			abort();
-		}
-		continue;	/* Successfully executed one pattern command; keep going.  */
-
-
-		/* We goto here if a matching operation fails. */
-	      fail:
-		if (!FAIL_STACK_EMPTY()) {	/* A restart point is known.  Restore to that state.  */
-			DEBUG_PRINT1("\nFAIL:\n");
-			POP_FAILURE_POINT(d, p,
-					  lowest_active_reg,
-					  highest_active_reg, regstart,
-					  regend, reg_info);
-
-			/* If this failure point is a dummy, try the next one.  */
-			if (!p)
-				goto fail;
-
-			/* If we failed to the end of the pattern, don't examine *p.  */
-			assert(p <= pend);
-			if (p < pend) {
-				boolean is_a_jump_n = false;
-
-				/* If failed to a backwards jump that's part of a repetition
-				   loop, need to pop this failure point and use the next one.  */
-				switch ((re_opcode_t) * p) {
-				case jump_n:
-					is_a_jump_n = true;
-				case maybe_pop_jump:
-				case pop_failure_jump:
-				case jump:
-					p1 = p + 1;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					p1 += mcnt;
-
-					if ((is_a_jump_n
-					     && (re_opcode_t) * p1 ==
-					     succeed_n)
-					    || (!is_a_jump_n
-						&& (re_opcode_t) * p1 ==
-						on_failure_jump))
-						goto fail;
-					break;
-				default:
-					/* do nothing */ ;
-				}
-			}
-
-			if (d >= string1 && d <= end1)
-				dend = end_match_1;
-		} else
-			break;	/* Matching at this starting point really fails.  */
-	}			/* for (;;) */
-
-	if (best_regs_set)
-		goto restore_best_regs;
-
-	FREE_VARIABLES();
-
-	return -1;		/* Failure to match.  */
-}				/* re_match_2 */
-
-/* Subroutine definitions for re_match_2.  */
-
-
-/* We are passed P pointing to a register number after a start_memory.
-
-   Return true if the pattern up to the corresponding stop_memory can
-   match the empty string, and false otherwise.
-
-   If we find the matching stop_memory, sets P to point to one past its number.
-   Otherwise, sets P to an undefined byte less than or equal to END.
-
-   We don't handle duplicates properly (yet).  */
-
-static boolean group_match_null_string_p(p, end, reg_info)
-unsigned char **p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
-	/* Point to after the args to the start_memory.  */
-	unsigned char *p1 = *p + 2;
-
-	while (p1 < end) {
-		/* Skip over opcodes that can match nothing, and return true or
-		   false, as appropriate, when we get to one that can't, or to the
-		   matching stop_memory.  */
-
-		switch ((re_opcode_t) * p1) {
-			/* Could be either a loop or a series of alternatives.  */
-		case on_failure_jump:
-			p1++;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-
-			/* If the next operation is not a jump backwards in the
-			   pattern.  */
-
-			if (mcnt >= 0) {
-				/* Go through the on_failure_jumps of the alternatives,
-				   seeing if any of the alternatives cannot match nothing.
-				   The last alternative starts with only a jump,
-				   whereas the rest start with on_failure_jump and end
-				   with a jump, e.g., here is the pattern for `a|b|c':
-
-				   /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
-				   /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
-				   /exactn/1/c
-
-				   So, we have to first go through the first (n-1)
-				   alternatives and then deal with the last one separately.  */
-
-
-				/* Deal with the first (n-1) alternatives, which start
-				   with an on_failure_jump (see above) that jumps to right
-				   past a jump_past_alt.  */
-
-				while ((re_opcode_t) p1[mcnt - 3] ==
-				       jump_past_alt) {
-					/* `mcnt' holds how many bytes long the alternative
-					   is, including the ending `jump_past_alt' and
-					   its number.  */
-
-					if (!alt_match_null_string_p
-					    (p1, p1 + mcnt - 3, reg_info))
-						return false;
-
-					/* Move to right after this alternative, including the
-					   jump_past_alt.  */
-					p1 += mcnt;
-
-					/* Break if it's the beginning of an n-th alternative
-					   that doesn't begin with an on_failure_jump.  */
-					if ((re_opcode_t) * p1 !=
-					    on_failure_jump)
-						break;
-
-					/* Still have to check that it's not an n-th
-					   alternative that starts with an on_failure_jump.  */
-					p1++;
-					EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-					if ((re_opcode_t) p1[mcnt - 3] !=
-					    jump_past_alt) {
-						/* Get to the beginning of the n-th alternative.  */
-						p1 -= 3;
-						break;
-					}
-				}
-
-				/* Deal with the last alternative: go back and get number
-				   of the `jump_past_alt' just before it.  `mcnt' contains
-				   the length of the alternative.  */
-				EXTRACT_NUMBER(mcnt, p1 - 2);
-
-				if (!alt_match_null_string_p
-				    (p1, p1 + mcnt, reg_info))
-					return false;
-
-				p1 += mcnt;	/* Get past the n-th alternative.  */
-			}	/* if mcnt > 0 */
-			break;
-
-
-		case stop_memory:
-			assert(p1[1] == **p);
-			*p = p1 + 2;
-			return true;
-
-
-		default:
-			if (!common_op_match_null_string_p
-			    (&p1, end, reg_info))
-				return false;
-		}
-	}			/* while p1 < end */
-
-	return false;
-}				/* group_match_null_string_p */
-
-
-/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
-   It expects P to be the first byte of a single alternative and END one
-   byte past the last. The alternative can contain groups.  */
-
-static boolean alt_match_null_string_p(p, end, reg_info)
-unsigned char *p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
-	unsigned char *p1 = p;
-
-	while (p1 < end) {
-		/* Skip over opcodes that can match nothing, and break when we get
-		   to one that can't.  */
-
-		switch ((re_opcode_t) * p1) {
-			/* It's a loop.  */
-		case on_failure_jump:
-			p1++;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-			p1 += mcnt;
-			break;
-
-		default:
-			if (!common_op_match_null_string_p
-			    (&p1, end, reg_info))
-				return false;
-		}
-	}			/* while p1 < end */
-
-	return true;
-}				/* alt_match_null_string_p */
-
-
-/* Deals with the ops common to group_match_null_string_p and
-   alt_match_null_string_p.
-
-   Sets P to one after the op and its arguments, if any.  */
-
-static boolean common_op_match_null_string_p(p, end, reg_info)
-unsigned char **p, *end;
-register_info_type *reg_info;
-{
-	int mcnt;
-	boolean ret;
-	int reg_no;
-	unsigned char *p1 = *p;
-
-	switch ((re_opcode_t) * p1++) {
-	case no_op:
-	case begline:
-	case endline:
-	case begbuf:
-	case endbuf:
-	case wordbeg:
-	case wordend:
-	case wordbound:
-	case notwordbound:
-		break;
-
-	case start_memory:
-		reg_no = *p1;
-		assert(reg_no > 0 && reg_no <= MAX_REGNUM);
-		ret = group_match_null_string_p(&p1, end, reg_info);
-
-		/* Have to set this here in case we're checking a group which
-		   contains a group and a back reference to it.  */
-
-		if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) ==
-		    MATCH_NULL_UNSET_VALUE)
-			REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
-
-		if (!ret)
-			return false;
-		break;
-
-		/* If this is an optimized succeed_n for zero times, make the jump.  */
-	case jump:
-		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-		if (mcnt >= 0)
-			p1 += mcnt;
-		else
-			return false;
-		break;
-
-	case succeed_n:
-		/* Get to the number of times to succeed.  */
-		p1 += 2;
-		EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-
-		if (mcnt == 0) {
-			p1 -= 4;
-			EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-			p1 += mcnt;
-		} else
-			return false;
-		break;
-
-	case duplicate:
-		if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
-			return false;
-		break;
-
-	case set_number_at:
-		p1 += 4;
-
-	default:
-		/* All other opcodes mean we cannot match the empty string.  */
-		return false;
-	}
-
-	*p = p1;
-	return true;
-}				/* common_op_match_null_string_p */
-
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
-   bytes; nonzero otherwise.  */
-
-static int bcmp_translate(s1, s2, len, translate)
-const char *s1, *s2;
-register int len;
-char *translate;
-{
-	register const unsigned char *p1 = (const unsigned char *) s1,
-	    *p2 = (const unsigned char *) s2;
-	while (len) {
-		if (translate[*p1++] != translate[*p2++])
-			return 1;
-		len--;
-	}
-	return 0;
-}
-
-/* Entry points for GNU code.  */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
-   compiles PATTERN (of length SIZE) and puts the result in BUFP.
-   Returns 0 if the pattern was valid, otherwise an error string.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
-   are set in BUFP on entry.
-
-   We call regex_compile to do the actual compilation.  */
-
-const char *re_compile_pattern(pattern, length, bufp)
-const char *pattern;
-size_t length;
-struct re_pattern_buffer *bufp;
-{
-	reg_errcode_t ret;
-
-	/* GNU code is written to assume at least RE_NREGS registers will be set
-	   (and at least one extra will be -1).  */
-	bufp->regs_allocated = REGS_UNALLOCATED;
-
-	/* And GNU code determines whether or not to get register information
-	   by passing null for the REGS argument to re_match, etc., not by
-	   setting no_sub.  */
-	bufp->no_sub = 0;
-
-	/* Match anchors at newline.  */
-	bufp->newline_anchor = 1;
-
-	ret = regex_compile(pattern, length, re_syntax_options, bufp);
-
-	return re_error_msg[(int) ret];
-}
-
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them if this is an Emacs or POSIX compilation.  */
-
-/* POSIX.2 functions.  Don't define these for Emacs.  */
-
-#if !NO_POSIX_COMPAT
-
-/* regcomp takes a regular expression as a string and compiles it.
-
-   PREG is a regex_t *.  We do not expect any fields to be initialized,
-   since POSIX says we shouldn't.  Thus, we set
-
-     `buffer' to the compiled pattern;
-     `used' to the length of the compiled pattern;
-     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
-       REG_EXTENDED bit in CFLAGS is set; otherwise, to
-       RE_SYNTAX_POSIX_BASIC;
-     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
-     `fastmap' and `fastmap_accurate' to zero;
-     `re_nsub' to the number of subexpressions in PATTERN.
-
-   PATTERN is the address of the pattern string.
-
-   CFLAGS is a series of bits which affect compilation.
-
-     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
-     use POSIX basic syntax.
-
-     If REG_NEWLINE is set, then . and [^...] don't match newline.
-     Also, regexec will try a match beginning after every newline.
-
-     If REG_ICASE is set, then we considers upper- and lowercase
-     versions of letters to be equivalent when matching.
-
-     If REG_NOSUB is set, then when PREG is passed to regexec, that
-     routine will report only success or failure, and nothing about the
-     registers.
-
-   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
-   the return codes and their meanings.)  */
-
-int regcomp(preg, pattern, cflags)
-regex_t *preg;
-const char *pattern;
-int cflags;
-{
-	reg_errcode_t ret;
-	reg_syntax_t syntax
-	    = (cflags & REG_EXTENDED) ?
-	    RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
-	/* regex_compile will allocate the space for the compiled pattern.  */
-	preg->buffer = 0;
-	preg->allocated = 0;
-	preg->used = 0;
-
-	/* Don't bother to use a fastmap when searching.  This simplifies the
-	   REG_NEWLINE case: if we used a fastmap, we'd have to put all the
-	   characters after newlines into the fastmap.  This way, we just try
-	   every character.  */
-	preg->fastmap = 0;
-
-	if (cflags & REG_ICASE) {
-		unsigned i;
-
-		preg->translate = (char *) malloc(CHAR_SET_SIZE);
-		if (preg->translate == NULL)
-			return (int) REG_ESPACE;
-
-		/* Map uppercase characters to corresponding lowercase ones.  */
-		for (i = 0; i < CHAR_SET_SIZE; i++)
-			preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
-	} else
-		preg->translate = NULL;
-
-	/* If REG_NEWLINE is set, newlines are treated differently.  */
-	if (cflags & REG_NEWLINE) {	/* REG_NEWLINE implies neither . nor [^...] match newline.  */
-		syntax &= ~RE_DOT_NEWLINE;
-		syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-		/* It also changes the matching behavior.  */
-		preg->newline_anchor = 1;
-	} else
-		preg->newline_anchor = 0;
-
-	preg->no_sub = !!(cflags & REG_NOSUB);
-
-	/* POSIX says a null character in the pattern terminates it, so we
-	   can use strlen here in compiling the pattern.  */
-	ret = regex_compile(pattern, strlen(pattern), syntax, preg);
-
-	/* POSIX doesn't distinguish between an unmatched open-group and an
-	   unmatched close-group: both are REG_EPAREN.  */
-	if (ret == REG_ERPAREN)
-		ret = REG_EPAREN;
-
-	return (int) ret;
-}
-
-
-/* regexec searches for a given pattern, specified by PREG, in the
-   string STRING.
-
-   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
-   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
-   least NMATCH elements, and we set them to the offsets of the
-   corresponding matched substrings.
-
-   EFLAGS specifies `execution flags' which affect matching: if
-   REG_NOTBOL is set, then ^ does not match at the beginning of the
-   string; if REG_NOTEOL is set, then $ does not match at the end.
-
-   We return 0 if we find a match and REG_NOMATCH if not.  */
-
-int regexec(preg, string, nmatch, pmatch, eflags)
-const regex_t *preg;
-const char *string;
-size_t nmatch;
-regmatch_t pmatch[];
-int eflags;
-{
-	int ret;
-	struct re_registers regs;
-	regex_t private_preg;
-	int len = strlen(string);
-	boolean want_reg_info = !preg->no_sub && nmatch > 0;
-
-	private_preg = *preg;
-
-	private_preg.not_bol = !!(eflags & REG_NOTBOL);
-	private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
-	/* The user has told us exactly how many registers to return
-	   information about, via `nmatch'.  We have to pass that on to the
-	   matching routines.  */
-	private_preg.regs_allocated = REGS_FIXED;
-
-	if (want_reg_info) {
-		regs.num_regs = nmatch;
-		regs.start = TALLOC(nmatch, regoff_t);
-		regs.end = TALLOC(nmatch, regoff_t);
-		if (regs.start == NULL || regs.end == NULL)
-			return (int) REG_NOMATCH;
-	}
-
-	/* Perform the searching operation.  */
-	ret = re_search(&private_preg, string, len,
-			/* start: */ 0, /* range: */ len,
-			want_reg_info ? &regs : (struct re_registers *) 0);
-
-	/* Copy the register information to the POSIX structure.  */
-	if (want_reg_info) {
-		if (ret >= 0) {
-			unsigned r;
-
-			for (r = 0; r < nmatch; r++) {
-				pmatch[r].rm_so = regs.start[r];
-				pmatch[r].rm_eo = regs.end[r];
-			}
-		}
-
-		/* If we needed the temporary register info, free the space now.  */
-		free(regs.start);
-		free(regs.end);
-	}
-
-	/* We want zero return to mean success, unlike `re_search'.  */
-	return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
-
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
-   from either regcomp or regexec.   We don't use PREG here.  */
-
-size_t regerror(errcode, preg, errbuf, errbuf_size)
-int errcode;
-const regex_t *preg;
-char *errbuf;
-size_t errbuf_size;
-{
-	const char *msg;
-	size_t msg_size;
-
-	if (errcode < 0
-	    || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
-		/* Only error codes returned by the rest of the code should be passed
-		   to this routine.  If we are given anything else, or if other regex
-		   code generates an invalid error code, then the program has a bug.
-		   Dump core so we can fix it.  */
-		abort();
-
-	msg = re_error_msg[errcode];
-
-	/* POSIX doesn't require that we do anything in this case, but why
-	   not be nice.  */
-	if (!msg)
-		msg = "Success";
-
-	msg_size = strlen(msg) + 1;	/* Includes the null.  */
-
-	if (errbuf_size != 0) {
-		if (msg_size > errbuf_size) {
-			strncpy(errbuf, msg, errbuf_size - 1);
-			errbuf[errbuf_size - 1] = 0;
-		} else
-			strcpy(errbuf, msg);
-	}
-
-	return msg_size;
-}
-
-
-/* Free dynamically allocated space used by PREG.  */
-
-void regfree(preg)
-regex_t *preg;
-{
-	if (preg->buffer != NULL)
-		free(preg->buffer);
-	preg->buffer = NULL;
-
-	preg->allocated = 0;
-	preg->used = 0;
-
-	if (preg->fastmap != NULL)
-		free(preg->fastmap);
-	preg->fastmap = NULL;
-	preg->fastmap_accurate = 0;
-
-	if (preg->translate != NULL)
-		free(preg->translate);
-	preg->translate = NULL;
-}
-
-#endif				/* !NO_POSIX_COMPAT */
diff --git a/libmultipath/regex.h b/libmultipath/regex.h
deleted file mode 100644
index 4715250..0000000
--- a/libmultipath/regex.h
+++ /dev/null
@@ -1,252 +0,0 @@
-/* Definitions for data structures and routines for the regular
-   expression library, version 0.12.
-
-   Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993
-   Free Software Foundation, Inc.
-
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
-
-   This program is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
-
-#ifndef __REGEXP_LIBRARY_H__
-#define __REGEXP_LIBRARY_H__
-
-typedef long s_reg_t;
-typedef unsigned long active_reg_t;
-
-typedef unsigned long reg_syntax_t;
-
-#define RE_BACKSLASH_ESCAPE_IN_LISTS	(1L)
-#define RE_BK_PLUS_QM			(RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
-#define RE_CHAR_CLASSES			(RE_BK_PLUS_QM << 1)
-#define RE_CONTEXT_INDEP_ANCHORS	(RE_CHAR_CLASSES << 1)
-#define RE_CONTEXT_INDEP_OPS		(RE_CONTEXT_INDEP_ANCHORS << 1)
-#define RE_CONTEXT_INVALID_OPS		(RE_CONTEXT_INDEP_OPS << 1)
-#define RE_DOT_NEWLINE			(RE_CONTEXT_INVALID_OPS << 1)
-#define RE_DOT_NOT_NULL			(RE_DOT_NEWLINE << 1)
-#define RE_HAT_LISTS_NOT_NEWLINE	(RE_DOT_NOT_NULL << 1)
-#define RE_INTERVALS			(RE_HAT_LISTS_NOT_NEWLINE << 1)
-#define RE_LIMITED_OPS			(RE_INTERVALS << 1)
-#define RE_NEWLINE_ALT			(RE_LIMITED_OPS << 1)
-#define RE_NO_BK_BRACES			(RE_NEWLINE_ALT << 1)
-#define RE_NO_BK_PARENS			(RE_NO_BK_BRACES << 1)
-#define RE_NO_BK_REFS			(RE_NO_BK_PARENS << 1)
-#define RE_NO_BK_VBAR			(RE_NO_BK_REFS << 1)
-#define RE_NO_EMPTY_RANGES		(RE_NO_BK_VBAR << 1)
-#define RE_UNMATCHED_RIGHT_PAREN_ORD	(RE_NO_EMPTY_RANGES << 1)
-#define RE_NO_GNU_OPS			(RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
-
-extern reg_syntax_t re_syntax_options;
-
-#define RE_SYNTAX_EMACS 0
-
-#define RE_SYNTAX_AWK							  \
-	(RE_BACKSLASH_ESCAPE_IN_LISTS	| RE_DOT_NOT_NULL		| \
-	 RE_NO_BK_PARENS		| RE_NO_BK_REFS			| \
-	 RE_NO_BK_VBAR			| RE_NO_EMPTY_RANGES		| \
-	 RE_DOT_NEWLINE			| RE_CONTEXT_INDEP_ANCHORS	| \
-	 RE_UNMATCHED_RIGHT_PAREN_ORD	| RE_NO_GNU_OPS)
-
-#define RE_SYNTAX_GNU_AWK 						  \
-	((RE_SYNTAX_POSIX_EXTENDED	| RE_BACKSLASH_ESCAPE_IN_LISTS)	| \
-	& ~(RE_DOT_NOT_NULL | RE_INTERVALS | RE_CONTEXT_INDEP_OPS))
-
-#define RE_SYNTAX_POSIX_AWK 						  \
-	(RE_SYNTAX_POSIX_EXTENDED	| RE_BACKSLASH_ESCAPE_IN_LISTS	| \
-	 RE_INTERVALS			| RE_NO_GNU_OPS)
-
-#define RE_SYNTAX_GREP							  \
-	(RE_BK_PLUS_QM			| RE_CHAR_CLASSES		| \
-	 RE_HAT_LISTS_NOT_NEWLINE	| RE_INTERVALS			| \
-	 RE_NEWLINE_ALT)
-
-#define RE_SYNTAX_EGREP							  \
-	(RE_CHAR_CLASSES		| RE_CONTEXT_INDEP_ANCHORS	| \
-	 RE_CONTEXT_INDEP_OPS		| RE_HAT_LISTS_NOT_NEWLINE	| \
-	 RE_NEWLINE_ALT			| RE_NO_BK_PARENS		| \
-	 RE_NO_BK_VBAR)
-
-#define RE_SYNTAX_POSIX_EGREP						  \
-	(RE_SYNTAX_EGREP		| RE_INTERVALS			| \
-	 RE_NO_BK_BRACES)
-
-#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
-
-#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC
-
-#define _RE_SYNTAX_POSIX_COMMON						  \
-	(RE_CHAR_CLASSES		| RE_DOT_NEWLINE		| \
-	 RE_DOT_NOT_NULL		| RE_INTERVALS			| \
-	 RE_NO_EMPTY_RANGES)
-
-#define RE_SYNTAX_POSIX_BASIC						  \
-	(_RE_SYNTAX_POSIX_COMMON	| RE_BK_PLUS_QM)
-
-#define RE_SYNTAX_POSIX_MINIMAL_BASIC					  \
-	(_RE_SYNTAX_POSIX_COMMON	| RE_LIMITED_OPS)
-
-#define RE_SYNTAX_POSIX_EXTENDED					  \
-	(_RE_SYNTAX_POSIX_COMMON	| RE_CONTEXT_INDEP_ANCHORS	| \
-	 RE_CONTEXT_INDEP_OPS		| RE_NO_BK_BRACES		| \
-	 RE_NO_BK_PARENS		| RE_NO_BK_VBAR			| \
-	 RE_UNMATCHED_RIGHT_PAREN_ORD)
-
-#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED				  \
-	(_RE_SYNTAX_POSIX_COMMON	| RE_CONTEXT_INDEP_ANCHORS	| \
-	 RE_CONTEXT_INVALID_OPS		| RE_NO_BK_BRACES		| \
-	 RE_NO_BK_PARENS		| RE_NO_BK_REFS			| \
-	 RE_NO_BK_VBAR			| RE_UNMATCHED_RIGHT_PAREN_ORD)
-
-/* Maximum number of duplicates an interval can allow */
-#define RE_DUP_MAX  (0x7fff)
-
-/* POSIX 'cflags' bits */
-#define REG_EXTENDED	1
-#define REG_ICASE	(REG_EXTENDED << 1)
-#define REG_NEWLINE	(REG_ICASE << 1)
-#define REG_NOSUB	(REG_NEWLINE << 1)
-
-
-/* POSIX `eflags' bits */
-#define REG_NOTBOL	1
-#define REG_NOTEOL	(1 << 1)
-
-/* If any error codes are removed, changed, or added, update the
-   `re_error_msg' table in regex.c.  */
-typedef enum
-{
-  REG_NOERROR = 0,	/* Success.  */
-  REG_NOMATCH,		/* Didn't find a match (for regexec).  */
-
-  /* POSIX regcomp return error codes */
-  REG_BADPAT,		/* Invalid pattern.  */
-  REG_ECOLLATE,		/* Not implemented.  */
-  REG_ECTYPE,		/* Invalid character class name.  */
-  REG_EESCAPE,		/* Trailing backslash.  */
-  REG_ESUBREG,		/* Invalid back reference.  */
-  REG_EBRACK,		/* Unmatched left bracket.  */
-  REG_EPAREN,		/* Parenthesis imbalance.  */
-  REG_EBRACE,		/* Unmatched \{.  */
-  REG_BADBR,		/* Invalid contents of \{\}.  */
-  REG_ERANGE,		/* Invalid range end.  */
-  REG_ESPACE,		/* Ran out of memory.  */
-  REG_BADRPT,		/* No preceding re for repetition op.  */
-
-  /* Error codes we've added */
-  REG_EEND,		/* Premature end.  */
-  REG_ESIZE,		/* Compiled pattern bigger than 2^16 bytes.  */
-  REG_ERPAREN		/* Unmatched ) or \); not returned from regcomp.  */
-} reg_errcode_t;
-
-#define REGS_UNALLOCATED	0
-#define REGS_REALLOCATE		1
-#define REGS_FIXED		2
-
-/* This data structure represents a compiled pattern */
-struct re_pattern_buffer
-{
-  unsigned char *buffer;
-  unsigned long allocated;
-  unsigned long used;
-  reg_syntax_t syntax;
-  char *fastmap;
-  char *translate;
-  size_t re_nsub;
-  unsigned can_be_null : 1;
-  unsigned regs_allocated : 2;
-  unsigned fastmap_accurate : 1;
-  unsigned no_sub : 1;
-  unsigned not_bol : 1;
-  unsigned not_eol : 1;
-  unsigned newline_anchor : 1;
-};
-
-typedef struct re_pattern_buffer regex_t;
-
-/* search.c (search_buffer) in Emacs needs this one opcode value.  It is
-   defined both in `regex.c' and here.  */
-#define RE_EXACTN_VALUE 1
-
-/* Type for byte offsets within the string.  POSIX mandates this.  */
-typedef int regoff_t;
-
-
-/* This is the structure we store register match data in.  See
-   regex.texinfo for a full description of what registers match.  */
-struct re_registers
-{
-  unsigned num_regs;
-  regoff_t *start;
-  regoff_t *end;
-};
-
-
-#ifndef RE_NREGS
-#define RE_NREGS 30
-#endif
-
-
-/* POSIX specification for registers.  Aside from the different names than
-   `re_registers', POSIX uses an array of structures, instead of a
-   structure of arrays.  */
-typedef struct
-{
-  regoff_t rm_so;  /* Byte offset from string's start to substring's start.  */
-  regoff_t rm_eo;  /* Byte offset from string's start to substring's end.  */
-} regmatch_t;
-
-/* Declarations for routines.  */
-
-extern reg_syntax_t re_set_syntax (reg_syntax_t syntax);
-
-extern const char *re_compile_pattern (const char *pattern, size_t length,
-				       struct re_pattern_buffer *buffer);
-
-extern int re_compile_fastmap (struct re_pattern_buffer *buffer);
-
-extern int re_search (struct re_pattern_buffer *buffer, const char *string,
-		      int length, int start, int range,
-		      struct re_registers *regs);
-
-extern int re_search_2 (struct re_pattern_buffer *buffer, const char *string1,
-			int length1, const char *string2, int length2,
-			int start, int range, struct re_registers *regs,
-			int stop);
-
-extern int re_match (struct re_pattern_buffer *buffer, const char *string,
-		     int length, int start, struct re_registers *regs);
-
-extern int re_match_2 (struct re_pattern_buffer *buffer, const char *string1,
-		       int length1, const char *string2, int length2,
-		       int start, struct re_registers *regs, int stop);
-
-extern void re_set_registers (struct re_pattern_buffer *buffer,
-			      struct re_registers *regs, unsigned num_regs,
-			      regoff_t *starts, regoff_t *ends);
-
-/* 4.2 bsd compatibility.  */
-extern char *re_comp (const char *);
-extern int re_exec (const char *);
-
-/* POSIX compatibility.  */
-extern int regcomp (regex_t *preg, const char *pattern, int cflags);
-
-extern int regexec (const regex_t *preg, const char *string, size_t nmatch,
-		    regmatch_t pmatch[], int eflags);
-
-extern size_t regerror (int errcode, const regex_t *preg, char *errbuf,
-			size_t errbuf_size);
-
-extern void regfree (regex_t *preg);
-
-#endif /* not __REGEXP_LIBRARY_H__ */
-- 
1.8.1.4




More information about the dm-devel mailing list