

TRANSFORMING THE NETWORK END-TO-END INTEL ARCHITECTURE ACROSS THE NETWORK, FROM DEVICE TO CLOUD

VIRTUALIZED, SOFTWARE-DEFINED, CLOUD-READY

NFV/SDN IS ESSENTIAL TO 5G NETWORKS MOVING THE NETWORK AT CLOUD PACE

Compute, Network, and Storage Pooled Resources Standardized Commercial Grade Solutions

Dynamic Flexible Networks
Next-Generation
Network Architectures

Services Delivery and Agility Business Process Transformation

INVESTMENTS TO ACCELERATE THE TRANSFORMATION

INTEL TECHNOLOGY LEADERSHIP

DELIVER OPEN REFERENCE ARCHITECTURES Intel® Open Network Platform

Intel® Architecture Linux KVM

Optimized Ingredients

ENABLE AN OPEN ECOSYSTEM

Intel® Network Builders

COLLABORATE WITH END USERS

CommSP Cloud Enterprise

INTEL POWERING THE VIRTUAL NETWORK INFRASTRUCTURE FOR 5G

RADIO ACCESS TECHNOLOGY

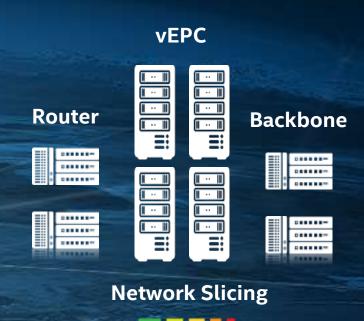
Anchor **Booster Beamforming**, **New 5G Radio Access Technology**

Massive MIMO

ACCESS NETWORK

FlexRAN: CRAN/vRAN, Split/Macro/Small Base Solution

FlexRAN: Mobile Edge Computing, Small Cell,



Network Slicing

NFV/SDN Foundation

CORE NETWORK

SOFTWARE DEFINED INFRASTRUCTURE

APPLICATIONS
DEFINE THE RESOURCES NEEDED

INFRASTRUCTURE ASSURES EFFICIENCY AND SERVICE LEVELS

STANDARDIZED BENCHMARKING FOR NFV DRIVE "BEST OF BREED" APPROACH

NFV Platforms Need:

More efficient and real-world test infrastructure

Test architectures to be consistent and extensible for benchmarking Network Services

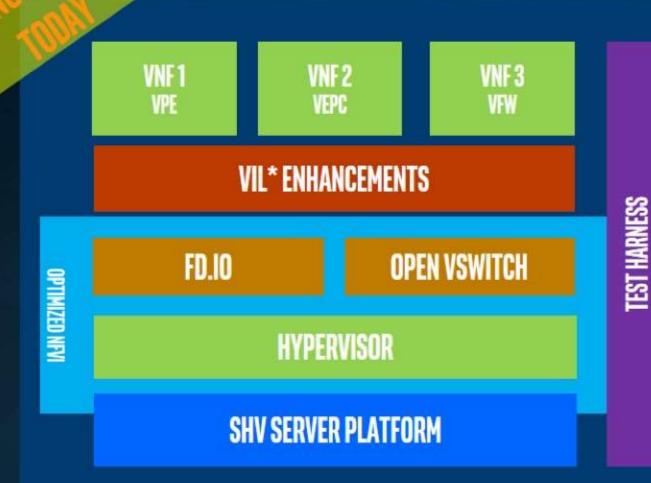
Standard testing methodologies, tools and benchmark criteria

REAL WORLD TESTING AND BENCHMARKING THROUGH COLLABORATION

NETWORK SERVICE BENCHMARKING QUESTIONS

How will a Network
Service perform on a
specified
infrastructure?

How will specific performance metrics for a Network Service change when various infrastructure features are introduced or reprovisioned?


How will specific performance metrics for a Network Service change with realistic and dynamic traffic workloads?

How do MANO components impact performance with policy based networking?

How will Network
Services change in a
SFC with other
Network Services
sharing platform
resources?

How are commercial
VNFs compare to other
VNFs providing similar
functionality for key
Network Service
metrics?

VNF INDUSTRY STANDARD BENCHMARKING (ISB)

Develop Open Source *approximations* of Telco grade VNF's using optimized VNF + NFVi Infrastructure libraries, with Performance Characterization of *Sample* Traffic Flows using open source Test Harness

Facilitate *Deterministic and Repeatable* benchmarking on Industry SHV Servers

ISB METHODOLOGY: VNF PERFORMANCE BENCHMARKING

VNF performance benchmarking

Native Linux environment

Standalone Virtualized environment

Managed virtualized environment (e.g. OpenStack)

Evaluate both scaleup and scale-out performance data

VNFs performance graphs for both scale-up and scale-out in all three environments Collect KPIs: Network KPIs, VNF KPIs and NFVi KPIs Test Infrastructure:
Standard test
framework for all 3
environments

SUMMARY

Prepare for the future

Deploy Network Function Virtualization (NFV) and Software Defined Networks (SDN)

Adopt and Adapt

The future is a paradigm shift for the CommSP business model – leverage key learnings and capabilities from multiple industries

Join in!

A robust ecosystem is needed to move from a virtualized network view... to a cloud-ready vision

industries

ID 9 STUMBER

