
CJ Newburn

Principal Engineer, HPC Lead for NVIDIA Compute Software

UNIFYING MEMORY ON
ACCELERATED PLATFORMS

2

OUTLINE

Motivation: Heterogeneous, highly-connected platforms are the path to scale

Evolution of device support: on a path toward a more ideal memory system

Under the hood: how paging really works

Exercising control: tuning for performance

Heterogeneous memory manager

The next stage: Address translation service

Join the communal effort!

3

TOWARD A SCALED SYSTEM
A basic CPU

4

TOWARD A SCALED SYSTEM

• Threads

Lots of threads

5

TOWARD A SCALED SYSTEM

• Wider stronger nodes

• Threads

• Efficiency

• Density

LOTS of threads

6

TOWARD A SCALED SYSTEM

• Wider stronger nodes

• Threads

• Efficiency

• Density

• Strong connections

• Push out IB “sharp edge” with a memory-bus link (NVLINK)

• Support many NICs

• Direct load/store

LOTS of threads

7

CHOOSING A SCALED PLATFORM

• Wider, stronger nodes

• Threads

• Efficiency vs.

• Density

• Strong connections

• Push out IB “sharp edge” with NVLINK

• Support many NICs

• Direct load/store

Better strong scaling, easier to manage

Compute
Servers,

85%

Non-Compute
15%

Compute
Servers,

39%

Rack,
Cabling

Infrastructure

Networking

Non-
compute,

61%

Sources: Microsoft Research on Datacenter Costs

Wide nodes that may have high connectivity are a building block for efficiency

http://research.microsoft.com/en-us/um/people/dmaltz/papers/DC-Costs-CCR-editorial.pdf

8

NON-UNIFIED MEMORY

Device CPU

Device

Memory

CPU

Memory

More to think

about, harder

to reason about

Two memories, not unified

Explicit access from only each side

Pinned on host and device

9

UNIFIED MEMORY
Dramatically Lower Developer Effort

Performance

Through

Data Locality

Migrate data to accessing processor

Guarantee global coherence

Still allows explicit hand tuning

Simpler

Programming &

Memory Model

Single allocation, single pointer,

accessible anywhere

Eliminate need for explicit copy

Greatly simplifies code porting

Allocate Up To
GPU Memory Size

Device CPU

Unified Memory

CUDA 6+

10

UNIFIED SYSTEM ALLOCATOR
Allocate unified memory using standard malloc, with HMM

Removes CUDA specific allocator
restrictions

Data movement is transparently
handled

Requires operating system support

void sortfile(FILE *fp, int N) {
char *data;

// Allocate memory using any standard allocator
data = (char *) malloc(N * sizeof(char));

fread(data, 1, N, fp);

qsort<<<...>>>(data,N,1,compare);
cudaDeviceSynchronize(); // avoids a race
use_data(data);

// Free the allocated memory
free(data);

}

CUDA 8 Code with System Allocator

11

UNDER THE HOOD: ANATOMY OF A PAGE ACCESS

Page fault conditions

• Invalid: doesn’t exist at all, or not valid where you are

• Not writable, upon an attempt to write or an atomic access

Intro to the basics

Processor

TLB

Mem

Page fault

Page walk
miss

miss

12

UNDER THE HOOD: PAGE TABLES

• Distinct: enables different Virtual Address (VA) Physical Address (PA) mappings

• Local: enables faster access

• Special page table entries: invalid, special markings

Distributed can be better

GPU

page table

GPU

page table

CPU

page table

GPU Mem GPU MemCPU Mem

Data, PA2

VAVA

Data, PA1

13

UNDER THE HOOD: PAGE FAULTS

• Once you allocate, you have a virtual address

• With a virtual address, you can attempt access

• Upon a page fault, SW is involved

• Deferred work: need not materialize the physical memory upon a virtual allocation

• Smart and flexible work: apply heuristics for migration

Getting SW involved

14

UNDER THE HOOD: DRIVER

• User can specify policies and usage hints via APIs; driver tracks them

• Driver knows where pages are valid, whether they are writable

• Driver can also use a cost model

Tracking the details, exercising smarts

15

HETEROGENEOUS MEMORY MANAGER (HMM)

Requirements

• Enable malloc’d and file-backed memory to be migrated from CPU to device

• malloc/heap, global, statics

• Enable CPU memory to be DMA’d without being pinned

• Support RDMA

• Enable read duplication

Filling a gap

16

HMM SUPPORT FOR MIGRATION: PTES

Background

• CPU accesses TLB, TLB walks page table upon miss, fault upon invalid page table entry

• Page fault (PF) handler invoked, calls the driver for help if needed to get page

Implementation

• Invalid page table entry (PTE) indicates that CPU doesn’t have the page

• Special encoding in PTE indicates that device has the page, so get driver’s help

• Driver transfers data from device to CPU, clears special encoding, let PF finish

Steps to get what you don’t have

17

HMM SUPPORT FOR MIGRATION: NOTIFICATION

Background

• Device may want to map to CPU’s memory, for remote access

• Needs to know CPU’s mapping from virtual address (VA) to physical address (PA)

• But mapping could change at any time!

• Swapped out, copy on write, managed by hypervisor

• Device needs to know whether the mapping it has is still valid

• Device needs to be notified if the state of the page changes

Sharing what you do have

18

HMM SUPPORT FOR MIGRATION: MAPPINGS

Implementation

• Could get VA PA mapping, but that mapping could change without notice

• New: notify that a mapping is about to change, wait for ack before changing

Implications

• DMA can start, and even if a mapping change is pending, it gets to finish first

Sharing what you do have

19

OS SUPPORT FOR HMM

• First version of HMM (v25) is available in kernel 4.14

• Released Nov 12, 2017 with HMM

• http://www.omgubuntu.co.uk/2017/11/linux-kernel-4-14-lts-features

• Interest in HMM

• RedHat

• IBM

• Mediatek

• Mellanox

• NVIDIA – listed as collaborator on patch

http://www.omgubuntu.co.uk/2017/11/linux-kernel-4-14-lts-features

20

IN THE BACKLOG FOR HMM PATCHES

• Write protection

• Device-driver-controlled: provides support for read-duplication and SysMem-based
atomic operations between CPU and GPU

• Differentiate between unmap (e.g. free) and invalidate (e.g. migrate) page callbacks

• Not having to assume unmap would avoid discarding all info about the mapping

• Support for migrating pages that are file-backed memory vs. anonymous memory

• Example: mmap a file, then use it in UVM

• File-backed memory requires support for additional fields in physical struct page, e.g.
inode, struct file*.

• RMDA without pinning

• HMM or ATS + page-fault-capable NIC + NIC and UVM driver support

21

ADDRESS TRANSLATION SERVICE (ATS)

Key differences from SW-based HMM solution

• Single page table

• IO memory management unit (IOMMU) sends TLB invalidation to devices

• Reference IBM POWER, AMD’s IOMMU V2, Intel’s VTD

• Need HW support for keeping devices coherent

• Needs device support – coherence; walk pages itself or ask for help

A HW-centric solution

22

OS SUPPORT FOR ATS

Device memory must be known to OS

• Device, BIOS, OS must collaborate

• Based on existing NUMA on-lining work

More work needed

• Significant modifications to current NUMA implementation required for performance

• Example: when an alloc of a device fails, want to replace existing page vs. fail over

• Still want a way to apply smart heuristics

Still in design phase

23

TAKE AWAYS

Function of Heterogeneous Memory Manager

• SW assist that helps maintain coherence between CPU and devices

Benefits of Heterogeneous Memory Manager

• Enables migration of CPU memory to a device

• Enables device to get notified when memory state (writability, validity) changes

HMM (v25) is available in kernel 4.14

Enable easiest data movement between CPU, GPU, network

Linux patch for HW-oriented Address Translation Service is WIP

Come join the communal effort!

Try HMM today in kernel 4.14!

What questions
can we explore together?

More on
exercising control

26

EXERCISING CONTROL

Manual or managed

Migrate or remote access

Map proactively or reactively

Duplicate or not

Power to the people

27

MANUAL OR MANAGED

Manual

• cudaMalloc(&address, size): place on the current device, access from device

• cudaMallocHost(&address, size): place on host, access from host

• Materialized and pinned in either case: cost paid immediately, not migratable

• User knows what they are doing; give them full control with minimal overhead

• Manually make GPU memory visible from another GPU, EnablePeerAccess

Managed

• cudaMallocManaged(&address, size): placed at first write, access from anywhere

• Pre-Pascal: materialize and pin on CPU and GPU; can only access from one or the other

• Pascal: materialization is deferred, not pinned: cost paid on demand, migratable

• Easy for user; selective control with cudaMemAdvise

• No special steps to make memory visible to other GPUs

28

MIGRATE OR ACCESS REMOTELY

Default: migrate

Override: cudaMemAdvise(address, size, SetPreferredLocation , deviceID)

GPU0 GPU1CPU

[1] write A
[2] migrate, access
[3] SetPreferredLoc(B)
[4] write B
[5] read B remotely

29

MAP PROACTIVELY OR REACTIVELY

Map: create a page table entry at deviceID once page is materialized

Default: don’t map, which could save overhead if not needed

Control: cudaMemAdvise(address, size, SetAccessedBy, deviceID)

GPU0 GPU1CPU

[1] PreferredLocation
[2] AccessedBy
[3] Use halo
[4] Touch
[5] AccessedBy
[6] Use halo
[7] AccessedBy
[8] Use halo

No page fault

30

DUPLICATE OR NOT

Default: migrate

Control: duplicate with cudaMemAdvise(SetReadMostly)

GPU0 GPU1CPU

[1] write A
[2] migrate, read A
[3] SetReadMostly(A)
[4] duplicate, read a
[5] read a locally

31

CUDA 8 UNIFIED MEMORY — EXAMPLE

Both CPU code and CUDA kernel
accessing ‘data’ simultaneously

Possible with CUDA 8 unified
memory on Pascal

Accessing data simultaneously by CPU and GPU codes

__global__ void mykernel(char *data) {
data[1] = ‘g’;

}

void foo() {
char *data;
cudaMallocManaged(&data, 2);

mykernel<<<...>>>(data); // assume data not written
// no synchronize here
data[0] = ‘c’;
cudaFree(data);

}

32

GPU MEMORY OVERSUBSCRIPTION

Combustion
Many species &
improved accuracy

Quantum chemistry
Larger systems

Ray-tracing
Larger scenes to render

Many domains would benefit

0

40

80

120

160

32 64 128 192 256 384 512 768

0.016 GB 0.062 GB 0.33 GB 1.43 GB 2.58 GB 8.69 GB 20.59 GB 69.5 GB

Th
ro

u
gh

p
u

t
in

M

ill
io

n
s

o
f

D
O

F/
s

GRID Size

Higher Throughput with Large Grid Sizes on AMR Codes

Tesla K40 (12GB) Tesla P100 (16GB)

Simulate More
Species w/

Accurate results

33

ON-DEMAND ALLOCATION
Dynamic queues

11/13/

2017

Problem: GPU populates queues with unknown size, need to overallocate

Solution: use Unified Memory for allocations (on Pascal)

Here only 35% of memory is actually used!

34

ON-DEMAND PAGING
New use cases such as graph algorithms

0.0

1.0

2.0

3.0

4.0

0.5x 0.9x 1.2x 1.5x

P
er

fo
rm

an
ce

 o
ve

r
C

P
U

 o
n

ly

Im
p

le
m

en
ta

ti
o

n

Application working set / GPU memory size

Higher Performance with Unified Memory
on Maximum Flow

Unified Memory Baseline (no explicit tuning)

Unified Memory with Migration Hints (optimized memory placement)

Large Data Set

35

PREFETCHING
Simple code example

11/13/

2017

void foo(cudaStream_t s) {
char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemPrefetchAsync(data, N, myGpuId, s);
mykernel<<<..., s>>>(data, N, 1, compare);
cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s);
cudaStreamSynchronize(s);

use_data(data, N);

cudaFree(data);
}

CPU faults are less expensive
may still be worth avoiding

GPU faults are expensive
prefetch to avoid excess faults

36

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);

mykernel<<<...>>>(data, N);

use_data(data, N);

READ DUPLICATION: MEMADVISE
CPU and GPU, until there’s a write

cudaMemAdviseSetReadMostly

Use when data is mostly read and occasionally written to

11/13/

2017

Read-only copy will be
created on GPU page fault

CPU reads will not page fault

37

READ DUPLICATION: PREFETCH
CPU and GPU, until there’s a write

Prefetching creates read-duplicated copy of data and avoids page faults

Note: writes are allowed but will generate page fault and remapping

11/13/

2017

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);
cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy);
mykernel<<<...>>>(data, N);

use_data(data, N);

Read-only copy will be
created during prefetch

CPU and GPU reads
will not fault

38

READ DUPLICATION
Use cases

Useful during initial stages of porting – lots of CPU code using the same structures

Other examples: mesh connectivity, matrix coefficients, control state

11/13/

2017

Concurrent execution
(only halos are duplicated)

CPU

GPU

Serialized execution
(whole grid is duplicated)

CPU

CPU
GPU

CPU
GPU

39

DIRECT MAPPING
Preferred location and direct access

cudaMemAdviseSetPreferredLocation

Set preferred location to avoid migrations

First access will page fault and establish mapping

cudaMemAdviseSetAccessedBy

Pre-map data to avoid page faults wherever possible

First access avoid page fault when possible

Actual data location can be anywhere

11/13/

2017

40

DIRECT MAPPING
Use case: HPGMG

Hybrid implementation with Unified Memory: fine grids on GPU, coarse grids on CPU

Implicit CPU<->GPU communication during restriction and interpolation phases

11/13/

2017

V-CYCLE

G
P
U

C
P
U

THRESHOLD

F-CYCLE

H2DD2H

41

DIRECT MAPPING
Use case: HPGMG

Problem: excessive faults and migrations at CPU-GPU crossover point

Solution: pin coarse levels to CPU and map them to GPU page tables

Pre-Pascal: allocate data with cudaMallocHost or malloc + cudaHostRegister

11/13/

2017

no page faults

42

DIRECT MAPPING
Use case: HPGMG

CUDA 8 solution with performance hints (works with cudaMallocManaged)

11/13/

2017

// set preferred location to CPU to avoid migrations
cudaMemAdvise(ptr, size, cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId);

// keep this region mapped to my GPU to avoid page faults
cudaMemAdvise(ptr, size, cudaMemAdviseSetAccessedBy, myGpuId);

// prefetch data to CPU and establish GPU mapping
cudaMemPrefetchAsync(ptr, size, cudaCpuDeviceId, cudaStreamLegacy);

20-30% estimated performance improvement on Tesla P100

43

LANGUAGE ECOSYSTEM OVERVIEW

CUDA-Fortran CUDA C++OpenACC OpenMP 4OpenCL

PGI CompilerGCC*
NV Compilers

Clang*

NVVM NVVM

LLVM*
[NVPTX]

PTX**

GPU microcode

Parallelism
Models

Compute
Toolchains

** open specification

[ptxas]

*denotes OSSlibcuda.so

nvidia.ko

For NVIDIA GPUs

44

OSS TOOLCHAIN POSSIBILITIES

CUDA C++OpenACC OpenMP 4OpenCL

GCC*
Clang*

LLVM*
[SPIR-V]

SPIR-V?

GPU microcode

Parallelism
Models

Compute
Toolchains

[codegen]*

*denotes OSS

nouveau*

For NVIDIA GPUs

Vulkan

[Vulkan toolchain]

