
RED HAT GLUSTER TECHSESSION
CONTAINER NATIVE STORAGE
OPENSHIFT + RHGS

MARCEL HERGAARDEN
SR. SOLUTION ARCHITECT, RED HAT BENELUX

April 2017

2

AGENDA

●  Why OpenShift?
●  The Journey So Far for OpenShift Storage
●  What does Red Hat ship today
●  Future outlook

3

Why OpenShift?

Linux for App/Dev-Centric IT

●  The “cluster” is the computer

●  The scope of the OS is now the “cluster”- schedules
workloads across clusters (unified compute substrate)

●  Orchestrators (like Kubernetes, Marathon, Swarm) are
the heart of this new OS

Welcome to OpenShift !
●  Red Hat’s new OS product:

 -> Kubernetes for enterprise + Add-ons

●  Effectively a next generation RHEL!
●  Why?
○ Consistent application run time across the hybrid cloud
○  Anti lock-in abstraction layer
○ Runs everywhere including proprietary clouds, Virtual

and OSP! (similar like RHEL does)

APPLICATION

Abstraction Across Hybrid Cloud
DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

DEVELOPER
TOOLING

MANAGEMENT
TOOLS

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A

W
S

- A

ZU
R

E

- G
O

O
G

LE

OpenShift provides a scale-out,
“cluster is the computer platform” to
deploy fully-orchestrated multi-container
applications.

Built on RHEL Atomic Host in the
immutable infrastructure paradigm,
the docker project, OCI, etcd,
kubernetes, systemd.

Application is defined in abstraction
from Infrastructure provider details,
works across different cloud providers,
integrates with infrastructure services.

Fully Open Source, Standards-based,
Pluggable.

OpenShift

 RHEL / Atomic Host

Docker / OCI Kubernetes
Registry

Host Automation
Infrastructure Service Integration (Storage, Network, Identity,...)

Log / Metrics Security

OPEN
ISV ECOSYSTEM
APPLICATION CONTENT

RHEL History
Breaking Vertical Integration

MAINFRAME

Complete vertical
integration
Vendor-controlled
HW/OS/Ecosystem.

UNIX

Vertical integration of
infrastructure & app
platform

Semi-open ecosystem.

RHEL

Completely Open HW and
ISV ecosystem with RHEL
as the neutral enterprise
app platform

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

RHEL

H
Y

B
R

ID
 IM

FR
A

S

TR
U

C
TU

R
E

H
Y

B
R

ID
 IM

FR
A

S

TR
U

C
TU

R
E

H
Y

B
R

ID
 IM

FR
A

S

TR
U

C
TU

R
E

OpenShift

 RHEL / Atomic Host

Docker / OCI Kubernetes
Registry

Host Automation
Infrastructure Service Integration (Storage, Network, Identity,...)

Log / Metrics Security
Build Automation CI/CD Deployment Auto
Self Service Service Catalog Extensions ...

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

Storage Network Identity ...

S
tand A

lone /
B

are M
etal

R
H

E
V

R
H

E
L O

S
P

V
M

W
are

P
U

B
LIC

 C
LO

U
D

- A

W
S

- A

ZU
R

E

- G
O

O
G

LE

Application Runtimes
C, Java, Python, Ruby, Perl, NodeJS, .NET, PHP, GO ...

Middleware
EAP, JWS,
FUSE ...

Packaged Service
Database, Messaging,
Analytics, BxMS,
Instrumentation Tools ...

Custom Application Code

Developer Studio

CDK

3rd Party Developer
Tools:
Che, Visual Studio, ...

Ansible Automation

P
roprietary E

nterprise V
irtualization

V
ertically Integrated P

ublic C
loud

Breaking Vertical Integration with OpenShift

CloudForms
Single Pane of Glass
Management,
Container
Management
Policy Management

Ansible Automation

Satellite Content
Management &
Infra Deployment

Infrastructure-specific
management tools -
OSP Director, HW, ...

3rd Party Management
tools

Red Hat Insights
Predictive Mmgt

Public cloud & proprietary
private cloud are driving vertical
integration and lock-in with
pseudo-standards.
 - Just like UNIX.

Red Hat offers a neutral runtime
for an open ecosystem on
hybrid infrastructure, disrupting
the vertical integration of
proprietary vendors.
- Just like RHEL.

The Journey So Far

Container Storage Use Cases

Local Storage for Container Images
Registry

Persistent Storage

Container Image Repository
●  Needs strong read-after-write consistency guarantees

•  Multiple registries write to the same back-end

●  Few Terabytes suffice for most enterprise registries
•  Red Hat Container Registry ~ 3 TB

●  OpenShift uses NFS as the default registry backend

•  Replace NFS with Red Hat Gluster Storage

●  Registries often need to be federated for enterprises with multiple sites

Registry

Persistent Storage

●  Containers became popular with stateless apps
○  This was only true for a few months
○  Enterprises adopting containers need persistent storage

●  A new application packaging does not do away with the need for

needing persistent storage for storing application state, data and
config.

●  When containers go away and come back they still need the data-
store

●  Persistent Storage is key for enterprise container adoption
●  Red Hat championed the cause for storage in upstream Kubernetes

○  Red Hat engineers worked through spring and summer of 2015

to add storage orchestration functionality to Kubernetes
○  Added drivers for a variety of storage layers
○  OpenShift 3.1 release in November 2015 had storage

orchestration built-in and had the richest set of storage drivers.

Red Hat & Kubernetes
Storage Orchestration

Storage provided by a dedicated Red
Hat Gluster Storage Cluster over the
network

Storage consumed using Kubernetes
PV and PVCs

Red Hat Gluster Storage can run on
bare metal or VMs

Enterprise Grade Storage in addition to
in-box NFS, local storage.
Storage and compute can scale
independently

Nov 2015
OpenShift 3.1 - Container Ready Storage

●  As a first-step in our
journey to create the
Container-Native Storage
solution we containerized
Gluster

●  Pushed it to Red Hat
Container Registry

●  Validated that it could
pool and serve out
storage from local hosts

March 2016
Containerization of Red Hat Gluster Storage

●  Red Hat Gluster Storage runs inside
OpenShift in a container
(in Kubernetes pods)

●  Application and storage containers
can be co-located

●  There’s exactly one RHGS container
per host

●  Uses host networking, not overlay
●  Use OpenShift templates to deploy
●  Use a dynamic volume allocator

(Heketi) to automate volume creation

July 2016
Launch Container-Native Storage

What is available today

RHGS is supported Everywhere!

●  Container Ready Storage, serving out storage to OpenShift
○  RHGS in stand-alone bare-metal storage clusters
○  RHGS inside VMs on bare-metal hosts using local disks
○  RHGS inside VMs fronting Enterprise Storage Arrays

•  RHGS sits between OpenShift and Storage Arrays
•  LUNs are served out as RHGS bricks

○  RHGS in AWS, Azure, Google Cloud

●  Container-Native Storage
○  RHGS runs containerized, inside OpenShift Container Platform
○  CNS runs anywhere OpenShift Container Platform runs!

Container Storage Deployments

Red Hat

OpenShift + Gluster Storage

How does it all work

●  CNS: Container Native Storage
Providing dynamic persistent storage for OpenShift with GlusterFS
in a hyper-converged fashion

●  Heketi: the high-level service interface to Gluster
Manages the lifecycle of volumes in multiple Gluster clusters.

 Openshift ó Heketi ó Gluster

What is CNS … and Heketi

●  OpenShift/Kubernetes
○  dynamic glusterfs provisioner
○  glusterfs plugin

●  Heketi
○  high-level service interface for Gluster volume lifecycle management

●  glusterFS
○  one or more glusterfs clusters
○  running hyper-converged in OpenShift

●  cns-deploy
○  tool to deploy gluster and heketi into an existing openshift cluster

Main components of CNS

●  Pod: group of one or more containers that form an entity
●  Persistent Volume (PV): to be mounted by application pod
●  Provisioner: to provide PVs upon request
●  Plugin: mechanism to mount the PV, referenced in PV
●  Persistent Volume Claim (PVC): mechanism for a user to request

a PV
●  Access types for volumes:

○  RWO - read write once (single node)
○  RWX - read write many (multiple nodes)
○  ROX - read only many (multiple nodes)

●  Flavors of provisioning: dynamic and static

Persistent Storage “jargon” in OpenShift

●  Storage Admin pre-creates storage volumes

●  OCP Admin pre-creates a set of persistent
volumes

●  Static provisioner choses existing PV based on
type and size from PVC

Static Provisioning (pre-OCP 3.4)

Static Provisioning (pre OCP 3.4)

Flow of commands (SP)

PVC for Static Provisioner

●  A Storage Class (SC):
○  Created by admin
○  Describes the storage properties
○  References a (dynamic) provisioner

Dynamic Provisioning (in general)

●  A Storage Class (SC):
○  Created by admin
○  Describes the storage properties
○  References a (dynamic) provisioner

●  PVC (created by user): references to a Storage Class

Dynamic Provisioning (in general)

●  A Storage Class (SC):
○  Created by admin
○  Describes the storage properties
○  References a (dynamic) provisioner

●  PVC (created by user): references to a Storage Class
●  Provisioner (from SC): creates PV of the requested size

Dynamic Provisioning (in general)

●  A Storage Class (SC):
○  Created by admin
○  Describes the storage properties
○  References a (dynamic) provisioner

●  PVC (created by user): references to a Storage Class
●  Provisioner (from SC): creates PV of the requested size

●  User can then mount the PV within application pod

Dynamic Provisioning (in general)

●  PVC references to the glusterfs provisioner
•  GlusterFS provisioner extracts details from PVC
•  Provisioner tells Heketi to create a volume of given size and class

•  Heketi looks for a Gluster cluster that can satisfy the request
•  If found, Heketi tells the Gluster instance to create the volume

•  Gluster creates the requested volume
•  Heketi hands Volume details back to the Provisioner

•  Provisioner creates PV and puts the Gluster volume details into it
•  Provisioner puts Glusterfs as the mount plugin into the PV
•  Provisioner returns PV to the caller/enduser

●  Caller receives the PV and can now use it within a pod

PV creation: GlusterFS dynamic provisioner workflow

Dynamic Provisioning (OCP 3.4)

●  the OpenShift HOST has glusterfs-client installed

●  the OpenShift HOST mounts the gluster volume

●  the Gluster mount of the HOST is bind-mounted
into the application container

GlusterFS mount plugin

Demo of Dynamic Provisioning

Details on Containerization

● Gluster is running as pods
● Aggregating HOST disk devices into volumes
● Gluster storage nodes are tied to OpenShift nodes

(using the hosts disks devices...)
● Gluster nodes on some, not necessarily on all

OpenShift worker nodes
● Application pods can be on the same OpenShift

nodes

Gluster Cluster inside OpenShift

●  containerized systemd
•  (running multiple processes: glusterd, brick servers, ...)

●  privileged container (systemd, access host /dev, ...)
●  startup script
●  host /dev bind-mounted
●  bind-mount config

•  /etc/glusterfs, /var/lib/glusterd, /var/log/glusterfs
●  uses host network

•  gluster ip’s need to be constant
•  gluster config tied to the node
•  performance

about Gluster containers

● High-level service interface for managing the lifecycle of
gluster volumes

● RESTful API and CLI ("heketi-cli")
● Manages either one or multiple Gluster clusters
● Capabilities: create, expand, delete volumes (more to come)
● Hides the “nitty gritty” details of volume creation from caller
● Simply takes the volume size and desired durability type
● Automatically finds cluster and disks to satisfy the request
● Stores its state within a database (currently Bolt DB)
● https://github.com/heketi/heketi

about Heketi

●  Runs as a single container pod
●  Heketi Pod can move within the cluster
●  Database needs to be persistent
⇒ therefore stored within a Gluster volume J

about the Heketi container

Inside a Heketi managed cluster,
Never mess with Gluster Volumes manually !

Warning

CNS Deploy

●  New in OCP/CNS 3.4
●  Set it all up by using a single command: “cns-deploy”
●  Project / community:

https://github.com/gluster/gluster-kubernetes
●  Takes topology file to describe Disk devices, Gluster nodes

and Heketi
●  Deploys the Gluster Cluster (upon request)

○  Gluster is deployed as a DaemonSet
●  Deploys the Heketi pod

Set it all up by using: cns-deploy

●  Openshift cluster installed
●  One or more masters
●  A cluster admin user must be created and logged in as that user
●  Three or more worker nodes local storage to host gluster nodes
●  The Gluster enabled nodes need:

○  firewall ports open: 24007,24008,2222,49152:49664
●  All openshift nodes need to have the glusterfs-client installed
●  The heketi pod can run anywhere, its logs should be persistent
●  Need a management machine from where to run oc commands, heketi-cli,

and cns-deploy
○  (e.g. a Master node), will need to have cns-deploy installed

Pre-requisites before running cns-deploy

Demo of cns-deploy

●  Originally only root UID==GID==0 could access a PV
●  As of CNS 3.4, the dynamic provisioner automatically

assigns a GID (otherwise unused) to a PV
●  All users belonging to this group have write access
●  The requesting user makes sure that his pod runs under a

user belonging to this group
●  Admin configures range from which the provisioner choses

the GID in the SC

New: GID-security

●  Layout of gluster processes
○  Glusterd
○  Brick daemons
○  Possibly more daemons (snapshot, quota, …)

●  ⇒ Memory Requirements
 ~ 32GB of free/reserved memory per Gluster node (pod) for
 hosting 100 replica-3 Volumes

●  Current glusterd has a limit compute resources at around 100
volumes
Note: mounting gluster volumes also requires some memory
○  reserve similar amounts for the hosts to mount

Scaling

Future Outlook

●  Larger RHGS volume density per 3-node cluster

●  Broader support for RWO workloads

●  S3 access

Key Asks from Customers

●  Scaling improvements (memory requirements/complexity)
Gluster

●  Improved day-2-day maintenance support
●  Gluster as OpenShift registry
●  RWO support with Gluster Block access (iscsi)
●  S3-object access for application pods

Development Roadmap - Overview

●  Today there is one process per Gluster brick

●  With BrickMux: run many bricks within one glusterfsd process

Each process will consume one TCP port, instead of each brick doing
so.

Brick Multiplexing

●  A single file in a Gluster volume exported as an iSCSI target
●  Host mounts iSCSI target
●  iSCSI mount is bind-mounted into application pod

○  ⇒ For the pod it is no different than file!

●  ⇒ better scalability in number of volumes
●  ⇒ better fit for performance requirements from RWO workloads
●  ⇒ better fit for access model

Proper RWO Support using iSCSI

●  Gluster Swift is a service sitting on top of a Gluster mount

●  Provides an S3-plugin for S3-API access (put/get/delete)

●  Directories in a Gluster vol will represent s3-buckets

●  Via Gluster Swift/S3-plugin, these buckets will be made available to
application pods

S3 Object Access

OpenShift + RHGS roadmap

THANK YOU

