

RED HAT GLUSTER STORAGE TECHNICAL PRESENTATION

MARCEL HERGAARDEN Sr. Solution Architect Benelux

APRIL, 2017

INTRODUCTION

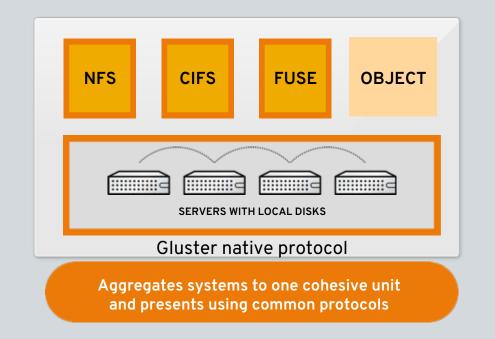
RED HAT GLUSTER STORAGE

Open source, software-defined storage for unstructured file data at petabyte scale

RED HAT GLUSTER STORAGE ADVANTAGES

OPEN Open, software-defined distributed file and object storage system	 Based on GlusterFS open source community project Uses proven local file system (XFS) Data is stored in native format
SCALABLE No Metadata Server	 Uses an elastic hashing algorithm for data placement Uses local filesystem's xattrs to store metadata Nothing shared scale-out architecture
ACCESSIBLE Multi-Protocol the Same Data	 Global name space NFS, SMB, Object (SWIFT+S3), Gluster native protocol Posix compliant
MODULAR No Kernel Dependencies	 GlusterFS is based on filesystem in userspace (FUSE) Modular stackable arch allows easy addition of features without being tied to any kernel version
ALWAYS-ON High-Availability across data, systems and applications	 Synchronous replication with self-healing for server failure Asynchronous geo-replication for site failure

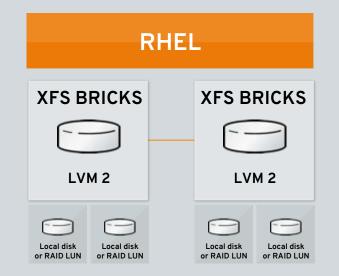
TERMINOLOGY


- **Brick:** basic unit of storage, realized as mount point
- **Subvolume:** a brick after being processed by at least one translator
- Volume: logical collection of bricks / subvolumes

- **glusterd:** process to manage glusterfsd processes on the server
- **glusterfsd:** process to manage one specific brick
- GFID: 128 bit identifier of file in GlusterFS
- (Trusted) Storage Pool: Group of GlusterFS servers that know and trust each other

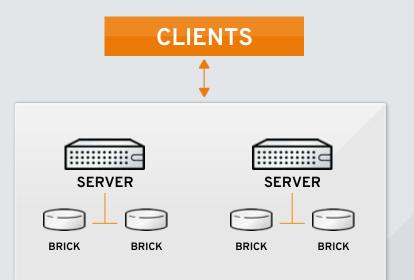
GLUSTER ARCHITECTURE

Distributed scale out storage using industry standard hardware

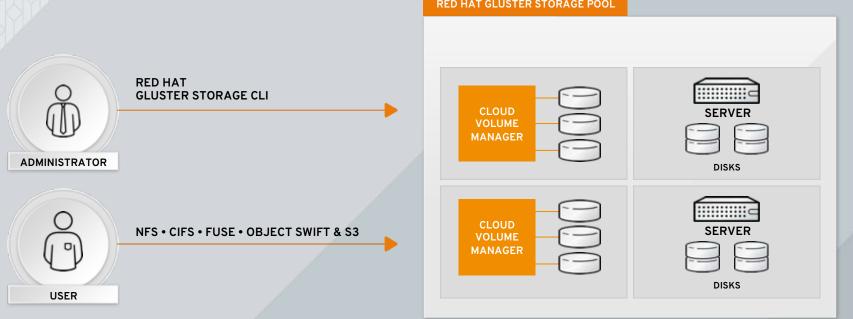

WHAT IS A SYSTEM?

Can be physical, virtual or cloud

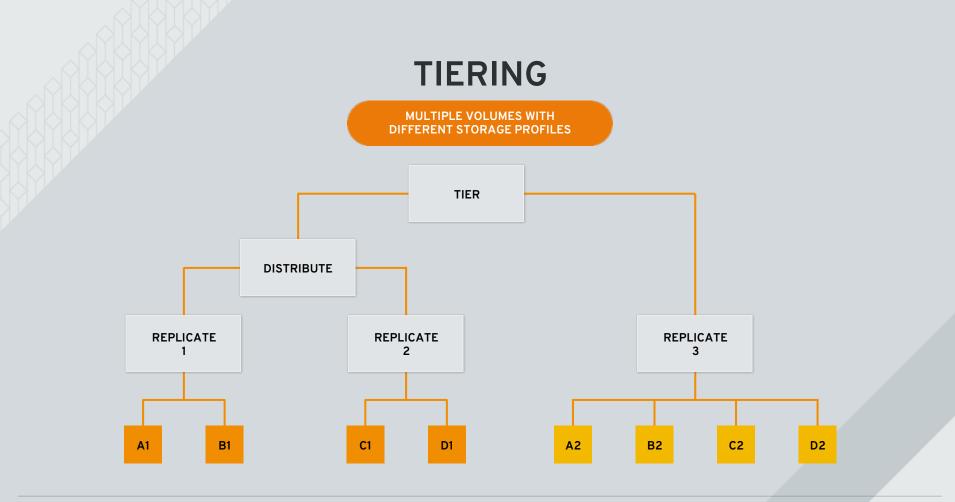
ANATOMY OF A SYSTEM


RHEL and Gluster make disk resources clustered and available as bricks using proven technology such as LVM and XFS

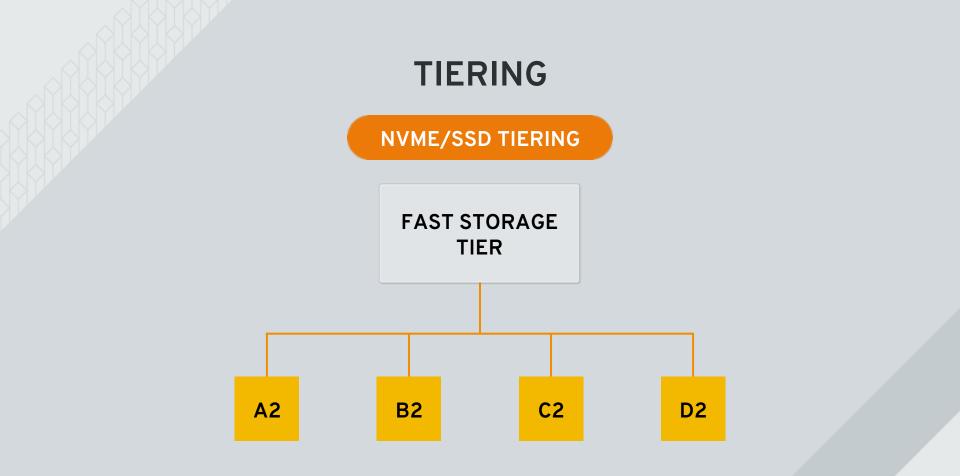
GLUSTER VOLUME


Bricks coming from multiple hosts become one addressable unit

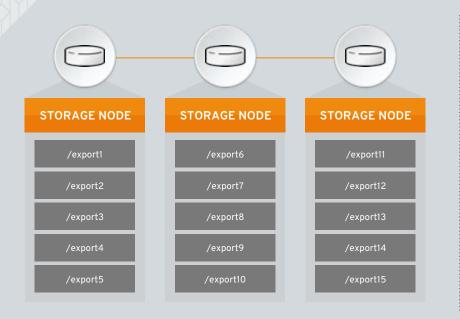
- High availability as needed
- Load balanced data
- Managed by Gluster



RED HAT GLUSTER STORAGE ARCHITECTURE

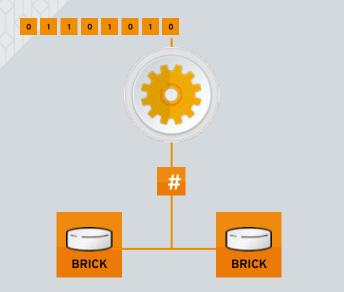


RED HAT GLUSTER STORAGE POOL


DATA PLACEMENT

BASIC COMPONENT CONCEPTS

BRICKS



A Brick is the combination of a node and file system (hostname:/dir)

- Each brick inherits limits of underlying file system (XFS)
- Red Hat Gluster Storage operates at the brick level, not the node level
- Ideally, each brick in a volume should be the same size

ELASTIC HASH ALGORITHM

No Central Metadata Server

- Suitable for unstructured data storage
- No single point of failure

Elastic Hashing

- Files assigned to virtual volumes
- Virtual volumes assigned to multiple bricks
- Volumes are easily reassigned on-the-fly

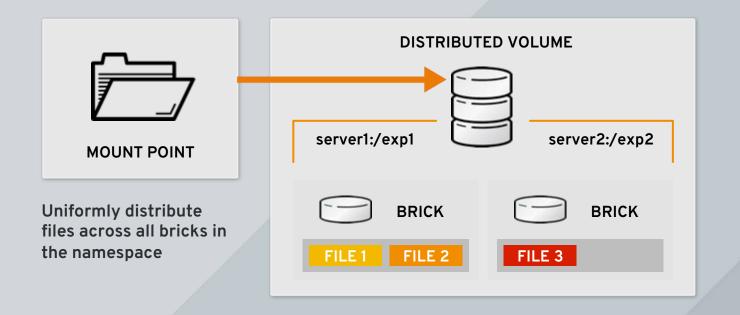
Location Hashed on Filename

- No performance bottleneck
- Eliminates risk scenarios

GLUSTER VOLUMES

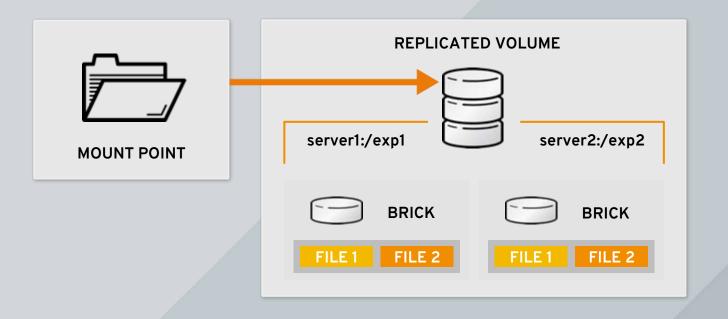
A Volume is a number of bricks >1, exported by Red Hat Gluster Storage

- Volumes have administrators assigned names
- A brick can be a member of one volume
- Data in different volumes physically exists on different bricks
- Volumes can be mounted on clients

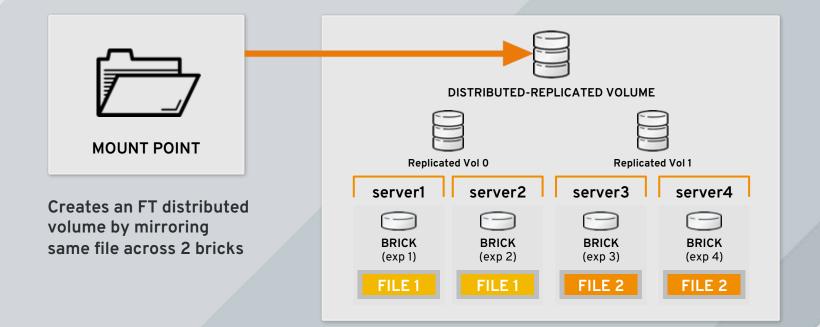

DATA PLACEMENT STRATEGIES

VOLUME TYPE	CHARACTERISTICS
Distributed	 Distributes files across bricks in the volume Used where scaling and redundancy requirements are not important, or provided by other hardware or software layers
Replicated	 Replicates files across bricks in the volume Used in environments where high availability and high reliability are critical Protection provided by software
Distributed-Replicated	 Offers improved read performance in most environments Used in environments where high reliability and scalability are critical
Erasure Coded	 Sharded Volume type Protection without dual or triple replication Economical alternative, very suitable for archive like workload types
Tiered	 NVME/SSD Volume Tier Performance enhancement for workloads with often requested files and small files

DEFAULT DATA PLACEMENT

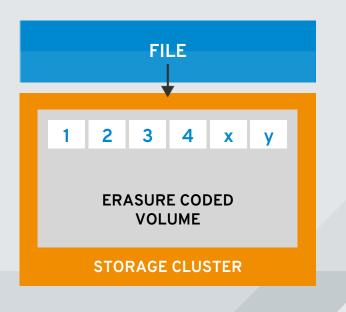

Distributed Volume

DEFAULT DATA PLACEMENT


Replicated Volume

FAULT-TOLERANT DATA PLACEMENT

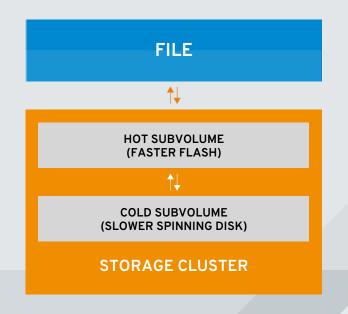
Distributed-Replicated Volume



ERASURE CODING

Storing more data with less hardware

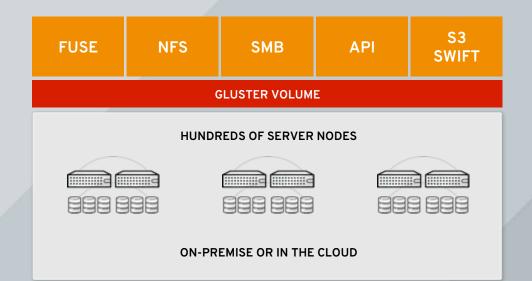
- RECONSTRUCT corrupted or lost data
- ELIMINATES the need for RAID
- CONSUMES FAR LESS SPACE than replication
- **APPROPRIATE** for capacity-optimized use cases.



TIERING

Cost-effective flash acceleration

- AUTOMATED promotion and demotion of data between "hot" and "cold" sub volumes
- **BASED** on frequency of access.

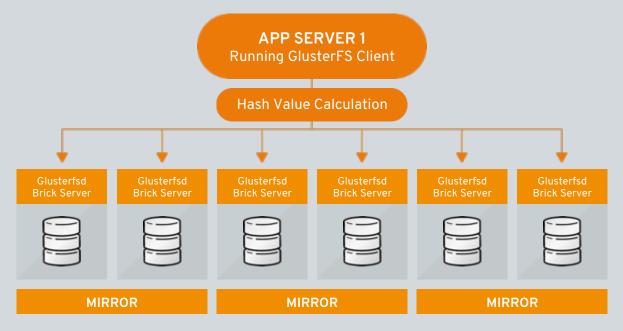


DATA ACCESSIBILITY

MULTI-PROTOCOL ACCESS

Primarily accessed as scale-out file storage with optional APIs, Swift or S3 object

GlusterFS NATIVE CLIENT


- **BASED ON FUSE KERNEL MODULE,** which allows the file system to operate entirely in userspace
- SPECIFY MOUNT to any GlusterFS server
- NATIVE CLIENT fetches volfile from mount server, then communicates directly with all other nodes to access data

Load inherently balanced across distributed volumes
 Recommended for high concurrency & high write performance

GlusterFS NATIVE CLIENT

Clients talk directly to the data bricks based on elastic hash

Accessibility from UNIX and Linux systems

- **STANDARD NFS** connects to NFS Ganesha process on storage node
- MOUNT GLUSTERFS VOLUME from any storage node
- NFS GANESHA includes network lock manager to synchronize locks
- LOAD BALANCING managed externally
- STANDARD AUTOMOUNTER is supported.
- SUPPORTED FEATURES: ACLs, NFSv4, Kerberos auth

Better performance reading many small files from a single client

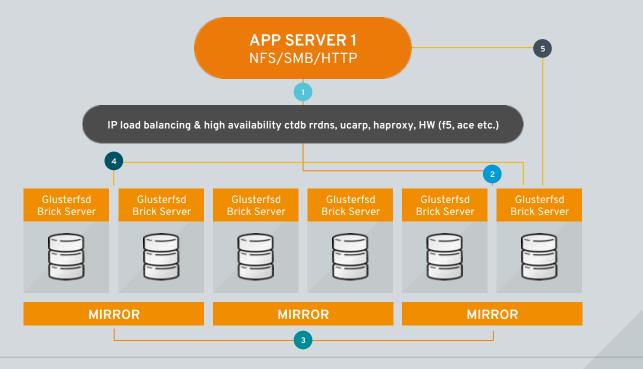
Ganesha NFS

Scalable & Secure NFSv4 client support

- **PROVIDES** client access with simplified failover and failback in the case of a node or network failure.
- INTRODUCES ACLs for additional security
- KERBEROS authentication
- **DYNAMIC** export management.

SMB/CIFS

Accessibility from Windows systems

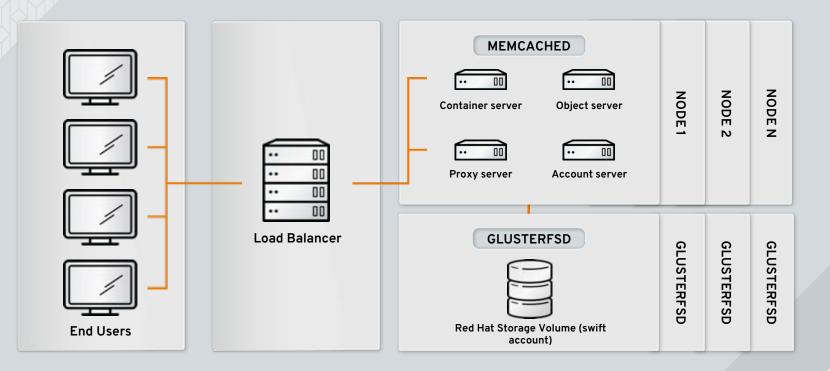

- **STORAGE NODE** uses Samba with winbind to connect with AD
- SMB CLIENTS can connect to any storage node running Samba
- SMB VERSION 3 supported
- LOAD BALANCING managed externally
- CTDB is required for Samba clustering

Samba uses RHGS gfapi library to communicate directly with GlusterFS server process without going through FUSE

NFS & CIFS DATA FLOW

Clients talk to the mounted storage node, then directed to the data bricks

OBJECT ACCESS


of GlusterFS Volumes

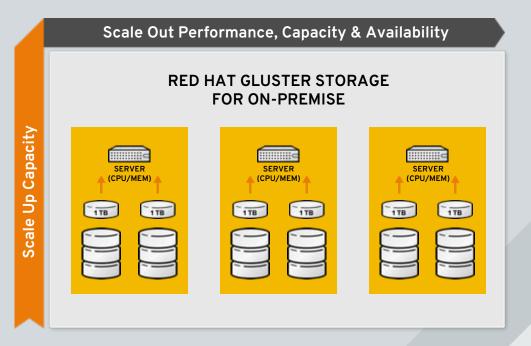
- **BUILT UPON** OpenStack's Swift object storage system, can also do S3
- **BACK-END FILE SYSTEM** for OpenStack Swift Accounts as GlusterFS volumes
- **STORE AND RETRIEVE** files using the REST interface
- **SUPPORT INTEGRATION** with SWAuth and Keystone authentication service

Implements objects as files and directories under the container ("Swift/S3 on File")

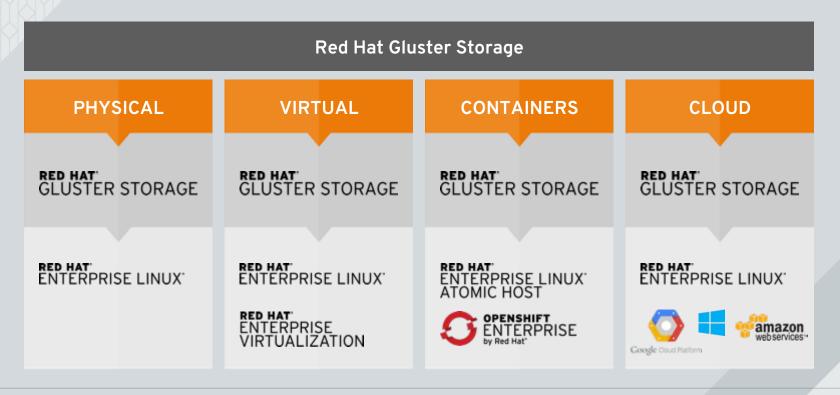
OBJECT STORE ARCHITECTURE

DEPLOYMENT

DEPLOYMENT IN PUBLIC CLOUDS

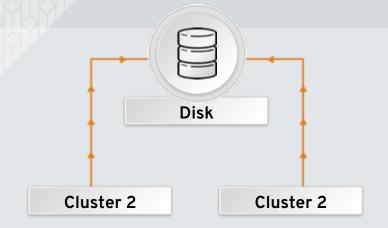


CHOICE OF DEPLOYMENT


Single, Global namespace

- Deploys on Red Hat-supported servers and underlying storage: DAS, JBOD
- Scale-out linearly
- Replicates synchronously and asynchronous

HOW IS GLUSTER DEPLOYED?



DATA PROTECTION

AVOIDING SPLIT-BRAIN

Server Side Quorum

- SERVER-SIDE QUORUM is based on the liveliness of glusterd daemon
- VOLUME LEVEL enforcement of quorum
- NETWORK OUTAGE breaker switch based on percentage ratio
- TRIGGERED BY ACTIVE NODES is more than 50% of the total storage nodes
- **QUORUM ENFORCEMENT** will require an arbitrator in the trusted storage pool

gluster volume set <volname> cluster.server-quorum-type none/server # gluster volume set all cluster.server-quorum-ratio <percentage%>

SERVER-SIDE QUORUM

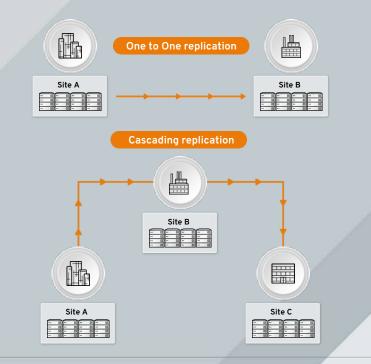
Scenarios

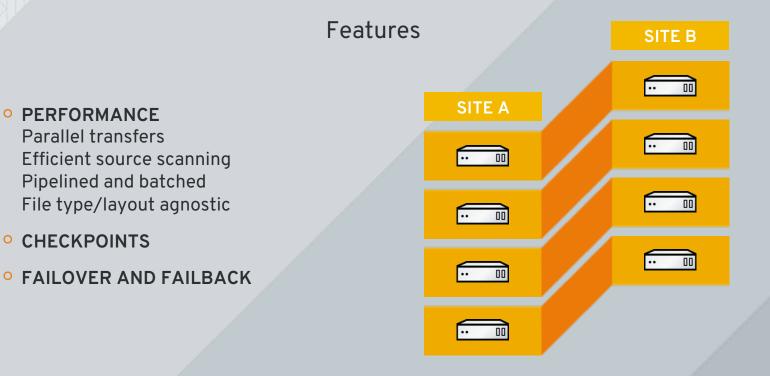
In a storage pool with 4-nodes (A, B, C and D) in a 2X2 distributed replicated configuration, A and B are replicated and C and D are replicated. The quorum ratio is set to the default value of > 50%

Node A dies, and a write destined for A « » B pair arrives	 Write will happen to B When A comes back online, self-heal will kick in to fix the discrepancy No change in this behavior with or without quorum enabled
Node A dies, and a write destined for C « » D pair arrives	 Write will happen to C and D. No change in this behavior with or without quorum enabled
If both A & B die, a write destined for the A « » B pair arrives	 Quorum is enabled, and the quorum ratio is not met. All the bricks in A, B, C, and D will go down. Quorum is not enabled. Write will fail, and bricks in C & D will continue to be alive
If both A & B die, a write destined for the C « » D pair arrives	 Quorum is enabled, and the quorum ratio is not met. All the bricks in A, B, C, and D will go down. Quorum is not enabled. Write to C & D will succeed

CLIENT SIDE QUORUM

Avoiding Split-Brain


Cluster.quorum-type	Cluster.quorum-type	Behavior
None	Not applicable	Quorum not in effect
Auto	Not applicable	 Allow writes to a file only if more than 50% of the total number of bricks Exception: For replica count=2, first brick in the pair must be online to allow writes.
Fixed	1 thru replica-count	The minimum number of bricks that must be active in a replica-set to allow writes.


GEO-REPLICATION

Multi-site content distribution

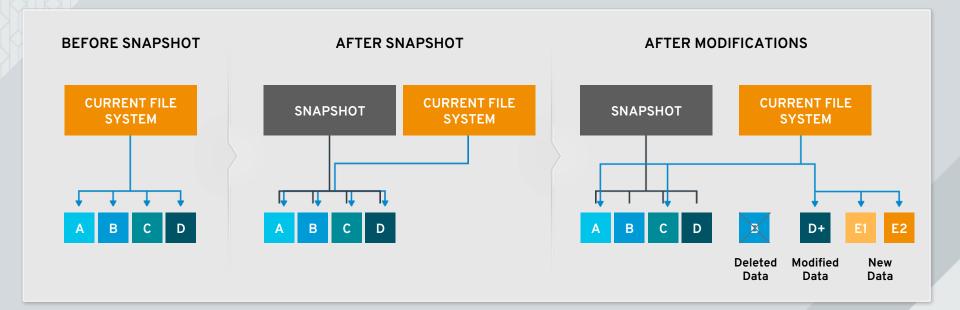
- Asynchronous across LAN, WAN, or Internet
- Master-slave model, cascading possible
- Continuous and incremental
- Multiple configurations
 - One to one
 - One to many
 - Cascading

GEO-REPLICATION

GEO REPLICATION V.S. REPLICATED VOLUMES

Geo-Replication	Replicated Volumes
Mirrors data across geographically distributed trusted storage pools. Provides high-availability.	Mirrors data across bricks within one trusted storage pool.
Backups of data for disaster recovery.	Provides high-availability.
Asynchronous replication: checks for changes in files. Syncs them on detecting differences.	Synchronous replication: each and every file operation is applied to all the bricks
Potential of data loss: minutes/hours	Potential of data loss: none

GLUSTER VOLUME SNAPSHOTS


- Point-in-time state of storage system/data
- Volume level, ability to create, list, restore, and delete
- LVM2 based, operates only on thin-provisioned volumes

- Produces Crash
 Consistent image
- Support a max of 256 snapshots per volume
- Snapshot can be taken on one volume at a time

- Snapshot names need to be cluster-wide unique
- Managed via CLI
- User serviceable snapshots

RED HAT GLUSTER STORAGE

USING SNAPSHOTS

gluster snapshot list [volname]

2

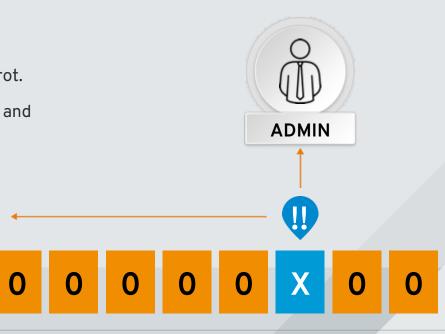
3

4

5

gluster snapshot restore <snapname>

gluster snapshot delete <snapname>


mount -t glusterfs <hostname>:/snaps/<snapname>/<volname>
 <mountdir>

BIT ROT DETECTING

Detection of silent data corruption

- RED HAT GLUSTER STORAGE 3.1 provides a mechanism to scan data periodically and detect bit-rot.
- **CHECKSUMS** are computed when files are accessed and compared against previously stored values.
- IF THEY DO NOT MATCH an error is logged for the storage admin.

(Erasure Coding, Tiering, Bit-rot Detection and NFS-Ganesha)

DISK UTILIZATION AND CAPACITY MANAGEMENT

Quota

• CONTROL THE DISK UTILIZATION at both a directory and volume level

- TWO LEVELS of quota limits: Soft and hard
- WARNING MESSAGES issued on reaching soft quota limit
- WRITE FAILURES with EDQUOTA message after hard limit is reached
- HARD AND SOFT quota timeouts
- **THE DEFAULT SOFT LIMIT** is an attribute of the volume that is a percentage

JOBS IN THE QUOTA SYSTEM

Accounting

- MARKER TRANSLATOR loaded on each brick of the volume
- ACCOUNTING happens in the background
- UPDATE is sent upwards up to the root of the volume

JOBS IN THE QUOTA SYSTEM

Enforcement

The enforcer updates its 'view' of directory's disk usage on the incidence of a file operation

Enforcer uses quotad to get the aggregated disk usage of a directory

JOBS IN THE QUOTA SYSTEM

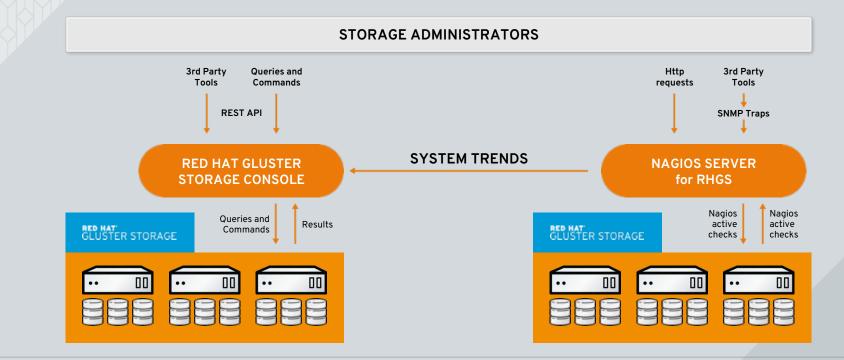
Aggregator (quotad)

- QUOTAD IS A DAEMON that serves volume-wide disk usage of a directory
- QUOTAD IS PRESENT on all nodes in the cluster
- ONE QUOTAD per node
- QUOTAD MANAGES all the volumes on which quota is enabled

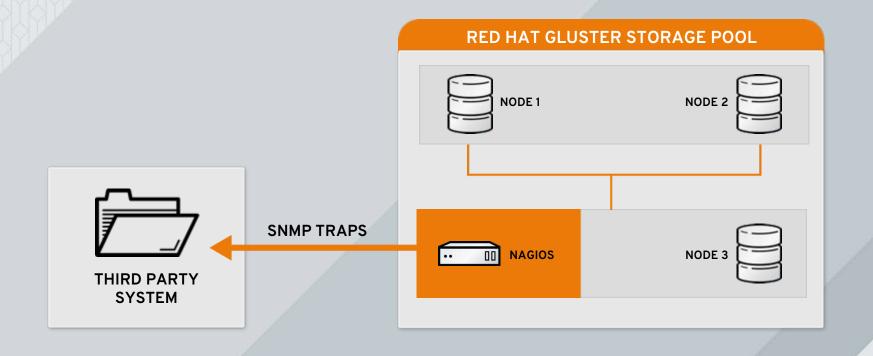
MONITORING STORAGE USING NAGIOS

- **BASED ON NAGIOS** open IT infrastructure monitoring framework
- MONITOR LOGICAL ENTITIES: Cluster, volume, brick, node
- **MONITOR PHYSICAL ENTITIES:** CPU, disk, network
- ALERTING VIA SNMP when critical components fails
- **REPORTING:** Historical record of outages, events, notifications
- INTERFACE WITH NAGIOS Web Console and/or dashboard view

MONITORING SCENARIOS



Support SNMP traps for all scenarios


FUNCTIONAL ARCHITECTURE

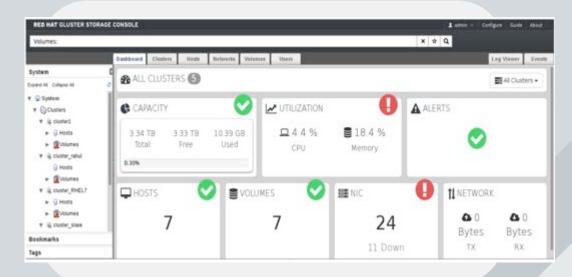
of Red Hat Gluster Storage monitoring

NAGIOS DEPLOYED ON RED HAT GLUSTER NODE

SIMPLIFIED AND UNIFIED STORAGE MANAGEMENT

Single view for converged storage and compute

Storage operations


- Intuitive user interface
- Volume management
- On-premise and public cloud

Virtualization and storage

 Shared management with Red Hat Enterprise Virtualization Manager

Provisioning

- Installation and configuration
- Update management
- O Lifecycle management
 - Familiar Red Hat Enterprise Linux tools

SECURITY

Network Encryption at Rest and In Transit

- SUPPORTS network encryption using TLS/SSL for authentication and authorization, in place of the home grown authentication framework used for normal connections
- SUPPORT encryption in transit and transparent encryption (at rest)
- TWO TYPES OF ENCRYPTION:
 - I/O encryption encryption of the I/O connections between the Red Hat Gluster Storage clients and servers
 - Management encryption encryption of the management (glusterd) connections within a trusted storage pool

THANK YOU