
es.redhat.com

facebook.com/redhatinc
@RedHatIberia
Red Hat EMEA

RESUMEN EJECUTIVO

Mientras las organizaciones en todo el mundo adoptan arquitecturas de aplicaciones basadas en
contenedores, los desarrolladores deben adaptar las implementaciones de software existentes
(originalmente implementadas en la infraestructura tradicional) para lograr un entorno de
plataforma en contenedores. Este whitepaper presenta cinco temas de interés fundamentales
para la implementación de aplicaciones en contenedores y las estrategias de instrumentación
relacionadas que aprovechan las populares tecnologías de open source y nativas para
contenedores.

​CONFIGURACIÓN EXTERNALIZADA

En general, la entrega continua en entornos de contenedores se basa en el principio de que la
imagen de un contenedor es un artefacto inmutable y que se puede certificar. Esto implica que la
misma imagen probada en un entorno de QA (control de calidad), por ejemplo, se implementa sin
cambios en el siguiente entorno, en la secuencia de canales de entrega e integración continuas
(CI/CD). Sin embargo, algunas configuraciones de aplicaciones suelen estar destinadas a alternar
entre entornos por un motivo justificado. Algunos ejemplos comunes de configuraciones de
aplicaciones específicas del entorno incluyen cadenas de conexión de bases de datos externas,
endpoints de interfaces de programación de aplicaciones (API) públicas e indicadores de
activación y desactivación de funciones. A fin de preservar la inmutabilidad del contenedor, la
configuración específica del entorno se debe cargar desde una fuente externa.

Las arquitecturas de software tradicionales suelen emplear una técnica en la que las aplicaciones
consumen datos de la configuración específica del entorno ubicados en un sistema de archivos
adjunto a una máquina que aloja las aplicaciones. Bajo este enfoque, se asume que una aplicación
determinada se implementa en un host predecible o en un conjunto de ellos.

Las plataformas como Kubernetes y OpenShift usan un algoritmo de programación para evaluar
la infraestructura disponible y luego asignan de forma dinámica los contenedores a los host en el
clúster. Un contenedor puede asignarse a cualquier nodo de host que cumpla con los criterios del
algoritmo de programación. En consecuencia, la información de configuración de las aplicaciones
debe estar disponible en cualquier lugar del clúster.

Los enfoques modernos para proporcionar configuración de aplicaciones en un entorno de
contenedores tienen un principio básico en común: proporcionar datos de configuración a través
de un endpoint de servicios.

El servidor Spring Cloud Config es un conocido servicio de proveedor de configuración de
aplicaciones de open source. De forma predeterminada, el servicio expone un endpoint RESTful
que devuelve archivos de propiedad de configuración que se conservan en un repositorio Git. La
comunidad Spring también proporciona un cliente del lado de las aplicaciones para recuperar
información de configuración. Al usar estos componentes, se puede configurar una aplicación
Spring para que, periódicamente, sondee el servicio de proveedor de configuración y recargue su
contexto si se detectan cambios. Esta estrategia requiere una instancia en ejecución de servidor
Spring Cloud Config y un almacén de datos de configuración como un repositorio Git alojado.

5 INSTRUMENTATION STRATEGIES
FOR ARCHITECTING CONTAINERIZED
APPLICATIONS (5 ESTRATEGIAS DE
INSTRUMENTACIÓN PARA LA ARQUITECTURA
DE APLICACIONES EN CONTENEDORES)

David Gordon

WHITEPAPER

https://www.redhat.com/es
http://facebook.com/redhatinc
https://twitter.com/
https://www.linkedin.com/company-beta/2816195/

2es.redhat.com WHITEPAPER  5 instrumentation strategies for architecting containerized apps

Un enfoque alternativo es la API OpenShift, que expone un objeto ConfigMap que puede representar
un archivo, como un archivo de propiedad de aplicación, al que cualquier pod puede acceder sin
autorización en el clúster. El cliente de Kubernetes de Spring Cloud Config permite que las aplicaciones
Spring usen los datos de configuración directamente desde los ConfigMap en tiempo de ejecución. Por
lo tanto, incluso sin un servidor Spring Cloud Config, una aplicación Spring implementada en OpenShift
puede usar la configuración de forma dinámica. El cliente es compatible con Red Hat® JBoss® Fuse y su
desarrollo fue upstream en la comunidad Fabric8.

​ADMINISTRACIÓN DE REGISTROS

Por lo general, los registros de las aplicaciones se escriben en archivos en un disco y es posible
suponer que el host de aplicaciones es predeterminado. Saber dónde se ejecutará un proceso de
aplicaciones significa que los equipos de operaciones saben dónde se escribirán los registros. Dado
que los contenedores se asignan de forma dinámica a los nodos cuando se implementan en una
plataforma de contenedores, como Kubernetes, una aplicación diseñada para escribir registros en su
sistema de archivos local no es eficiente. Los registros con varias convenciones de formato, nombre y
ruta terminan dispersos por toda la infraestructura del clúster. Además, el sistema de archivos local de
un contenedor suele seguir el ciclo de vida de este. Si se destruye un proceso del contenedor, todo lo
que esté escrito en el sistema de archivos local también se destruirá.

Se requiere una convención en todo el clúster para el destino y el formato del registro a fin de lograr
una solución de administración de registros nativos del contenedor. Esto se puede obtener al delegar
la responsabilidad al motor del contenedor. Por ejemplo, de forma predeterminada, el docker captura
la información de salida estándar y de errores estándar para el proceso principal de un contenedor, y
la escribe en los archivos mediante un formato con base JSON estandarizado. Estos archivos se ubican
en /etc/docker y tienen un nombre único con la id. del contenedor que produjo el registro. En este caso,
el impacto en la implementación de la aplicación es sutil: dirige todos los registros de las aplicaciones
a la salida estándar. Los marcos de registro, como Logback (el autoproclamado sucesor de log4j),
pueden dirigir los registros a una salida estándar con una configuración sencilla. Diseñe aplicaciones
basadas en contenedores para usar registradores de marcos que se pueden configurar, como Logback,
para que el formato y el destino de salida se puedan administrar de forma eficiente. Los únicos
destinos de registro deben der los de salida estándar (stdout) y error estándar (stderr).

Además de la organización del registro del contenedor, los equipos de operaciones necesitan una
estrategia para recolectar y buscar los registros dispersos por toda la infraestructura de la plataforma
del contenedor. EFK (ElasticSearch, Fluent.d, Kibana) es el nombre que se le da a una pila de tecnología
conocida por proporcionar adición de registros, almacenamiento y presentación. Los registros de
contenedores y componentes de plataforma se recopilan y se transmiten a un almacén de datos
distribuidos. Los datos se presentan con la interfaz de usuario de Kibana que se puede configurar en
gran medida, con capacidades que incluyen diseñar paneles e investigar el comportamiento individual
del pod.

​DETECCIÓN DISTRIBUIDA

La detección cuenta la historia de una transacción a medida que se propaga a través de un sistema
distribuido. Por lo tanto, la implementación de una detección debe reconstituir la información sobre
una transacción a partir de los datos recopilados de distintos componentes de un sistema.

Las aplicaciones basadas en contenedores suelen implementarse como muchos componentes que
funcionan de forma conjunta, como un sistema. Las aplicaciones diseñadas como un conjunto de
servicios modulares y que se pueden implementar de forma independiente siguen un popular estilo
conocido como "microservicios". Si bien es totalmente opcional seguir los patrones estrictos de
microservicios al desarrollar aplicaciones para implementarlas en una plataforma de contenedores,
es importante tener en cuenta que las aplicaciones implementadas en plataformas de contenedores
tienden a estar compuestas por múltiples contenedores. La detección de transacciones mediante una
arquitectura altamente distribuida o desglosada es un gran desafío, ya que las fuentes de datos para
detectar están dispersas a lo largo de un grupo de infraestructura. Actualmente, varias soluciones
de open source para la detección en sistemas distribuidos gozan de un creciente protagonismo en el
sector.

https://www.redhat.com/es

3es.redhat.com WHITEPAPER  5 instrumentation strategies for architecting containerized apps

Zipkin es un sistema de detección de open source que se ha adoptado mucho en los últimos años y ha
ganado popularidad como parte del ecosistema del marco Spring. Otras organizaciones, como Uber,
han desarrollado nuevas implementaciones de herramientas de detección distribuida.

A fin de mitigar la preocupación de que la implementación de un marco de detección pueda resultar
en un acoplamiento del sistema para esa implementación en particular, se fundó la iniciativa
de OpenTracing para crear un estándar de detección independiente de los proveedores. Las
especificaciones y convenciones semánticas descritas por la iniciativa de OpenTrancing fueron
inspiradas en su mayor parte por Zipkin. Jaeger (de Uber), en el que se reemplazaron múltiples
componentes de Zipkin, se adhiere a las convenciones de OpenTracing para mantener de forma
efectiva la capacidad de cambiar entre implementaciones compatibles con OpenTracing.

Las soluciones que cumplen con los estándares de OpenTracing permiten la flexibilidad de la
arquitectura a futuro. Algunas de las soluciones más efectivas y mejor adoptadas, como Zipkin y
Jaeger, proporcionan opciones de disponibilidad inmediata.

MÉTRICAS

La recolección de métricas de aplicaciones efectivas en entornos de contenedores presenta muchos de
los mismos cambios descritos anteriormente para registros y detección. Debido a la naturaleza efímera
de los contenedores, los endpoints de las métricas no son estáticos; eventualmente, las instancias de
contenedor terminan siendo reemplazadas por instancias actualizadas que se pueden ampliar en un
nodo diferente en el clúster. Las plataformas como Kubernetes y OpenShift usan una abstracción de
red llamada "servicio", que define un conjunto lógico de pods y una política por medio de la cual se
puede acceder a ellos. Sin embargo, un servicio de Kubernetes proporciona un endpoint de supervisión
que no es efectivo debido a que se necesitan estadísticas más detalladas sobre contenedores
individuales, en lugar de un grupo de contenedores de forma colectiva.

Prometheus es un kit de herramientas de supervisión y alerta de open source que es especialmente
popular en los contextos de microservicios. Prometheus incluye componentes para recolectar y
mostrar métricas y un menú exhaustivo de bibliotecas de instrumentación, incluido el exportador Java
Management Extension (JMX).

JMX es un estándar para la supervisión de aplicaciones Java™. Con la ayuda de los agentes de métricas
como Jolokia y Prometheus JMX Exporter, un usuario de métricas puede observar una visión global de
las métricas JMX desde un grupo de contenedores con la API de Kubernetes.

Se recomienda exponer las métricas de las aplicaciones para todos y cada uno de los componentes de
las aplicaciones en un entorno de contenedores. Considere el uso de bibliotecas de instrumentación
populares para publicar los endpoints de las métricas que cumplen con los formatos de exposición
de Prometheus. Al igual que el dominio de detección distribuida, pareciera que las métricas y la
supervisión de las aplicaciones tienden hacia una especificación comúnmente aceptada, y Prometheus
cuenta con la popularidad para postularse como el estándar por excelencia.

COMPROBACIÓN DE ESTADO

La instrumentación de las aplicaciones en contenedores con endpoints de comprobación de estado
es fundamental para las arquitecturas de autocomprobación. Las aplicaciones implementadas en la
infraestructura tradicional tienden a tener direcciones de red estáticas, y la supervisión tradicional de
las aplicaciones suele aprovechar la previsibilidad de un servicio o un endpoint de host. Debido a que
los contenedores están programados para ejecutarse en nodos de forma dinámica, los servicios de
comprobación de estado deben rastrear todas las instancias del contenedor.

Kubernetes proporciona una función que supervisa automáticamente los endpoints de comprobación
de estado y responde a los contenedores que no están en un estado adecuado. Todos los contenedores
en un clúster se supervisan, y Kubernetes tiene la capacidad de responder a las comprobaciones de
estado mediante la implementación, la eliminación o el reinicio de los pods. La aplicación debe exponer
una API para observar su estado, por lo que requiere una instrumentación menor.

https://www.redhat.com/es

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, el logotipo de Shadowman y JBoss son marcas comerciales
de Red Hat, Inc. registradas en Estados Unidos y en otros países. Linux® es la marca comercial registrada de Linus Torvalds en
EE. UU. y en otros países.

ARGENTINA
Ingeniero Butty 240, 14° piso

Ciudad de Buenos Aires
Argentina

+54 11 4329 7300

CHILE
Avda. Apoquindo N° 2827

oficina 701, Piso 7
Los Condes, Santiago, Chile

+562 2597 7000

COLOMBIA
Red Hat Colombia S.A.S

Cra 9 No. 115-06 Piso 19 Of 1906
Edificio Tierra Firme Bogota,

Colombia
+571 5088631

+52 55 8851 6400

MÉXICO
Calle Río Lerma 232

Cuauhtémoc
06500 Ciudad de México

Mexico
+52 55 8851 6400

ESPAÑA
Torre de Cristal

Paseo de la Castellana 259C
Piso 17 Norte

28046 Madrid
+34 914148800

ACERCA DE RED HAT, INC.
Red Hat es el proveedor líder
mundial de soluciones open
source empresarial, con un

enfoque impulsado por la
comunidad para la obtención

de tecnologías cloud, Linux,
middleware, almacenamiento y
virtualización de alta fiabilidad

y rendimiento. Red Hat
también ofrece servicios
de soporte, formación y

consultoría. Como eje central
de una red global de empresas,
partners y comunidades open
source, Red Hat ayuda a crear

tecnologías competentes e
innovadoras que liberan recursos
para el crecimiento y preparación

de los consumidores para el
futuro de las TI. Conozca más en

http://es.redhat.com.

facebook.com/redhatinc
@RedHatIberia
Red Hat EMEA

es.redhat.com
#f11943_0418

La instrumentación de la comprobación de estado proporciona varios niveles de efectividad.
Por ejemplo, una aplicación puede exponer un controlador aislado que devuelve un código de
respuesta de 200 HTTP cuando se invoca. Esta comprobación de estado es útil en muchos casos,
pero solo revela algunos tipos de problemas. Si una aplicación no tiene una conexión adecuada
a una base de datos, es probable que una comprobación de estado superficial en el endpoint no
detecte el problema.

Las comprobaciones de estado más efectivas realizan un inventario exhaustivo del estado de
todos los componentes y las conexiones que son fundamentales para la aplicación. Spring Boot
Actuator es una popular biblioteca de instrumentación de comprobación de estado que escanea un
contexto de aplicaciones Spring e interroga el estado de tiempo de ejecución de cada componente
que encuentra. El tipo de comprobación de estado detallado con el que es compatible Spring Boot
Actuator es altamente recomendable para las aplicaciones en contenedor.

RESUMEN

Mientras la adopción de contenedores es cada vez mayor, la migración de las aplicaciones
tradicionales intentará mantener este ritmo. Contar con un gran suministro de herramientas para
abordar las preocupaciones comunes sobre contenedores optimizará tanto el desarrollo nuevo
como la migración de aplicaciones heredadas para una implementación efectiva y con capacidad
de adaptación.

En muchos casos, las implementaciones de aplicaciones pueden ser efectivas sin cambios, ya
sean implementadas en una plataforma de contenedores o en una infraestructura tradicional.
Sin embargo, administrar de forma eficiente las aplicaciones que están compuestas por varios
contenedores y están implementadas en un grupo de infraestructura es posible mediante
tecnologías que exponen la información sobre los tiempos de ejecución de las aplicaciones y
permiten que las aplicaciones observen y respondan a las condiciones del entorno.

Estos recursos proporcionan más información sobre las tecnologías de instrumentación descritas
en el whitepaper a continuación:

•	Spring Cloud Config Kubernetes for externalized application configuration (https://github.com/
spring-cloud-incubator/spring-cloud-kubernetes)

•	Logback for application log management (https://logback.qos.ch)

•	Zipkin (https://zipkin.io) and Jaeger (http://jaegertracing.io) for distributed tracing using the
Open Tracing standard (http://opentracing.io)

•	Prometheus (https://prometheus.io) as a metrics toolkit including Prometheus JMX Exporter
(https://github.com/prometheus/jmx_exporter) for metrics publishing

•	Spring Boot Actuator (https://spring.io/guides/gs/actuator-service) for exposing deep health
check endpoints

WHITEPAPER  5 instrumentation strategies for architecting containerized apps

https://www.redhat.com/es
http://facebook.com/redhatinc
https://twitter.com/
https://www.linkedin.com/company-beta/2816195/
https://www.redhat.com/es
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://logback.qos.ch
https://zipkin.io
http://jaegertracing.io
http://opentracing.io
https://prometheus.io
https://github.com/prometheus/jmx_exporter
https://spring.io/guides/gs/actuator-service

