facebook.com/redhatinc
@RedHatlberia
Red Hat EMEA

es.redhat.com

Q redhat

S INSTRUMENTATION STRATEGIES

FOR ARCHITECTING CONTAINERIZED
APPLICATIONS (5 ESTRATEGIAS DE
INSTRUMENTACION PARA LA ARQUITECTURA
DE APLICACIONES EN CONTENEDORES)

David Gordon

WHITEPAPER

RESUMEN EJECUTIVO

Mientras las organizaciones en todo el mundo adoptan arquitecturas de aplicaciones basadas en
contenedores, los desarrolladores deben adaptar las implementaciones de software existentes
(originalmente implementadas en la infraestructura tradicional) para lograr un entorno de
plataforma en contenedores. Este whitepaper presenta cinco temas de interés fundamentales
para la implementacién de aplicaciones en contenedores y las estrategias de instrumentacién
relacionadas que aprovechan las populares tecnologias de open source y nativas para
contenedores.

CONFIGURACION EXTERNALIZADA

En general, la entrega continua en entornos de contenedores se basa en el principio de que la
imagen de un contenedor es un artefacto inmutable y que se puede certificar. Esto implica que la
misma imagen probada en un entorno de QA (control de calidad), por ejemplo, se implementa sin
cambios en el siguiente entorno, en la secuencia de canales de entrega e integracién continuas
(CI/CD). Sin embargo, algunas configuraciones de aplicaciones suelen estar destinadas a alternar
entre entornos por un motivo justificado. Algunos ejemplos comunes de configuraciones de
aplicaciones especificas del entorno incluyen cadenas de conexién de bases de datos externas,
endpoints de interfaces de programacién de aplicaciones (API) publicas e indicadores de
activaciéon y desactivacién de funciones. A fin de preservar la inmutabilidad del contenedor, la
configuracion especifica del entorno se debe cargar desde una fuente externa.

Las arquitecturas de software tradicionales suelen emplear una técnica en la que las aplicaciones
consumen datos de la configuracién especifica del entorno ubicados en un sistema de archivos
adjunto a una magquina que aloja las aplicaciones. Bajo este enfoque, se asume que una aplicacién
determinada se implementa en un host predecible o en un conjunto de ellos.

Las plataformas como Kubernetes y OpenShift usan un algoritmo de programacién para evaluar
la infraestructura disponible y luego asignan de forma dindmica los contenedores a los host en el
clister. Un contenedor puede asignarse a cualquier nodo de host que cumpla con los criterios del
algoritmo de programacion. En consecuencia, la informacion de configuracién de las aplicaciones
debe estar disponible en cualquier lugar del clUster.

Los enfoques modernos para proporcionar configuracién de aplicaciones en un entorno de
contenedores tienen un principio bdsico en comun: proporcionar datos de configuracién a través
de un endpoint de servicios.

El servidor Spring Cloud Config es un conocido servicio de proveedor de configuracion de
aplicaciones de open source. De forma predeterminada, el servicio expone un endpoint RESTful
que devuelve archivos de propiedad de configuracién que se conservan en un repositorio Git. La
comunidad Spring también proporciona un cliente del lado de las aplicaciones para recuperar
informacion de configuracién. Al usar estos componentes, se puede configurar una aplicacién
Spring para que, periédicamente, sondee el servicio de proveedor de configuracién y recargue su
contexto si se detectan cambios. Esta estrategia requiere una instancia en ejecucién de servidor
Spring Cloud Config y un almacén de datos de configuracién como un repositorio Git alojado.


https://www.redhat.com/es
http://facebook.com/redhatinc
https://twitter.com/
https://www.linkedin.com/company-beta/2816195/

Q redhat

Un enfoque alternativo es la APl OpenShift, que expone un objeto ConfigMap que puede representar
un archivo, como un archivo de propiedad de aplicacién, al que cualquier pod puede acceder sin
autorizacion en el cltster. El cliente de Kubernetes de Spring Cloud Config permite que las aplicaciones
Spring usen los datos de configuracién directamente desde los ConfigMap en tiempo de ejecucién. Por
lo tanto, incluso sin un servidor Spring Cloud Config, una aplicacién Spring implementada en OpenShift
puede usar la configuracién de forma dindmica. El cliente es compatible con Red Hat® JBoss® Fuse y su
desarrollo fue upstream en la comunidad Fabric8.

ADMINISTRACION DE REGISTROS

Por lo general, los registros de las aplicaciones se escriben en archivos en un disco y es posible
suponer que el host de aplicaciones es predeterminado. Saber donde se ejecutara un proceso de
aplicaciones significa que los equipos de operaciones saben donde se escribirdn los registros. Dado
que los contenedores se asignan de forma dindmica a los nodos cuando se implementan en una
plataforma de contenedores, como Kubernetes, una aplicacién disefiada para escribir registros en su
sistema de archivos local no es eficiente. Los registros con varias convenciones de formato, nombre y
ruta terminan dispersos por toda la infraestructura del clUster. Ademas, el sistema de archivos local de
un contenedor suele sequir el ciclo de vida de este. Si se destruye un proceso del contenedor, todo lo
que esté escrito en el sistema de archivos local también se destruira.

Se requiere una convencion en todo el clUster para el destino y el formato del registro a fin de lograr
una solucién de administracién de registros nativos del contenedor. Esto se puede obtener al delegar
la responsabilidad al motor del contenedor. Por ejemplo, de forma predeterminada, el docker captura
lainformacién de salida estandar y de errores estandar para el proceso principal de un contenedor, y
la escribe en los archivos mediante un formato con base JSON estandarizado. Estos archivos se ubican
en /etc/docker y tienen un nombre Unico con la id. del contenedor que produjo el registro. En este caso,
el impacto en la implementacién de la aplicacion es sutil: dirige todos los registros de las aplicaciones
a la salida estandar. Los marcos de registro, como Logback (el autoproclamado sucesor de log4j),
pueden dirigir los registros a una salida estandar con una configuracién sencilla. Disefie aplicaciones
basadas en contenedores para usar registradores de marcos que se pueden configurar, como Logback,
para que el formato y el destino de salida se puedan administrar de forma eficiente. Los Unicos
destinos de registro deben der los de salida estdndar (stdout) y error estdndar (stderr).

Ademds de la organizacion del registro del contenedor, los equipos de operaciones necesitan una
estrategia para recolectar y buscar los registros dispersos por toda la infraestructura de la plataforma
del contenedor. EFK (ElasticSearch, Fluent.d, Kibana) es el nombre que se le da a una pila de tecnologia
conocida por proporcionar adicion de registros, almacenamiento y presentacién. Los registros de
contenedores y componentes de plataforma se recopilan y se transmiten a un almacén de datos
distribuidos. Los datos se presentan con la interfaz de usuario de Kibana que se puede configurar en
gran medida, con capacidades que incluyen disefiar paneles e investigar el comportamiento individual
del pod.

DETECCION DISTRIBUIDA

La deteccién cuenta la historia de una transaccién a medida que se propaga a través de un sistema
distribuido. Por lo tanto, la implementacion de una deteccién debe reconstituir la informacién sobre
una transaccién a partir de los datos recopilados de distintos componentes de un sistema.

Las aplicaciones basadas en contenedores suelen implementarse como muchos componentes que
funcionan de forma conjunta, como un sistema. Las aplicaciones disefiadas como un conjunto de
servicios modulares y que se pueden implementar de forma independiente siguen un popular estilo
conocido como "microservicios". Si bien es totalmente opcional sequir los patrones estrictos de
microservicios al desarrollar aplicaciones para implementarlas en una plataforma de contenedores,
es importante tener en cuenta que las aplicaciones implementadas en plataformas de contenedores
tienden a estar compuestas por multiples contenedores. La deteccién de transacciones mediante una
arquitectura altamente distribuida o desglosada es un gran desafio, ya que las fuentes de datos para
detectar estan dispersas a lo largo de un grupo de infraestructura. Actualmente, varias soluciones
de open source para la deteccién en sistemas distribuidos gozan de un creciente protagonismo en el
sector.

es.redhat.com WHITEPAPER 5 instrumentation strategies for architecting containerized apps 2


https://www.redhat.com/es

es.redhat.com

Q redhat

Zipkin es un sistema de deteccién de open source que se ha adoptado mucho en los Ultimos afios y ha
ganado popularidad como parte del ecosistema del marco Spring. Otras organizaciones, como Uber,
han desarrollado nuevas implementaciones de herramientas de deteccién distribuida.

A fin de mitigar la preocupacién de que la implementacién de un marco de deteccién pueda resultar
en un acoplamiento del sistema para esa implementacién en particular, se fundé la iniciativa

de OpenTracing para crear un estandar de deteccién independiente de los proveedores. Las
especificaciones y convenciones semanticas descritas por la iniciativa de OpenTrancing fueron
inspiradas en su mayor parte por Zipkin. Jaeger (de Uber), en el que se reemplazaron multiples
componentes de Zipkin, se adhiere a las convenciones de OpenTracing para mantener de forma
efectiva la capacidad de cambiar entre implementaciones compatibles con OpenTracing.

Las soluciones que cumplen con los estdndares de OpenTracing permiten la flexibilidad de la
arquitectura a futuro. Algunas de las soluciones mas efectivas y mejor adoptadas, como Zipkiny
Jaeger, proporcionan opciones de disponibilidad inmediata.

METRICAS

La recoleccién de métricas de aplicaciones efectivas en entornos de contenedores presenta muchos de
los mismos cambios descritos anteriormente para registros y deteccién. Debido a la naturaleza efimera
de los contenedores, los endpoints de las métricas no son estéaticos; eventualmente, las instancias de
contenedor terminan siendo reemplazadas por instancias actualizadas que se pueden ampliar en un
nodo diferente en el cldster. Las plataformas como Kubernetes y OpenShift usan una abstraccién de
red llamada "servicio", que define un conjunto légico de pods y una politica por medio de la cual se
puede acceder a ellos. Sin embargo, un servicio de Kubernetes proporciona un endpoint de supervisién
que no es efectivo debido a que se necesitan estadisticas mas detalladas sobre contenedores
individuales, en lugar de un grupo de contenedores de forma colectiva.

Prometheus es un kit de herramientas de supervision y alerta de open source que es especialmente
popular en los contextos de microservicios. Prometheus incluye componentes para recolectar y
mostrar métricas y un menu exhaustivo de bibliotecas de instrumentacion, incluido el exportador Java
Management Extension (JMX).

JMX es un estdndar para la supervision de aplicaciones Java™. Con la ayuda de los agentes de métricas
como Jolokia y Prometheus JMX Exporter, un usuario de métricas puede observar una visién global de
las métricas JMX desde un grupo de contenedores con la APl de Kubernetes.

Se recomienda exponer las métricas de las aplicaciones para todos y cada uno de los componentes de
las aplicaciones en un entorno de contenedores. Considere el uso de bibliotecas de instrumentacién
populares para publicar los endpoints de las métricas que cumplen con los formatos de exposicion

de Prometheus. Al igual que el dominio de deteccién distribuida, pareciera que las métricas y la
supervisién de las aplicaciones tienden hacia una especificaciéon cominmente aceptada, y Prometheus
cuenta con la popularidad para postularse como el estdndar por excelencia.

COMPROBACION DE ESTADO

La instrumentacién de las aplicaciones en contenedores con endpoints de comprobacién de estado
es fundamental para las arquitecturas de autocomprobacién. Las aplicaciones implementadas en la
infraestructura tradicional tienden a tener direcciones de red estéticas, y la supervisién tradicional de
las aplicaciones suele aprovechar la previsibilidad de un servicio o un endpoint de host. Debido a que
los contenedores estdn programados para ejecutarse en nodos de forma dindmica, los servicios de
comprobaciéon de estado deben rastrear todas las instancias del contenedor.

Kubernetes proporciona una funcién que supervisa automaticamente los endpoints de comprobacién
de estado y responde a los contenedores que no estdn en un estado adecuado. Todos los contenedores
en un cluster se supervisan, y Kubernetes tiene la capacidad de responder a las comprobaciones de
estado mediante la implementacién, la eliminacién o el reinicio de los pods. La aplicacién debe exponer
una API para observar su estado, por lo que requiere una instrumentacién menor.

WHITEPAPER 5 instrumentation strategies for architecting containerized apps 3


https://www.redhat.com/es

ACERCA DE RED HAT, INC.

Red Hat es el proveedor lider
mundial de soluciones open
source empresarial, con un
enfoque impulsado por la
comunidad para la obtencion
de tecnologias cloud, Linux,
middleware, almacenamiento y
virtualizacién de alta fiabilidad
y rendimiento. Red Hat
también ofrece servicios

de soporte, formacién y
consultoria. Como eje central
de una red global de empresas,
partners y comunidades open
source, Red Hat ayuda a crear
tecnologias competentes e
innovadoras que liberan recursos
para el crecimiento y preparacion
de los consumidores para el
futuro de las TI. Conozca mds en
http://es.redhat.com.

ARGENTINA

Ingeniero Butty 240, 14° piso
Ciudad de Buenos Aires
Argentina

+54 11 4329 7300

CHILE

Avda. Apoquindo N°© 2827
oficina 701, Piso 7

Los Condes, Santiago, Chile
+562 2597 7000

COLOMBIA

Red Hat Colombia S.A.S

Cra 9 No. 115-06 Piso 19 Of 1906
Edificio Tierra Firme Bogota,
Colombia

+5715088631

+52 55 8851 6400

MEXICO

Calle Rio Lerma 232
Cuauhtémoc

06500 Ciudad de México
Mexico

+52 55 8851 6400

ESPANA

Torre de Cristal

Paseo de la Castellana 259C
Piso 17 Norte

28046 Madrid

+34 914148800

facebook.com/redhatinc
@RedHatlberia
Red Hat EMEA

es.redhat.com
#f11943_0418

Q, redhat

WHITEPAPER 5instrumentation strategies for architecting containerized apps

La instrumentacién de la comprobacién de estado proporciona varios niveles de efectividad.

Por ejemplo, una aplicacién puede exponer un controlador aislado que devuelve un cédigo de
respuesta de 200 HTTP cuando se invoca. Esta comprobacién de estado es Util en muchos casos,
pero solo revela algunos tipos de problemas. Si una aplicacién no tiene una conexién adecuada

a una base de datos, es probable que una comprobacién de estado superficial en el endpoint no
detecte el problema.

Las comprobaciones de estado mas efectivas realizan un inventario exhaustivo del estado de
todos los componentes y las conexiones que son fundamentales para la aplicacién. Spring Boot
Actuator es una popular biblioteca de instrumentacion de comprobacion de estado que escanea un
contexto de aplicaciones Spring e interroga el estado de tiempo de ejecucién de cada componente
que encuentra. El tipo de comprobacién de estado detallado con el que es compatible Spring Boot
Actuator es altamente recomendable para las aplicaciones en contenedor.

RESUMEN

Mientras la adopcién de contenedores es cada vez mayor, la migracién de las aplicaciones
tradicionales intentard mantener este ritmo. Contar con un gran suministro de herramientas para
abordar las preocupaciones comunes sobre contenedores optimizard tanto el desarrollo nuevo
como la migracion de aplicaciones heredadas para una implementacién efectiva y con capacidad
de adaptacion.

En muchos casos, las implementaciones de aplicaciones pueden ser efectivas sin cambios, ya
sean implementadas en una plataforma de contenedores o en una infraestructura tradicional.
Sin embargo, administrar de forma eficiente las aplicaciones que estdn compuestas por varios
contenedores y estan implementadas en un grupo de infraestructura es posible mediante
tecnologias que exponen la informacién sobre los tiempos de ejecucién de las aplicaciones y
permiten que las aplicaciones observen y respondan a las condiciones del entorno.

Estos recursos proporcionan mds informacién sobre las tecnologias de instrumentacién descritas
en el whitepaper a continuacién:

¢ Spring Cloud Config Kubernetes for externalized application configuration (https://github.com/
spring-cloud-incubator/spring-cloud-kubernetes)

¢ Logback for application log management (https://logback.qos.ch)

¢ Zipkin (https://zipkin.io) and Jaeger (http://jaegertracing.io) for distributed tracing using the
Open Tracing standard (http://opentracing.io)

¢ Prometheus (https://prometheus.io) as a metrics toolkit including Prometheus JMX Exporter
(https://github.com/prometheus/jmx_exporter) for metrics publishing

¢ Spring Boot Actuator (https://spring.io/quides/gs/actuator-service) for exposing deep health
check endpoints

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, el logotipo de Shadowman y JBoss son marcas comerciales
de Red Hat, Inc. registradas en Estados Unidos y en otros paises. Linux® es la marca comercial registrada de Linus Torvalds en
EE. UU.y en otros paises.


https://www.redhat.com/es
http://facebook.com/redhatinc
https://twitter.com/
https://www.linkedin.com/company-beta/2816195/
https://www.redhat.com/es
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://logback.qos.ch
https://zipkin.io
http://jaegertracing.io
http://opentracing.io
https://prometheus.io
https://github.com/prometheus/jmx_exporter
https://spring.io/guides/gs/actuator-service

