
Ryan Cook Scott Collier

Reference Architectures
2017
Deploying OpenShift Container
Platform 3.5 on Amazon Web
Services

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5
on Amazon Web Services

Ryan Cook

Scott Collier
refarch-feedback@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
The purpose of this document is to provide guidelines and considerations for installing and
configuring Red Hat OpenShift Container Platform on Amazon Web Services.

. .

. .

. .

. .

. .

. .

Table of Contents

COMMENTS AND FEEDBACK

CHAPTER 1. EXECUTIVE SUMMARY

CHAPTER 2. COMPONENTS AND CONFIGURATION
2.1. ELASTIC COMPUTE CLOUD INSTANCE DETAILS
2.2. ELASTIC LOAD BALANCERS DETAILS
2.3. SOFTWARE VERSION DETAILS
2.4. REQUIRED CHANNELS
2.5. AWS REGION REQUIREMENTS
2.6. PERMISSIONS FOR AMAZON WEB SERVICES
2.7. VIRTUAL PRIVATE CLOUD (VPC)
2.8. NAT GATEWAY
2.9. SECURITY GROUPS
2.10. ROUTE53
2.11. AMAZON MACHINE IMAGES
2.12. IDENTITY AND ACCESS MANAGEMENT
2.13. DYNAMIC INVENTORY
2.14. BASTION
2.15. NODES
2.16. OPENSHIFT PODS
2.17. ROUTER
2.18. REGISTRY
2.19. AUTHENTICATION

CHAPTER 3. DEPLOYING OPENSHIFT
3.1. PREREQUISITES FOR PROVISIONING
3.2. PROVISIONING THE ENVIRONMENT
3.3. POST ANSIBLE DEPLOYMENT
3.4. POST PROVISIONING RESULTS

CHAPTER 4. OPERATIONAL MANAGEMENT
4.1. VALIDATE THE DEPLOYMENT
4.2. GATHERING HOSTNAMES
4.3. RUNNING DIAGNOSTICS
4.4. CHECKING THE HEALTH OF ETCD
4.5. DEFAULT NODE SELECTOR
4.6. MANAGEMENT OF MAXIMUM POD SIZE
4.7. YUM REPOSITORIES
4.8. CONSOLE ACCESS
4.9. EXPLORE THE ENVIRONMENT
4.10. TESTING FAILURE
4.11. UPDATING THE OPENSHIFT DEPLOYMENT

CHAPTER 5. PERSISTENT STORAGE
5.1. PERSISTENT VOLUMES
5.2. STORAGE CLASSES
5.3. CLOUD PROVIDER SPECIFIC STORAGE
5.4. CONTAINER-NATIVE STORAGE OVERVIEW
5.5. CNS INSTALLATION OVERVIEW
5.6. ADDITIONAL CNS STORAGE DEPLOYMENTS (OPTIONAL)
5.7. CONTAINER-READY STORAGE OVERVIEW
5.8. CRS FOR OPENSHIFT

4

5

6
7
7
8
8
9
9
9

10
10
18
19
19
19
20
20
21
21
22
22

24
24
30
37
37

41
41
41
42
42
43
43
44
45
47
53
57

59
59
59
59
60
64
72
76
83

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

5.9. RWO PERSISTENT STORAGE EXAMPLE (OPTIONAL)
5.10. RWX PERSISTENT STORAGE (OPTIONAL)
5.11. DELETING A PVC (OPTIONAL)

CHAPTER 6. EXTENDING THE CLUSTER
6.1. PREREQUISITES FOR ADDING A NODE
6.2. INTRODUCTION TO ADD-NODE.PY
6.3. ADDING AN APPLICATION NODE
6.4. ADDING AN INFRASTRUCTURE NODE
6.5. VALIDATING A NEWLY PROVISIONED NODE

CHAPTER 7. MULTIPLE OPENSHIFT DEPLOYMENTS
7.1. PREREQUISITES
7.2. DEPLOYING THE ENVIRONMENT

CHAPTER 8. CONCLUSION

APPENDIX A. REVISION HISTORY

APPENDIX B. CONTRIBUTORS

APPENDIX C. INSTALLATION FAILURE
C.1. INVENTORY
C.2. RUNNING THE UNINSTALL PLAYBOOK
C.3. MANUALLY LAUNCHING THE INSTALLATION OF OPENSHIFT

APPENDIX D. FAILURE WHEN ADDING NODE(S)

APPENDIX E. TROUBLESHOOTING CNS DEPLOYMENT FAILURES

85
88
93

94
94
94
94
95
96

97
97
97

100

101

103

104
104
105
106

107

108

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

2

Table of Contents

3

COMMENTS AND FEEDBACK

In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architecture. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but
allows the reader to provide their thoughts on potential improvements and topic expansion to the
papers. Feedback on the papers can be provided by emailing refarch-feedback@redhat.com.
Please refer to the title within the email.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

4

mailto:refarch-feedback@redhat.com

CHAPTER 1. EXECUTIVE SUMMARY

Red HatⓇ OpenShift Container Platform 3 is built around a core of application containers, with
orchestration and management provided by Kubernetes, on a foundation of Atomic Host and Red
Hat Enterprise Linux. OpenShift Origin is the upstream community project that brings it all together
along with extensions, to accelerate application development and deployment.

This reference environment provides a comprehensive example demonstrating how OpenShift
Container Platform 3 can be set up to take advantage of the native high availability capabilities of
Kubernetes and Amazon Web Services in order to create a highly available OpenShift Container
Platform 3 environment. The configuration consists of three OpenShift Container Platform masters,
three OpenShift Container Platform infrastructure nodes, two OpenShift Container Platform
application nodes, and native Amazon Web Services integration. In addition to the configuration,
operational management tasks are shown to demonstrate functionality.

CHAPTER 1. EXECUTIVE SUMMARY

5

CHAPTER 2. COMPONENTS AND CONFIGURATION

This chapter describes the highly available OpenShift Container Platform 3 reference architecture
environment on Amazon Web Services (AWS) that is deployed.

The image below provides a high-level representation of the components within this reference
architecture. Using Amazon Web Services (AWS), resources are highly available using a
combination of multiple availability zones, Elastic Load Balancers(ELB), and an S3 bucket.
Instances deployed are given specific roles to support OpenShift. The Bastion host limits the
external access to internal servers by ensuring that all SSH traffic passes through the Bastion host.
The master instances host the OpenShift master components such as etcd and the OpenShift API.
The Application instances are for users to deploy their containers while the Infrastructure instances
are used for the OpenShift router and registry. Authentication is managed by GitHub OAuth.
OpenShift on AWS has two cloud native storage options; Elastic Block Storage is used for the
filesystem of instances but can also be used for persistent storage in containers. The other storage
option is S3 which is object based storage. S3 is used for the persistent storage of the OpenShift
registry. The network is configured to leverage three AWS ELBs for access to the OpenShift API,
OpenShift console, and the OpenShift routers. The first ELB is for the OpenShift API and console
access originating from outside of the cluster. The second ELB is for API access within the cluster.
The third ELB is for accessing services deployed in the cluster that have been exposed through
routes. Finally, the image shows that DNS is handled by Route53. In this case the systems
engineering team is managing all DNS entries through Route53.

This reference architecture breaks down the deployment into separate phases.

Phase 1: Provision the infrastructure on AWS

Phase 2: Provision OpenShift Container Platform on AWS

Phase 3: Post deployment activities

For Phase 1, the provisioning of the environment is done using a series of Ansible playbooks that
are provided in the openshift-ansible-contrib github repo. Once the infrastructure is deployed the
playbooks will flow automatically into Phase 2. Phase 2 is the installation of OpenShift Container
Platform which is done via Ansible playbooks. These playbooks are installed by the openshift-
ansible-playbooks rpm package. The playbooks in openshift-ansible-contrib utilize the
playbooks provided by the openshift-ansible-playbooks RPM package to perform the

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

6

https://github.com/openshift/openshift-ansible-contrib/tree/master/reference-architecture

installation of OpenShift and also to configure AWS specific parameters. During Phase 2 the router
and registry are deployed. The last phase, Phase 3, concludes the deployment by confirming the
environment was deployed properly. This is done by running tools like oadm diagnostics and the
systems engineering teams validation Ansible playbook.

Note

The scripts provided in the github repo are not supported by Red Hat. They merely
provide a mechanism that can be used to build out your own infrastructure.

2.1. ELASTIC COMPUTE CLOUD INSTANCE DETAILS

Within this reference environment, the instances are deployed in multiple availability zones
in the us-east-1 region by default. Although the default region can be changed, the reference
architecture deployment can only be used in Regions with three or more availability zones.
The master instances for the OpenShift environment are m4.xlarge and contain three extra disks
used for Docker storage, OpenShift ephemeral volumes, and ETCD. The node instances are
t2.large and contain two extra disks used for Docker storage and OpenShift ephemeral volumes.
The bastion host is a t2.micro. Instance sizing can be changed in the variable files for each
installer which is covered in later chapters.

2.2. ELASTIC LOAD BALANCERS DETAILS

Three load balancers are used in the reference environment. The table below describes the load
balancer DNS name, the instances in which the ELB is attached, and the port monitored by the load
balancer to state whether an instance is in or out of service.

Table 2.1. Elastic Load Balancers

ELB Assigned Instances Port

openshift-
master.sysdeseng.com

master01-3 443

internal-openshift-
master.sysdeseng.com

master01-3 443

*.apps.sysdeseng.com infra-nodes01-3 80 and 443

Both the internal-openshift-master, and the openshift-master ELB utilize the OpenShift
Master API port for communication. The internal-openshift-master ELB uses the private
subnets for internal cluster communication with the API in order to be more secure. The
openshift-master ELB is used for externally accessing the OpenShift environment through the
API or the web interface. The openshift-master ELB uses the public subnets to allow
communication from anywhere over port 443. The *.apps ELB uses the public subnets and maps to

CHAPTER 2. COMPONENTS AND CONFIGURATION

7

infrastructure nodes. The infrastructure nodes run the router pod which then directs traffic directly
from the outside world into OpenShift pods with external routes defined.

2.3. SOFTWARE VERSION DETAILS

The following tables provide the installed software versions for the different servers that make up the
Red Hat OpenShift highly available reference environment.

Table 2.2. RHEL OSEv3 Details

Software Version

Red Hat Enterprise Linux 7.3 x86_64 kernel-3.10.0.x

Atomic-OpenShift{master/clients/node/sdn-
ovs/utils}

3.5.x.x

Docker 1.12.x

Ansible 2.2.1.x

2.4. REQUIRED CHANNELS

A subscription to the following channels is required in order to deploy this reference environment’s
configuration.

Table 2.3. Required Channels - OSEv3 Master and Node Instances

Channel Repository Name

Red Hat Enterprise Linux 7 Server (RPMs) rhel-7-server-rpms

Red Hat OpenShift Container Platform 3.5 (RPMs) rhel-7-server-ose-3.5-rpms

Red Hat Enterprise Linux 7 Server - Extras (RPMs) rhel-7-server-extras-rpms

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

8

Red Hat Enterprise Linux Fast Datapath (RHEL 7
Server) (RPMs)

rhel-7-fast-datapath-rpms

Channel Repository Name

2.5. AWS REGION REQUIREMENTS

The reference architecture environment must be deployed in a Region containing at least 3
availability zones and have 2 free elastic IPs. The environment requires 3 public and 3
private subnets. The usage of 3 public and 3 private subnets allows for the OpenShift deployment to
be highly-available and only exposes the required components externally. The subnets can be
created during the installation of the reference architecture environment deployment.

2.6. PERMISSIONS FOR AMAZON WEB SERVICES

The deployment of OpenShift requires a user that has the proper permissions by the AWS IAM
administrator. The user must be able to create accounts, S3 buckets, roles, policies, Route53
entries, and deploy ELBs and EC2 instances. It is helpful to have delete permissions in order to be
able to redeploy the environment while testing.

2.7. VIRTUAL PRIVATE CLOUD (VPC)

An AWS VPC provides the ability to set up custom virtual networking which includes subnets, IP
address ranges, route tables and gateways. In this reference implementation guide, a dedicated
VPC is created with all its accompanying services to provide a stable network for the OpenShift v3
deployment.

A VPC is created as a logical representation of a networking environment in the AWS cloud. The
following subnets and CIDR listed below are used. Substitute the values to ensure no conflict with
an existing CIDR or subnet in the environment. The values are defined in
/home/<user>/git/openshift-ansible-contrib/reference-architecture/aws-
ansible/playbooks/vars/main.yaml.

Table 2.4. VPC Networking

CIDR / Subnet Values

CIDR 10.20.0.0/16

Private Subnet 1 10.20.1.0/24

Private Subnet 2 10.20.2.0/24

CHAPTER 2. COMPONENTS AND CONFIGURATION

9

Private Subnet 3 10.20.3.0/24

Public Subnet 1 10.20.4.0/24

Public Subnet 2 10.20.5.0/24

Public Subnet 3 10.20.6.0/24

CIDR / Subnet Values

The VPC is created and a human readable tag is assigned. Six subnets are created and tagged in
the VPC. Three subnets are considered public and three subnets are private. The design of one
public and one private subnet per Availability Zone allows for high availability(HA). The public
subnets are used for the bastion instance and the two external ELBs. The bastion instance is part of
the public subnet due to its role as the SSH jumpbox. The two external ELBs allow access to the
OpenShift master and the routing of application traffic. In the public route table, an internet gateway
and routes are defined and attached to the VPC. The route table has a destination internet gateway
associated so that traffic can exit the VPC. The private subnets use the NAT Gateway to
communicate to the internet for packages, container images, and Github repositories. The private
subnets are assigned their own route table with the NAT Gateway defined. The master,
infrastructure, and application nodes are in the private network, as well as the internal-openshift-
master, which ensures the nodes cannot be accessed externally.

For more information see https://aws.amazon.com/vpc/

2.8. NAT GATEWAY

The reference architecture deployment utilizes the AWS NAT Gateway Service to ensure that
instances in the private subnets have the ability to download packages, container images, and
Github repositories. The NAT Gateway Service funnels all external traffic from private subnets to the
outside world. This allows for a smaller external footprint and does not use unneeded public IP and
public DNS entries.

2.9. SECURITY GROUPS

In this reference architecture, eight groups are created. The purpose of the security groups is to
restrict traffic from outside of the VPC to servers inside of the VPC . The security groups also are
used to restrict server to server communications inside the VPC. Security groups provide an extra
layer of security similar to a firewall. In the event a port is opened on an instance, the security group
will not allow the communication to the port unless explicitly stated in a security group. See the
tables below for details on each security group.

2.9.1. Master ELB Security Group

The Master ELB security group allows inbound access on port 443 from the internet to the ELB. The
traffic is then allowed to be forwarded to the master instances. See Figure 2.1, “AWS Master ELB

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

10

https://aws.amazon.com/vpc/

Security Group Details - Inbound” diagram and Table 2.5, “AWS Master ELB Security Group Details
- Inbound” table below.

Figure 2.1. AWS Master ELB Security Group Details - Inbound

Table 2.5. AWS Master ELB Security Group Details - Inbound

Inbound From

443 / TCP Anywhere

Table 2.6. AWS Master ELB Security Group Details - Outbound

Outbound To

443 ose_master_sg

2.9.2. Internal Master ELB Security Group

The Internal Master ELB is in the private subnet and utilizes the NAT Gateway. Traffic external from
the VPC cannot access the Internal Master ELB.

Figure 2.2. AWS Internal Master ELB Security Group Details - Inbound

CHAPTER 2. COMPONENTS AND CONFIGURATION

11

Inbound From

443 / TCP ose_node_sg

443 / TCP ose_master_sg

Table 2.7. AWS Internal Master ELB Security Group Details - Outbound

Outbound To

443 ose_master_sg

2.9.3. Bastion Security Group

The bastion security group allows inbound port SSH traffic from outside the VPC. Any connectivity via
SSH to the master, application or infrastructure nodes must go through the bastion host. Ensure the
bastion host is secured per your companies security requirements.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

12

Table 2.8. AWS Bastion Security Group Details - Inbound

Inbound From

22 / TCP Anywhere

Table 2.9. AWS Bastion Security Group Details - Outbound

Outbound To

All All

2.9.4. Master Security Group

The master security group allows traffic to the master instances from the two ELBs and nodes to
contact the OpenShift API and DNS.

Figure 2.3. AWS Master Security Group Details - Inbound

CHAPTER 2. COMPONENTS AND CONFIGURATION

13

Inbound From

8053 / TCP ose_node_sg

8053 / UDP ose_node_sg

443 / TCP ose_internal_elb_master_sg

443 / TCP ose_elb_master_sg

443 / TCP ose_node_sg

443 / TCP ose_master_sg

Table 2.10. AWS Master Security Group Details - Outbound

Outbound To

All All

2.9.5. ETCD Security Group

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

14

2.9.5. ETCD Security Group

The ETCD security group allows for the ETCD service running on the master instances to reach a
quorum. The security group allows for the ose-master-sg to communication with the ETCD for the
OpenShift master services.

Table 2.11. ETCD Security Group Details - Inbound

Inbound From

2379 / TCP ose-etcd-sg

2379 / TCP ose-master-sg

2380 / TCP ose-etcd-sg

Table 2.12. ETCD Security Group Details - Outbound

Outbound To

All All

2.9.6. Router ELB Security Group

The Router ELB security group allows inbound access on port 80 and 443. If the applications

CHAPTER 2. COMPONENTS AND CONFIGURATION

15

running on the OpenShift cluster are using different ports this can be adjusted as needed.

Figure 2.4. AWS Router ELB Security Group Details - Inbound

Inbound From

443 / TCP Anywhere

80 / TCP Anywhere

Table 2.13. AWS Router ELB Security Group Details - Outbound

Outbound To

80 ose_infra_node_sg

443 ose_infra_node_sg

2.9.7. Infrastructure Nodes Security Group

The infrastructure nodes security group allows traffic from the router security group.

Figure 2.5. AWS Infrastructure Nodes Security Group Details - Inbound

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

16

Inbound From

80 / TCP ose_router_sg

443 / TCP ose_router_sg

Table 2.14. AWS Infrastructure Nodes Security Group Details - Outbound

Outbound To

All All

2.9.8. Nodes Security Group

The node security group only allows traffic from the bastion and traffic relating to OpenShift node
services.

Figure 2.6. AWS Nodes Security Group Details - Inbound

CHAPTER 2. COMPONENTS AND CONFIGURATION

17

Inbound From

22 / TCP bastion_sg

10250 / TCP ose_master_sg

10250 / TCP ose_node_sg

4789 / UDP ose_node_sg

Table 2.15. AWS Application Nodes Security Group Details - Outbound

Outbound To

All All

2.10. ROUTE53

DNS is an integral part of a successful OpenShift Compute Platform deployment/environment. AWS
has a DNS web service, per Amazon; "Amazon Route 53 is a highly available and scalable cloud DNS
web service. It is designed to give developers and businesses an extremely reliable and cost
effective way to route end users to internet applications by translating names like

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

18

www.example.com into numeric IP addresses like 192.0.2.1 that computers use to connect to each
other."

OpenShift Compute Platform requires a properly configured wildcard DNS zone that resolves to the
IP address of the OpenShift router. For more information, please refer to the Configuring A DNS
Wildcard. In this reference architecture Route53 will manage DNS records for the OpenShift
Container Platform environment.

For more information see https://aws.amazon.com/route53/

2.10.1. Public Zone

The reference architecture environment automatically adds entries into Route53. A Hosted Zone is
required for OpenShift. A domain name can either purchased through AWS or another external
provider such as Google Domains or GoDaddy. If using a zone from an external provider ensure the
NS records point to a Route53 hosted zone. Steps will be detailed in Chapter 3 of this document.

2.11. AMAZON MACHINE IMAGES

Amazon Machine Images (AMIs) provide the required information to launch an instance. In this
guide, the gold image provided by Red Hat is used. The AMI is shared to a specific AWS account
which is priced less than the Red Hat Enterprise Linux image provided by AWS.

For more information see AWS Documentation.

2.11.1. Red Hat Gold Image

The Red Hat Cloud Access provided gold image allows Instances to be run at a cheaper cost than
using the Amazon provided RHEL image. Since a subscription is required to install OpenShift then it
is not necessary to use the Amazon provided image which has a built in charge back for the RHEL
subscription.

To register for the Red Hat Cloud Access Gold Image please see Red Hat’s Website and select the
tab for Red Hat Gold Image.

2.12. IDENTITY AND ACCESS MANAGEMENT

AWS provides IAM to securely control access to AWS services and resources for users. IAM can
allow or deny access to certain resources for user accounts and for roles within the AWS
environment. For this reference architecture, an IAM account will need access to create roles,
instances, Route53 entries, ELBs, and many more components. The predefined policy
AdministratorAccess has been proven to provide all of the access required to create the
environment defined in the this document.

During the installation of OpenShift Container Platform, one account is automatically created to
manage a S3 bucket used for the registry. A role and policy are also created to allow for attaching
and detaching of EBS volumes for persistent storage within the environment.

For more information see https://aws.amazon.com/iam/

2.13. DYNAMIC INVENTORY

CHAPTER 2. COMPONENTS AND CONFIGURATION

19

https://docs.openshift.com/container-platform/3.5/install_config/install/prerequisites.html#wildcard-dns-prereq
https://aws.amazon.com/route53/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.redhat.com/en/technologies/cloud-computing/cloud-access
https://aws.amazon.com/iam/

Ansible relies on inventory files and variables to perform playbook runs. As part of the reference
architecture provided Ansible playbooks, the inventory is created automatically using a dynamic
inventory script. The dynamic inventory script provided queries the Amazon API to display
information about EC2 instances. The dynamic inventory script is also referred to as an Ansible
Inventory script and the AWS specific script is written in python. The script can manually be executed
to provide information about the environment but for this reference architecture, it is automatically
called to generate the Ansible Inventory. For the OpenShift installation, the python script and the
Ansible module add_host allow for instances to be grouped based on their purpose to be used in
later playbooks. The reason the instances can be grouped is because during Phase 1 when the
infrastructure was provisioned AWS EC2 tags were applied to each instance. The masters were
assigned the master tag, the infrastructure nodes were assigned the infra tag, and the
application nodes were assigned the app tag.

For more information see For more information see
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

2.14. BASTION

As shown in the Figure 2.7, “Bastion Diagram” the bastion server in this reference architecture
provides a secure way to limit SSH access to the AWS environment. The master and node security
groups only allow for SSH connectivity between nodes inside of the Security Group while the bastion
allows SSH access from everywhere. The bastion host is the only ingress point for SSH in the cluster
from external entities. When connecting to the OpenShift Container Platform infrastructure, the
bastion forwards the request to the appropriate server. Connecting through the bastion server
requires specific SSH configuration. The .ssh/config is outlined in the deployment section of the
reference architecture guide.

Figure 2.7. Bastion Diagram

2.15. NODES

Nodes are AWS instances that serve a specific purpose for OpenShift. OpenShift masters are also
considered nodes. Nodes deployed on AWS can be vertically scaled before or after the OpenShift
installation using the AWS EC2 console. All OpenShift specific nodes are assigned an IAM role

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

20

http://docs.ansible.com/ansible/intro_dynamic_inventory.html

which allows for cloud specific tasks to occur against the environment such as adding persistent
volumes or removing a node from the OpenShift Container Platform cluster automatically. There are
three types of nodes as described below.

2.15.1. Master nodes

The master nodes contain the master components, including the API server, controller manager
server and ETCD. The master maintains the clusters configuration, manages nodes in its OpenShift
cluster. The master assigns pods to nodes and synchronizes pod information with service
configuration. The master is used to define routes, services, and volume claims for pods deployed
within the OpenShift environment.

2.15.2. Infrastructure nodes

The infrastructure nodes are used for the router and registry pods. These nodes could be used if the
optional components Kibana and Hawkular metrics are required. The storage for the Docker registry
that is deployed on the infrastructure nodes is S3 which allows for multiple pods to use the same
storage. AWS S3 storage is used because it is synchronized between the availability zones,
providing data redundancy.

2.15.3. Application nodes

The Application nodes are the instances where non-infrastructure based containers run. Depending
on the application, AWS specific storage can be applied such as a Elastic Block Storage
which can be assigned using a Persistent Volume Claim for application data that needs to
persist between container restarts. A configuration parameter is set on the master which ensures
that OpenShift Container Platform user containers will be placed on the application nodes by default.

2.15.4. Node labels

All OpenShift Container Platform nodes are assigned a label. This allows certain pods to be
deployed on specific nodes. For example, nodes labeled infra are Infrastructure nodes. These
nodes run the router and registry pods. Nodes with the label app are nodes used for end user
Application pods. The configuration parameter 'defaultNodeSelector: "role=app" in
/etc/origin/master/master-config.yaml ensures all projects automatically are deployed
on Application nodes.

2.16. OPENSHIFT PODS

OpenShift uses the Kubernetes concept of a pod, which is one or more containers deployed
together on one host, and the smallest compute unit that can be defined, deployed, and managed.
For example, a pod could be just a single php application connecting to a database outside of the
OpenShift environment or a pod could be a php application that has an ephemeral database.
OpenShift pods have the ability to be scaled at runtime or at the time of launch using the OpenShift
console or the oc CLI tool. Any container running in the environment is considered a pod. The pods
containing the OpenShift router and registry are required to be deployed in the OpenShift
environment.

2.17. ROUTER

CHAPTER 2. COMPONENTS AND CONFIGURATION

21

Pods inside of an OpenShift cluster are only reachable via their IP addresses on the cluster network.
An edge load balancer can be used to accept traffic from outside networks and proxy the traffic to
pods inside the OpenShift cluster.

An OpenShift administrator can deploy routers in an OpenShift cluster. These enable routes created
by developers to be used by external clients.

OpenShift routers provide external hostname mapping and load balancing to services over protocols
that pass distinguishing information directly to the router; the hostname must be present in the
protocol in order for the router to determine where to send it. Routers support the following
protocols:

HTTP

HTTPS (with SNI)

WebSockets

TLS with SNI

The router utilizes the wildcard zone specified during the installation and configuration of OpenShift.
This wildcard zone is used by the router to create routes for a service running within the OpenShift
environment to a publically accessible URL. The wildcard zone itself is a wildcard entry in Route53
which is linked using a CNAME to an ELB which performs a health check and forwards traffic to
router pods on port 80 and 443.

2.18. REGISTRY

OpenShift can build Docker images from your source code, deploy them, and manage their lifecycle.
To enable this, OpenShift provides an internal, integrated Docker registry that can be deployed in
your OpenShift environment to manage images.

The registry stores Docker images and metadata. For production environment, you should use
persistent storage for the registry, otherwise any images anyone has built or pushed into the registry
would disappear if the pod were to restart.

Using the installation methods described in this document the registry is deployed using a S3
bucket. The S3 bucket allows for multiple pods to be deployed at once for HA but also use the same
persistent backend storage. S3 is object based storage which does not get assigned to nodes in the
same way that EBS volumes are attached and assigned to a node. The bucket does not mount as
block based storage to the node so commands like fdisk or lsblk will not show information in regards
to the S3 bucket. The configuration for the S3 bucket and credentials to login to the bucket are stored
as OpenShift secrets and applied to the pod. The registry can be scaled to many pods and even
have multiple instances of the registry running on the same host due to the use of S3.

2.19. AUTHENTICATION

There are several options when it comes to authentication of users in OpenShift Container Platform.
OpenShift can leverage an existing identity provider within an organization such as LDAP or
OpenShift can use external identity providers like GitHub, Google, and GitLab. The configuration of
identification providers occurs on the OpenShift master instances. OpenShift allows for multiple
identity providers to be specified. The reference architecture document uses GitHub as the
authentication provider but any of the other mechanisms would be an acceptable choice. Roles can
be added to user accounts to allow for extra privileges such as the ability to list nodes or assign
persistent storage volumes to a project.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

22

For more information on GitHub Oauth and other authentication methods see the OpenShift
documentation.

CHAPTER 2. COMPONENTS AND CONFIGURATION

23

https://docs.openshift.com/container-platform/3.5/admin_solutions/authentication.html

CHAPTER 3. DEPLOYING OPENSHIFT

This chapter focuses on Phase 1 and 2 of the process. The prerequisites defined below are required
for a successful deployment of Infrastructure and the installation of OpenShift.

3.1. PREREQUISITES FOR PROVISIONING

The script and playbooks provided within the git repository deploys infrastructure, installs and
configures OpenShift, and scales the router and registry. The playbooks create specific roles,
policies, and users required for cloud provider configuration in OpenShift and management of a
newly created S3 bucket to manage container images.

3.1.1. Tooling Prerequisites

This section describes how the environment should be configured to use Ansible to provision the
infrastructure, install OpenShift, and perform post installation tasks.

Note

The following tasks should be performed on the workstation that the Ansible playbooks will
be launched from. The workstation can be an virtual machine, workstation, vagrant vm, or
instance running in the cloud. The most important requirement is that the system is
running RHEL 7.

3.1.1.1. Ansible Setup

Install the following packages on the system performing the provisioning of AWS infrastructure and
installation of OpenShift.

Note

The ordering of the installation of Ansible before the installation of the epelRPM is
important. If the Ansible package is intalled from epel then the version may be
incompatible with OpenShift.

$ rpm -q python-2.7
$ subscription-manager repos --enable rhel-7-server-optional-rpms
$ subscription-manager repos --enable rhel-7-server-ose-3.5-rpms
$ subscription-manager repos --enable rhel-7-fast-datapath-rpms
$ yum -y install ansible atomic-openshift-utils
$ rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-
7.noarch.rpm
$ yum -y install python2-boto \
 python2-boto3 \
 pyOpenSSL \
 git \
 python-netaddr \
 python-click \
 python-httplib2

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

24

3.1.1.2. Git Repository

3.1.1.3. GitHub Repositories

The code in the openshift-ansible-contrib repository referenced below handles the
installation of OpenShift and the accompanying infrastructure. The openshift-ansible-
contrib repository is not explicitly supported by Red Hat but the Reference Architecture team
performs testing to ensure the code operates as defined and is secure.

3.1.1.4. Directory Setup

$ cd /home/<user>/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git

To verify the repository was cloned the tree command can be used to display all of the contents of
the git repository.

$ yum -y install tree
$ tree /home/<user>/git/

... content abbreviated ...

|-- openshift-ansible-contrib

3.1.2. Authentication

As mentioned in the previous section, Authentication for the reference architecture deployment is
handled by GitHub OAuth. The steps below describe both the process for creating an organization
and performing the configuration steps required for GitHub authentication.

3.1.2.1. Create an Organization

An existing organization can be used when using GitHub authentication. If an organization does not
exist then one must be created. The ose-on-aws.py script forces an organization to be defined.
The script forces an organization due to the fact that if no organizations are provided all of GitHub
can login to the OpenShift environment. GitHub users will need to be added to the organization and
be at least a member but they also could be an owner.

Follow the directions in the link provided to create an organization.
https://help.github.com/articles/creating-a-new-organization-from-scratch/

3.1.2.2. Configuring OAuth

Browse to https://github.com/settings/applications/new and login to GitHub

The image below will provide an example configuration. Insert values that will be used during the
OpenShift deployment.

Figure 3.1. GitHub OAuth Application

CHAPTER 3. DEPLOYING OPENSHIFT

25

https://help.github.com/articles/creating-a-new-organization-from-scratch/
https://github.com/settings/applications/new

Insert an Application name

Insert a Homepage URL (This will be the URL used when accessing OpenShift)

Insert an Application description (Optional)

Insert an Authorization callback URL (The entry will be the Homepage URL +
/oauth2callback/github

Click Register application

Figure 3.2. GitHub OAuth Client ID

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

26

A Client ID and Client Secret will be presented. These values will be used as variables during the
installation of Openshift.

3.1.3. DNS

In this reference implementation guide a domain called sysdeseng.com domain was purchased
through AWS and managed by Route53. In the example below, the domain sysdeseng.com will be
the hosted zone used for the installation of OpenShift. Follow the below instructions to add the main
hosted zone.

From the main AWS dashboard, in the Networking section click Route53

Click Hosted Zones

Click Create Hosted Zone

Input a Domain Name: sysdeseng.com

Input a Comment: Public Zone for RH Reference Architecture

Type: Public Hosted Zone

Click Create

A subdomain can also be used. The same steps listed above are applicable when using a
subdomain. Once the Pubic Zone is created select the radio button for the Domain and copy the
Name Servers from the right and add those to the external registrar or top level domain in Route53.
Ensure that the Name Servers(NS) records are copied to the root domain or name resolution will not
work for the subdomain.

3.1.4. SSH

CHAPTER 3. DEPLOYING OPENSHIFT

27

3.1.4.1. SSH Configuration

Before beginning the deployment of the AWS Infrastructure and the deployment of OpenShift, a
specific SSH configuration must be in place to ensure that SSH traffic passes through the bastion
instance. If this configuration is not in place the deployment of the infrastructure will be successful
but the deployment of OpenShift will fail. Use the domain or subdomain configured during
Section 2.10, “Route53” to fill in the values below. For example, the domain sysdeseng.com was
used so the bastion will be bastion.sysdeseng.com and the wildcard will be *.sysdeseng.com.

Note

The following task should be performed on the server that the Ansible playbooks will be
launched.

$ cat /home/<user>/.ssh/config

Host bastion
 HostName bastion.sysdeseng.com
 User ec2-user
 StrictHostKeyChecking no
 ProxyCommand none
 CheckHostIP no
 ForwardAgent yes
 IdentityFile /home/<user>/.ssh/id_rsa

Host *.sysdeseng.com
 ProxyCommand ssh ec2-user@bastion -W %h:%p
 user ec2-user
 IdentityFile /home/<user>/.ssh/id_rsa

Table 3.1. SSH Configuration

Option Purpose

Host Bastion Configuration Alias

Hostname Hostname of the bastion instance

user Remote user to access the bastion instance

StrictHostKeyChecking Automatically add new host keys to known host file

ProxyCommand Not required for the bastion

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

28

CheckHostIP Key checking is against hostname rather than IP

ForwardAgent Used to forward the SSH connection

IdentityFile Key used to access bastion instance

Host *.sysdeseng.com Wildcard for all *.sysdeseng instances

ProxyCommand SSH command used to jump from the bastion host
to another host in the environment

IdentityFile Key used for all *.sysdeseng instances

Option Purpose

Note

In the event an environment needs to be redeployed the entries in .ssh/known_hosts will
need to be removed or the installation will not occur due to ssh failing because of
"WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!".

3.1.5. AWS Authentication

3.1.5.1. AWS Configuration

The AWS Access Key ID and Secret Access Key must be exported on the workstation
executing the Ansible playbooks. This account must have the ability to create IAM users, IAM
Policies, and S3 buckets.

If the ACCESS KEY ID and SECRET ACCESS KEY were not already created follow the steps
provided by AWS.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html

To export the Access Key ID and Secret perform the following on the workstation performing the
deployment of AWS and OpenShift:

$ export AWS_ACCESS_KEY_ID=<key_id>
$ export AWS_SECRET_ACCESS_KEY=<access_key>

3.1.6. Red Hat Subscription

CHAPTER 3. DEPLOYING OPENSHIFT

29

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html

The installation of OpenShift Container Platform (OCP) requires a valid Red Hat subscription.
During the installation of OpenShift the Ansible redhat_subscription module will attempt to register
the instances. The script will fail if the OpenShift entitlements are exhausted. For the installation of
OCP on AWS the following items are required:

Red Hat Subscription Manager User: < Red Hat Username >

Red Hat Subscription Manager Password: < Red Hat Password >

Subscription Name: Red Hat OpenShift Container Platform, Standard, 2-Core

The items above are examples and should reflect subscriptions relevant to the account performing
the installation. There are a few different variants of the OpenShift Subscription Name. It is advised
to visit https://access.redhat.com/management/subscriptions to find the specific Subscription Name
as the values will be used below during the deployment.

3.2. PROVISIONING THE ENVIRONMENT

Within the openshift-ansible-contrib git repository is a python script called ose-on-
aws.py that launches AWS resources and installs OpenShift on the new resources. Intelligence is
built into the playbooks to allow for certain variables to be set using options provided by the ose-
on-aws.py script. The script allows for deployment into an existing environment(brownfield) or a
new environment(greenfield) using a series of Ansible playbooks. Once the Ansible playbooks
begin, the installation automatically flows from the AWS deployment to the OpenShift deployment and
post installation tasks.

Note

The ose-on-aws.py script does not validate EC2 instance limits. Using a web browser login
to an AWS account that has access to deploy EC2 instances and Select EC2. Next, select
Limits to view the current instance size limits based on the AWS acount.

3.2.1. The ose-on-aws.py Script

The ose-on-aws.py script contains many different configuration options such as the ability to
change the AMI, instance size, and the ability to use a currently deployed bastion host. The region
can be changed but keep in mind the AMI may need to be changed if the Red Hat Cloud Access
gold image AMI ID is different. The Cloudformation stack name is also configurable. Setting --
stack-name to a unique value ensures that one Cloudformation stack does not overwrite
another Cloudformation stack. The script creates both an auto-generated S3 bucket name and
an IAM user account to be used for the registry. These values can be changed before launching. To
see all of the potential options the --help trigger is available.

Note

The ose-on-aws.py script requires the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY exported as an environment variable.

$./ose-on-aws.py --help
Options:
 --stack-name TEXT Cloudformation stack name. Must be

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

30

https://access.redhat.com/management/subscriptions

unique
 [default: openshift-infra]
 --console-port INTEGER RANGE OpenShift web console port [default:
443]
 --deployment-type [origin|openshift-enterprise]
 OpenShift deployment type
[default:
 openshift-enterprise]
 --openshift-sdn [openshift-ovs-subnet|openshift-ovs-multitenant]
 OpenShift SDN [default: openshift-
ovs-
 subnet]
 --region TEXT ec2 region [default: us-east-1]
 --ami TEXT ec2 ami [default: ami-a33668b4]
 --master-instance-type TEXT ec2 instance type [default:
m4.xlarge]
 --node-instance-type TEXT ec2 instance type [default:
t2.large]
 --app-instance-type TEXT ec2 instance type [default:
t2.large]
 --bastion-instance-type TEXT ec2 instance type [default:
t2.micro]
 --keypair TEXT ec2 keypair name
 --create-key TEXT Create SSH keypair [default: no]
 --key-path TEXT Path to SSH public key. Default is
/dev/null
 which will skip the step [default:
 /dev/null]
 --create-vpc TEXT Create VPC [default: yes]
 --vpc-id TEXT Specify an already existing VPC
 --private-subnet-id1 TEXT Specify a Private subnet within the
existing
 VPC
 --private-subnet-id2 TEXT Specify a Private subnet within the
existing
 VPC
 --private-subnet-id3 TEXT Specify a Private subnet within the
existing
 VPC
 --public-subnet-id1 TEXT Specify a Public subnet within the
existing
 VPC
 --public-subnet-id2 TEXT Specify a Public subnet within the
existing
 VPC
 --public-subnet-id3 TEXT Specify a Public subnet within the
existing
 VPC
 --public-hosted-zone TEXT hosted zone for accessing the
environment
 --app-dns-prefix TEXT application dns prefix [default:
apps]
 --rhsm-user TEXT Red Hat Subscription Management User
 --rhsm-password TEXT Red Hat Subscription Management
Password
 --rhsm-pool TEXT Red Hat Subscription Management Pool

CHAPTER 3. DEPLOYING OPENSHIFT

31

ID or
 Subscription Name
 --byo-bastion TEXT skip bastion install when one exists
within
 the cloud provider [default: no]
 --bastion-sg TEXT Specify Bastion Security group used
with
 byo-bastion [default: /dev/null]
 --containerized TEXT Containerized installation of
OpenShift
 [default: False]
 --s3-bucket-name TEXT Bucket name for S3 for registry
 --github-client-id TEXT GitHub OAuth ClientID
 --github-client-secret TEXT GitHub OAuth Client Secret
 --github-organization TEXT GitHub Organization
 --s3-username TEXT S3 user for registry access
 --no-confirm Skip confirmation prompt
 -h, --help Show this message and exit.
 -v, --verbose

The -v trigger is available as well. This will allow for Ansible to run more verbose allowing for a
more in-depth output of the steps occurring while running ose-on-aws.py.

3.2.2. Containerized Deployment

The OCP installation playbooks allow for OpenShift to be installed in containers. These containers
can run on either Atomic Host or RHEL. If the containerized installation of OpenShift is preferred
specify --containerized=true while running ose-on-aws.py. If using Atomic Host the
configuration trigger --containerized=true must be specified or the installation will fail. Also, when
using Atomic Host ensure the AMI being used has Docker 1.10 installed.

3.2.3. SDN Selection

Two software-defined networks are provided as choices when deploying OpenShift on AWS
openshift-ovs-subnet and openshift-ovs-multitenant. By default the openshift-ovs-subnet is
configured as the SDN.

The ovs-subnet plug-in is the original plug-in which provides a "flat" pod network where every
pod can communicate with every other pod and service.

The ovs-multitenant plug-in provides OpenShift Container Platform project level isolation for
pods and services. Each project receives a unique Virtual Network ID (VNID) that identifies traffic
from pods assigned to the project. Pods from different projects cannot send packets to or receive
packets from pods and services of a different project.

3.2.4. Greenfield Deployment

For deploying OpenShift into a new environment, ose-on-aws.py creates instances, load
balancers, Route53 entries, and IAM users an ssh key can be entered to be uploaded and used
with the new instances. Once the values have been entered into the ose-on-aws.py script all
values will be presented and the script will prompt to continue with the values or exit. By default, the
Red Hat gold image AMI Section 2.11, “Amazon Machine Images” is used when provisioning

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

32

instances but can be changed when executing the ose-on-aws.py. The keypair in the example
below OSE-key is the keypair name as it appears within the AWS EC2 dashboard. If a keypair has
not been created and uploaded to AWS perform the steps below to create, upload, and name the SSH
keypair.

Create a Public/Private key

If a user does not currently have a public and private SSH key perform the following.

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Created directory '/home/user/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:SpfGaSv23aDasVsIRPfTNsXaOAbfiuSJ1Pj+e5tN52Y
user@goku.rdu.redhat.com
The key's randomart image is:
+---[RSA 2048]----+
| |
|. |
| . ooo+* |
|. o BoX.o |
|o = @ B S. |
| = O X o. . |
| = = . o . |
| o . o.+ |
| . .ooE.. |
+----[SHA256]-----+

Create a Public/Private key

To deploy the environment using the newly created private/public SSH key which currently does not
exist within AWS perform the following.

$ export AWS_ACCESS_KEY_ID=<key_id>
$ export AWS_SECRET_ACCESS_KEY=<access_key>
$./ose-on-aws.py --stack-name=dev --create-key=yes --rhsm-user=rhsm-
user \ --rhsm-password=rhsm-password \ --public-hosted-
zone=sysdeseng.com \ --key-path=/home/<user>/.ssh/id_rsa.pub --
keypair=OSE-key \ --rhsm-pool="Red Hat OpenShift Container Platform,
Standard, 2-Core"

If an SSH key has already been uploaded to AWS specify the name of the keypair as it appears
within the AWS EC2 dashboard.

$./ose-on-aws.py --stack-name= dev --rhsm-user=rhsm-user --rhsm-
password=rhsm-password \ --public-hosted-zone=sysdeseng.com --
keypair=OSE-key \ --github-client-
secret=47a0c41f0295b451834675ed78aecfb7876905f9 \ --github-
organization=openshift \ --github-organization=RHSyseng --github-
client-id=3a30415d84720ad14abc \ --rhsm-pool="Red Hat OpenShift
Container Platform, Standard, 2-Core"

CHAPTER 3. DEPLOYING OPENSHIFT

33

Example of Greenfield Deployment values

Configured values:
 stack_name: dev
 ami: ami-a33668b4
 region: us-east-1
 master_instance_type: m4.xlarge
 node_instance_type: t2.large
 app_instance_type: t2.large
 bastion_instance_type: t2.micro
 keypair: OSE-key
 create_key: no
 key_path: /dev/null
 create_vpc: yes
 vpc_id: None
 private_subnet_id1: None
 private_subnet_id2: None
 private_subnet_id3: None
 public_subnet_id1: None
 public_subnet_id2: None
 public_subnet_id3: None
 byo_bastion: no
 bastion_sg: /dev/null
 console port: 443
 deployment_type: openshift-enterprise
 openshift_sdn: openshift-ovs-subnet
 public_hosted_zone: sysdeseng.com
 app_dns_prefix: apps
 apps_dns: apps.sysdeseng.com
 rhsm_user: rhsm_user
 rhsm_password: *******
 rhsm_pool: Red Hat OpenShift Container Platform, Standard, 2-Core
 containerized: False
 s3_bucket_name: dev-ocp-registry-sysdeseng
 s3_username: dev-s3-openshift-user
 github_client_id: *******
 github_client_secret: *******
 github_organization: openshift,RHSyseng

Continue using these values? [y/N]:

3.2.5. Brownfield Deployment

The ose-on-aws.py script allows for deployments into an existing environment in which a VPC
already exists and at least six subnets, three public and three private, are already created. The script
expects three public and three private subnets are created. The private subnets must be able to
connect externally which requires a NAT gateway to be deployed. Before running the brownfield
deployment ensure that a NAT gateway is deployed and proper Route Table entries are created
(private subnets, 0.0.0.0/0 → nat-xxxx; public subnets, 0.0.0.0/0 → igw-xxxx). By default, the Red
Hat gold image AMI is used when provisioning instances but can be changed when executing the
ose-on-aws.py.

Running the following will prompt for subnets and the VPC to deploy the instances and OpenShift.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

34

$./ose-on-aws.py --stack-name=dev --rhsm-user=rhsm-user --rhsm-
password=rhsm-password \ --public-hosted-zone=sysdeseng.com --
keypair=OSE-key --create-vpc=no \ --github-client-
secret=47a0c41f0295b451834675ed78aecfb7876905f9 \ --github-
organization=openshift \ --github-organization=RHSyseng --github-
client-id=3a30415d84720ad14abc \ --rhsm-pool="Red Hat OpenShift
Container Platform, Standard, 2-Core"

Specify the VPC ID: vpc-11d06976
Specify the first Private subnet within the existing VPC: subnet-
3e406466
Specify the second Private subnet within the existing VPC: subnet-
66ae905b
Specify the third Private subnet within the existing VPC: subnet-
4edfd438
Specify the first Public subnet within the existing VPC: subnet-
1f416547
Specify the second Public subnet within the existing VPC: subnet-
c2ae90ff
Specify the third Public subnet within the existing VPC: subnet-
1ddfd46b

In the case that a bastion instance has already been deployed, an option --byo-bastion=yes
exists within ose-on-aws.py exists to not deploy the bastion instance.

Note

If the bastion instance is already deployed supply the security group id of the bastion
security group. The existing bastion host must be in the same AWS region as the
deployment. The bastion host must have the hostname of bastion either through an A
record or CNAME.

$./ose-on-aws.py --stack-name=dev --rhsm-user=rhsm-user --rhsm-
password=rhsm-password \ --public-hosted-zone=sysdeseng.com --
keypair=OSE-key --byo-bastion=yes --create-vpc=no \ --github-client-
secret=47a0c41f0295b451834675ed78aecfb7876905f9 \ --github-
organization=openshift \ --github-organization=RHSyseng --github-
client-id=3a30415d84720ad14abc \ --bastion-sg=sg-a34ff3af \ --rhsm-
pool="Red Hat OpenShift Container Platform, Standard, 2-Core"

Specify the VPC ID: vpc-11d06976
Specify the first Private subnet within the existing VPC: subnet-
3e406466
Specify the second Private subnet within the existing VPC: subnet-
66ae905b
Specify the third Private subnet within the existing VPC: subnet-
4edfd438
Specify the first Public subnet within the existing VPC: subnet-
1f416547
Specify the second Public subnet within the existing VPC: subnet-
c2ae90ff
Specify the third Public subnet within the existing VPC: subnet-
1ddfd46b
Specify the the Bastion Security group(example: sg-4afdd24): sg-

CHAPTER 3. DEPLOYING OPENSHIFT

35

a34ff3af

As stated in the Greenfield deployment the option exists to not use the Red Hat Cloud Access
provided gold image AMI. Using the same command from above the --ami= option allows the
default value to be changed.

$./ose-on-aws.py --create-vpc=no --rhsm-user=rhsm-user --rhsm-
password=rhsm-password \ --public-hosted-zone=sysdeseng.com --
keypair=OSE-key --byo-bastion=yes \ --github-client-
secret=47a0c41f0295b451834675ed78aecfb7876905f9 \ --github-
organization=openshift \ --github-organization=RHSyseng --github-
client-id=3a30415d84720ad14abc \ --bastion-sg=sg-a34ff3af --ami=ami-
2051294a --rhsm-pool="Red Hat OpenShift Container Platform, Standard,
2-Core" --stack-name=dev

Specify the VPC ID: vpc-11d06976
Specify the first Private subnet within the existing VPC: subnet-
3e406466
Specify the second Private subnet within the existing VPC: subnet-
66ae905b
Specify the third Private subnet within the existing VPC: subnet-
4edfd438
Specify the first Public subnet within the existing VPC: subnet-
1f416547
Specify the second Public subnet within the existing VPC: subnet-
c2ae90ff
Specify the third Public subnet within the existing VPC: subnet-
1ddfd46b
Specify the the Bastion Security group(example: sg-4afdd24): sg-
a34ff3af

Example of Brownfield Deployment values

 stack_name: dev
 ami: ami-a33668b4
 region: us-east-1
 master_instance_type: m4.xlarge
 node_instance_type: t2.large
 app_instance_type: t2.large
 bastion_instance_type: t2.micro
 keypair: OSE-key
 create_key: no
 key_path: /dev/null
 create_vpc: yes
 vpc_id: vpc-11d06976
 private_subnet_id1: subnet-3e406466
 private_subnet_id2: subnet-66ae905b
 private_subnet_id3: subnet-4edfd438
 public_subnet_id1: subnet-1f416547
 public_subnet_id2: subnet-c2ae90ff
 public_subnet_id3: subnet-1ddfd46b
 byo_bastion: no
 bastion_sg: /dev/null
 console port: 443
 deployment_type: openshift-enterprise
 openshift_sdn: openshift-ovs-subnet

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

36

 public_hosted_zone: sysdeseng.com
 app_dns_prefix: apps
 apps_dns: apps.sysdeseng.com
 rhsm_user: rhsm_user
 rhsm_password: *******
 rhsm_pool: Red Hat OpenShift Container Platform, Standard, 2-Core
 containerized: False
 s3_bucket_name: dev-ocp-registry-sysdeseng
 s3_username: dev-s3-openshift-user
 github_client_id: *******
 github_client_secret: *******
 github_organization: openshift,RHSyseng

Continue using these values? [y/N]:

3.3. POST ANSIBLE DEPLOYMENT

Once the playbooks have successfully completed the next steps will be to perform the steps defined
in Chapter 4, Operational Management. In the event that OpenShift failed to install, follow the steps
in the Appendix to restart the installation of OpenShift.

3.4. POST PROVISIONING RESULTS

At this point the infrastructure and Red Hat OpenShift Container Platform have been deployed. Log
into the AWS console and check the resources. In the AWS console, check for the following
resources:

3 Master nodes

3 Infrastructure nodes

2 Application nodes

1 Unique VPC with the required components

8 Security groups

2 Elastic IPs

1 NAT Gateway

1 Key pair

3 ELBs

2 IAM roles

2 IAM Policies

1 S3 Bucket

1 IAM user

1 Zones in Route53

Information is also available in the CloudFormation output. This information describes some of
the currently deployed items like the subnets, security groups, and etc. These outputs can be used

CHAPTER 3. DEPLOYING OPENSHIFT

37

by the add-node.py, add-cns-storage.py, and add-crs-storage.py scripts to auto-
populate variables like security groups and other required values.

Table 3.2. Cloudformation Outputs

Key Value Description

PrivateSubnet1 subnet-ea3f24b1 Private Subnet 1

PrivateSubnet2 subnet-1a02dd52 Private Subnet 2

S3UserAccessId AKIAJVDMBDLYBJGNHXSA AWSAccessKeyId of user

PrivateSubnet3 subnet-22adea1e Private Subnet 3

S3Bucket openshift-infra-ocp-registry-
sysdeseng

Name of S3 bucket

InfraLb openshift-infra-InfraElb-
1X0YK42S95B28

Infrastructure ELB name

S3UserSecretKey bbiabom7XPbNyGUJf1Dy8EDB
8cSyo4z9y5PiZCY+

AWSSecretKey of new S3

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

38

InfraSGId sg-9f456de0 Infra Node SG id

BastionSGId sg-53456d2c Bastion SG id

NodeSGId sg-85466efa Node SG id

NodeARN openshift-infra-
NodeInstanceProfile-
7WF689M7WLT1

ARN for the Node instance
profile

StackVpc vpc-9c0b00fa VPC that was
createdPrivateSubnet1 subnet-
ea3f24b1

Private Subnet 1

PrivateSubnet2 subnet-1a02dd52 Private Subnet 2

S3UserAccessId AKIAJVDMBDLYBJGNHXSA AWSAccessKeyId of user

PrivateSubnet3 subnet-22adea1e Private Subnet 3

S3Bucket openshift-infra-ocp-registry-
sysdeseng

Name of S3 bucket

InfraLb openshift-infra-InfraElb-
1X0YK42S95B28

Infrastructure ELB name

S3UserSecretKey bbiabom7XPbNyGUJf1Dy8EDB
8cSyo4z9y5PiZCY+

AWSSecretKey of new S3

InfraSGId sg-9f456de0 Infra Node SG id

BastionSGId sg-53456d2c Bastion SG id

NodeSGId sg-85466efa Node SG id

CHAPTER 3. DEPLOYING OPENSHIFT

39

NodeARN openshift-infra-
NodeInstanceProfile-
7WF689M7WLT1

ARN for the Node instance
profile

StackVpc vpc-9c0b00fa VPC that was created

At this point, the OpenShift public URL will be available using the public hosted zone URL provided
while running the ose-on-aws.py. For example, https://openshift-master.sysdeseng.com.

Note

When installing using this method the browser certificate must be accepted three times.
The certificate must be accepted three times due to the number of masters in the cluster.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

40

https://openshift-master.sysdeseng.com

CHAPTER 4. OPERATIONAL MANAGEMENT

With the successful deployment of OpenShift, the following section demonstrates how to confirm
proper functionality of the Red Hat OpenShift Container Platform.

4.1. VALIDATE THE DEPLOYMENT

With the successful deployment of OpenShift, the following section demonstrates how to confirm
proper functionality of the OpenShift environment. An Ansible script in the git repository will allow for
an application to be deployed which will test the functionality of the master, nodes, registry, and
router. The playbook will test the deployment and clean up any projects and pods created during the
validation run.

The playbook will perform the following steps:

Environment Validation

Validate the public OpenShift ELB address from the installation system

Validate the public OpenShift ELB address from the master nodes

Validate the internal OpenShift ELB address from the master nodes

Validate the master local master address

Validate the health of the ETCD cluster to ensure all ETCD nodes are healthy

Create a project in OpenShift called validate

Create an OpenShift Application

Add a route for the Application

Validate the URL returns a status code of 200 or healthy

Delete the validation project

Note

Ensure the URLs below and the tag variables match the variables used during
deployment.

$ cd /home/<user>/git/openshift-ansible-contrib/reference-
architecture/aws-ansible
$ ansible-playbook -i inventory/aws/hosts/ -e
'public_hosted_zone=sysdeseng.com wildcard_zone=apps.sysdeseng.com
console_port=443 stack_name=dev' playbooks/validation.yaml

4.2. GATHERING HOSTNAMES

With all of the steps that occur during the installation of OpenShift it is possible to lose track of the
names of the instances in the recently deployed environment. One option to get these hostnames is
to browse to the AWS EC2 dashboard and select Running Instances under Resources. Selecting

CHAPTER 4. OPERATIONAL MANAGEMENT

41

Running Resources shows all instances currently running within EC2. To view only instances
specific to the reference architecture deployment filters can be used. Under Instances → Instances
within EC2 click beside the magnifying glass. Select a Tag Key such as openshift-role and
click All values. The filter shows all instances relating to the reference architecture deployment.

To help facilitate the Operational Management Chapter the following hostnames will be used.

ose-master01.sysdeseng.com

ose-master02.sysdeseng.com

ose-master03.sysdeseng.com

ose-infra-node01.sysdeseng.com

ose-infra-node02.sysdeseng.com

ose-infra-node03.sysdeseng.com

ose-app-node01.sysdeseng.com

ose-app-node02.sysdeseng.com

4.3. RUNNING DIAGNOSTICS

Perform the following steps from the first master node.

To run diagnostics, SSH into the first master node (ose-master01.sysdeseng.com). Direct access is
provided to the first master node because of the configuration of the local ~/.ssh/config file.

$ ssh ec2-user@ose-master01.sysdeseng.com
$ sudo -i

Connectivity to the first master node (ose-master01.sysdeseng.com) as the root user should have
been established. Run the diagnostics that are included as part of the install.

oadm diagnostics
... ommitted ...
[Note] Summary of diagnostics execution (version v3.5.5.5):
[Note] Warnings seen: 8

Note

The warnings will not cause issues in the environment

Based on the results of the diagnostics, actions can be taken to alleviate any issues.

4.4. CHECKING THE HEALTH OF ETCD

This section focuses on the ETCD cluster. It describes the different commands to ensure the cluster
is healthy. The internal DNS names of the nodes running ETCD must be used.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

42

SSH into the first master node (ose-master01.sysdeseng.com). Using the output of the command
hostname issue the etcdctl command to confirm that the cluster is healthy.

$ ssh ec2-user@ose-master01.sysdeseng.com
$ sudo -i

hostname
ip-10-20-1-106.ec2.internal
etcdctl -C https://ip-10-20-1-106.ec2.internal:2379 --ca-file
/etc/etcd/ca.crt --cert-file=/etc/origin/master/master.etcd-client.crt
--key-file=/etc/origin/master/master.etcd-client.key cluster-health
member 82c895b7b0de4330 is healthy: got healthy result from
https://10.20.1.106:2379
member c8e7ac98bb93fe8c is healthy: got healthy result from
https://10.20.3.74:2379
member f7bbfc4285f239ba is healthy: got healthy result from
https://10.20.2.157:2379

Note

In this configuration the ETCD services are distributed among the OpenShift master nodes.

4.5. DEFAULT NODE SELECTOR

As explained in section 2.12.4 node labels are an important part of the OpenShift environment. By
default of the reference architecture installation, the default node selector is set to "role=apps" in
/etc/origin/master/master-config.yaml on all of the master nodes. This configuration
parameter is set by the Ansible role openshift-default-selector on all masters and the master API
service is restarted that is required when making any changes to the master configuration.

SSH into the first master node (ose-master01.sysdeseng.com) to verify the
defaultNodeSelector is defined.

vi /etc/origin/master/master-config.yaml
...omitted...
projectConfig:
 defaultNodeSelector: "role=app"
 projectRequestMessage: ""
 projectRequestTemplate: ""
...omitted...

Note

If making any changes to the master configuration then the master API service must be
restarted or the configuration change will not take place. Any changes and the subsequent
restart must be done on all masters.

4.6. MANAGEMENT OF MAXIMUM POD SIZE

CHAPTER 4. OPERATIONAL MANAGEMENT

43

Quotas are set on ephemeral volumes within pods to prohibit a pod from becoming to large and
impacting the node. There are three places where sizing restrictions should be set. When persistent
volume claims are not set a pod has the ability to grow as large as the underlying filesystem will
allow. The required modifications are set using a combination of user-data and Ansible.

Openshift Volume Quota

At launch time user-data creates a xfs partition on the /dev/xvdc block device, adds an entry in
fstab, and mounts the volume with the option of gquota. If gquota is not set the OpenShift node will
not be able to start with the perFSGroup parameter defined below. This disk and configuration is
done on the infrastructure and application nodes.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify the entry exists
within fstab.

vi /etc/fstab
/dev/xvdc /var/lib/origin/openshift.local.volumes xfs gquota 0 0

Docker Storage Setup

The docker-storage-setup file is created at launch time by user-data. This file tells the Docker
service to use /dev/xvdb and create the volume group of docker-vol. The extra Docker storage
options ensures that a container can grow no larger than 3G. Docker storage setup is performed on
all master, infrastructure, and application nodes.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify
/etc/sysconfig/docker-storage-setup matches the information below.

vi /etc/sysconfig/docker-storage-setup
DEVS=/dev/xvdb
VG=docker-vol
DATA_SIZE=95%VG
EXTRA_DOCKER_STORAGE_OPTIONS="--storage-opt dm.basesize=3G"

OpenShift Emptydir Quota

The parameter openshift_node_local_quota_per_fsgroup in the file
playbooks/openshift-setup.yaml configures perFSGroup on all nodes. The perFSGroup
setting restricts the ephemeral emptyDir volume from growing larger than 512Mi. This empty dir
quota is done on the master, infrastructure, and application nodes.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify
/etc/origin/node/node-config.yml matches the information below.

vi /etc/origin/node/node-config.yml
...omitted...
volumeConfig:
 localQuota:
 perFSGroup: 512Mi

4.7. YUM REPOSITORIES

In section 2.3 Required Channels the specific repositories for a successful OpenShift installation
were defined. All systems except for the bastion host should have the same subscriptions. To verify
subscriptions match those defined in Required Channels perform the following. The repositories

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

44

below are enabled during the rhsm-repos playbook during the installation. The installation will be
unsuccessful if the repositories are missing from the system.

yum repolist
Loaded plugins: amazon-id, rhui-lb, search-disabled-repos,
subscription-manager
repo id repo name
status
rhel-7-server-extras-rpms/x86_64 Red Hat
Enterprise Linux 7 Server - Extras (RPMs) 249
rhel-7-fast-datapath-rpms/7Server/x86_64 Red Hat
Enterprise Linux Fast Datapath (RHEL 7 Server) (RPMs) 27
rhel-7-server-ose-3.5-rpms/x86_64 Red Hat
OpenShift Container Platform 3.5 (RPMs) 404+10
rhel-7-server-rpms/7Server/x86_64 Red Hat
Enterprise Linux 7 Server (RPMs) 11,088
!rhui-REGION-client-config-server-7/x86_64 Red Hat Update
Infrastructure 2.0 Client Configuration Server 7 6
!rhui-REGION-rhel-server-releases/7Server/x86_6 Red Hat
Enterprise Linux Server 7 (RPMs) 11,088
!rhui-REGION-rhel-server-rh-common/7Server/x86_ Red Hat
Enterprise Linux Server 7 RH Common (RPMs) 196
repolist: 23,196

Note

All rhui repositories are disabled and only those repositories defined in the Ansible role
rhsm-repos are enabled.

4.8. CONSOLE ACCESS

This section will cover logging into the OpenShift Container Platform management console via the
GUI and the CLI. After logging in via one of these methods applications can then be deployed and
managed.

4.8.1. Log into GUI console and deploy an application

Perform the following steps from the local workstation.

Open a browser and access https://openshift-master.sysdeseng.com/console. When logging into the
OpenShift web interface the first time the page will redirect and prompt for GitHub credentials. Log
into GitHub using an account that is a member of the Organization specified during the install. Next,
GitHub will prompt to grant access to authorize the login. If GitHub access is not granted the account
will not be able to login to the OpenShift web console.

To deploy an application, click on the New Project button. Provide a Name and click Create.
Next, deploy the jenkins-ephemeral instant app by clicking the corresponding box. Accept the
defaults and click Create. Instructions along with a URL will be provided for how to access the
application on the next screen. Click Continue to Overview and bring up the management page
for the application. Click on the link provided and access the application to confirm functionality.

4.8.2. Log into CLI and Deploy an Application

CHAPTER 4. OPERATIONAL MANAGEMENT

45

https://openshift-master.sysdeseng.com/console

Perform the following steps from your local workstation.

Install the oc client by visiting the public URL of the OpenShift deployment. For example,
https://openshift-master.sysdeseng.com/console/command-line and click latest release. When
directed to https://access.redhat.com, login with the valid Red Hat customer credentials and
download the client relevant to the current workstation. Follow the instructions located on the
production documentation site for getting started with the cli.

A token is required to login using GitHub OAuth and OpenShift. The token is presented on the
https://openshift-master.sysdeseng.com/console/command-line page. Click the click to show token
hyperlink and perform the following on the workstation in which the oc client was installed.

$ oc login https://openshift-master.sysdeseng.com --
token=fEAjn7LnZE6v5SOocCSRVmUWGBNIIEKbjD9h-Fv7p09

After the oc client is configured, create a new project and deploy an application.

$ oc new-project test-app

$ oc new-app https://github.com/openshift/cakephp-ex.git --name=php
--> Found image 2997627 (7 days old) in image stream "php" in project
"openshift" under tag "5.6" for "php"

 Apache 2.4 with PHP 5.6

 Platform for building and running PHP 5.6 applications

 Tags: builder, php, php56, rh-php56

 * The source repository appears to match: php
 * A source build using source code from
https://github.com/openshift/cakephp-ex.git will be created
 * The resulting image will be pushed to image stream "php:latest"
 * This image will be deployed in deployment config "php"
 * Port 8080/tcp will be load balanced by service "php"
 * Other containers can access this service through the hostname
"php"

--> Creating resources with label app=php ...
 imagestream "php" created
 buildconfig "php" created
 deploymentconfig "php" created
 service "php" created
--> Success
 Build scheduled, use 'oc logs -f bc/php' to track its progress.
 Run 'oc status' to view your app.

$ oc expose service php
route "php" exposed

Display the status of the application.

$ oc status
In project test-app on server https://openshift-master.sysdeseng.com

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

46

https://openshift-master.sysdeseng.com/console/command-line
https://access.redhat.com
https://docs.openshift.com/container-platform/3.5/cli_reference/get_started_cli.html
https://openshift-master.sysdeseng.com/console/command-line

http://test-app.apps.sysdeseng.com to pod port 8080-tcp (svc/php)
 dc/php deploys istag/php:latest <- bc/php builds
https://github.com/openshift/cakephp-ex.git with openshift/php:5.6
 deployment #1 deployed about a minute ago - 1 pod

1 warning identified, use 'oc status -v' to see details.

Access the application by accessing the URL provided by oc status. The CakePHP application
should be visible now.

4.9. EXPLORE THE ENVIRONMENT

4.9.1. List Nodes and Set Permissions

If you try to run the following command, it should fail.

oc get nodes --show-labels
Error from server: User "sysdes-admin" cannot list all nodes in the
cluster

The reason it is failing is because the permissions for that user are incorrect. Get the username and
configure the permissions.

$ oc whoami

Once the username has been established, log back into a master node and enable the appropriate
permissions for your user. Perform the following step from the first master (ose-
master01.sysdeseng.com).

oadm policy add-cluster-role-to-user cluster-admin sysdesadmin

Attempt to list the nodes again and show the labels.

oc get nodes --show-labels
NAME STATUS AGE
ip-10-30-1-164.ec2.internal Ready 1d
ip-10-30-1-231.ec2.internal Ready 1d
ip-10-30-1-251.ec2.internal Ready,SchedulingDisabled 1d
ip-10-30-2-142.ec2.internal Ready 1d
ip-10-30-2-157.ec2.internal Ready,SchedulingDisabled 1d
ip-10-30-2-97.ec2.internal Ready 1d
ip-10-30-3-74.ec2.internal Ready,SchedulingDisabled 1d

4.9.2. List Router and Registry

List the router and registry by changing to the default project.

CHAPTER 4. OPERATIONAL MANAGEMENT

47

Note

If the OpenShift account configured on the workstation has cluster-admin privileges
perform the following. If the account does not have this privilege ssh to one of the
OpenShift masters and perform the steps.

oc project default
oc get all
NAME REVISION DESIRED CURRENT
TRIGGERED BY
dc/docker-registry 1 3 3
config
dc/router 1 3 3
config
NAME DESIRED CURRENT AGE
rc/docker-registry-1 3 3 10m
rc/router-1 3 3 10m
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
svc/docker-registry 172.30.243.63 <none> 5000/TCP
10m
svc/kubernetes 172.30.0.1 <none>
443/TCP,53/UDP,53/TCP 20m
svc/router 172.30.224.41 <none>
80/TCP,443/TCP,1936/TCP 10m
NAME READY STATUS RESTARTS
AGE
po/docker-registry-1-2a1ho 1/1 Running 0
8m
po/docker-registry-1-krpix 1/1 Running 0
8m
po/router-1-1g84e 1/1 Running 0
8m
po/router-1-t84cy 1/1 Running 0
8m

Observe the output of oc get all

4.9.3. Explore the Registry

The OpenShift Ansible playbooks configure three infrastructure nodes that have three registries
running. In order to understand the configuration and mapping process of the registry pods, the
command 'oc describe' is used. oc describe details how registries are configured and mapped to
the Amazon S3 buckets for storage. Using oc describe should help explain how HA works in this
environment.

Note

If the OpenShift account configured on the workstation has cluster-admin privileges
perform the following. If the account does not have this privilege ssh to one of the
OpenShift masters and perform the steps.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

48

$ oc describe svc/docker-registry
Name: docker-registry
Namespace: default
Labels: docker-registry=default
Selector: docker-registry=default
Type: ClusterIP
IP: 172.30.110.31
Port: 5000-tcp 5000/TCP
Endpoints: 172.16.4.2:5000,172.16.4.3:5000
Session Affinity: ClientIP
No events.

Notice that the registry has two endpoints listed. Each of those endpoints represents a
container. The ClusterIP listed is the actual ingress point for the registries.

The oc client allows similar functionality to the docker command. To find out more information
about the registry storage perform the following.

oc get pods
NAME READY STATUS RESTARTS AGE
docker-registry-2-8b7c6 1/1 Running 0 2h
docker-registry-2-drhgz 1/1 Running 0 2h
docker-registry-2-2s2ca 1/1 Running 0 2h

oc exec docker-registry-2-8b7c6 cat /etc/registry/config.yml
version: 0.1
log:
 level: debug
http:
 addr: :5000
storage:
 cache:
 layerinfo: inmemory
 s3:
 accesskey: "AKIAJZO3LDPPKZFORUQQ"
 secretkey: "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"
 region: us-east-1
 bucket: "1476274760-openshift-docker-registry"
 encrypt: true
 secure: true
 v4auth: true
 rootdirectory: /registry
auth:
 openshift:
 realm: openshift
middleware:
 repository:
 - name: openshift

Observe the S3 stanza. Confirm the bucket name is listed, and access the AWS console. Click on the
S3 AWS and locate the bucket. The bucket should contain content. Confirm that the same bucket is
mounted to the other registry via the same steps.

4.9.4. Explore Docker Storage

CHAPTER 4. OPERATIONAL MANAGEMENT

49

This section will explore the Docker storage on an infrastructure node.

The example below can be performed on any node but for this example the infrastructure node(ose-
infra-node01.sysdeseng.com) is used.

The output below describing the Storage Driver: docker—vol-docker—pool states that
docker storage is not using a loop back device.

$ docker info
Containers: 2
 Running: 2
 Paused: 0
 Stopped: 0
Images: 4
Server Version: 1.10.3
Storage Driver: devicemapper
 Pool Name: docker--vol-docker--pool
 Pool Blocksize: 524.3 kB
 Base Device Size: 3.221 GB
 Backing Filesystem: xfs
 Data file:
 Metadata file:
 Data Space Used: 1.221 GB
 Data Space Total: 25.5 GB
 Data Space Available: 24.28 GB
 Metadata Space Used: 307.2 kB
 Metadata Space Total: 29.36 MB
 Metadata Space Available: 29.05 MB
 Udev Sync Supported: true
 Deferred Removal Enabled: true
 Deferred Deletion Enabled: true
 Deferred Deleted Device Count: 0
 Library Version: 1.02.107-RHEL7 (2016-06-09)
Execution Driver: native-0.2
Logging Driver: json-file
Plugins:
 Volume: local
 Network: bridge null host
 Authorization: rhel-push-plugin
Kernel Version: 3.10.0-327.10.1.el7.x86_64
Operating System: Employee SKU
OSType: linux
Architecture: x86_64
Number of Docker Hooks: 2
CPUs: 2
Total Memory: 7.389 GiB
Name: ip-10-20-3-46.ec2.internal
ID: XDCD:7NAA:N2S5:AMYW:EF33:P2WM:NF5M:XOLN:JHAD:SIHC:IZXP:MOT3
WARNING: bridge-nf-call-iptables is disabled
WARNING: bridge-nf-call-ip6tables is disabled
Registries: registry.access.redhat.com (secure), docker.io (secure)

Verify 3 disks are attached to the instance. The disk /dev/xvda is used for the OS, /dev/xvdb is
used for docker storage, and /dev/xvdc is used for emptyDir storage for containers that do not
use a persistent volume.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

50

$ fdisk -l
WARNING: fdisk GPT support is currently new, and therefore in an
experimental phase. Use at your own discretion.

Disk /dev/xvda: 26.8 GB, 26843545600 bytes, 52428800 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

Start End Size Type Name
 1 2048 4095 1M BIOS boot parti
 2 4096 52428766 25G Microsoft basic

Disk /dev/xvdc: 53.7 GB, 53687091200 bytes, 104857600 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/xvdb: 26.8 GB, 26843545600 bytes, 52428800 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System
/dev/xvdb1 2048 52428799 26213376 8e Linux LVM

Disk /dev/mapper/docker--vol-docker--pool_tmeta: 29 MB, 29360128 bytes,
57344 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/docker--vol-docker--pool_tdata: 25.5 GB, 25497174016
bytes, 49799168 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/docker--vol-docker--pool: 25.5 GB, 25497174016 bytes,
49799168 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 131072 bytes / 524288 bytes

Disk /dev/mapper/docker-202:2-75507787-
4a813770697f04b1a4e8f5cdaf29ff52073ea66b72a2fbe2546c469b479da9b5: 3221
MB, 3221225472 bytes, 6291456 sectors
Units = sectors of 1 * 512 = 512 bytes

CHAPTER 4. OPERATIONAL MANAGEMENT

51

Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 131072 bytes / 524288 bytes

Disk /dev/mapper/docker-202:2-75507787-
260bda602f4e740451c428af19bfec870a47270f446ddf7cb427eee52caafdf6: 3221
MB, 3221225472 bytes, 6291456 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 131072 bytes / 524288 bytes

4.9.5. Explore Security Groups

As mentioned earlier in the document several security groups have been created. The purpose of
this section is to encourage exploration of the security groups that were created.

Note

Perform the following steps from the AWS web console.

On the main AWS console, click on EC2. Next on the left hand navigation panel select the Security
Groups. Click through each group and check out both the Inbound and Outbound rules that were
created as part of the infrastructure provisioning. For example, notice how the Bastion security
group only allows SSH traffic inbound. That can be further restricted to a specific network or host if
required. Next take a look at the Master security group and explore all the Inbound and
Outbound TCP and UDP rules and the networks from which traffic is allowed.

4.9.6. Explore the AWS Elastic Load Balancers

As mentioned earlier in the document several ELBs have been created. The purpose of this section
is to encourage exploration of the ELBs that were created.

Note

Perform the following steps from the AWS web console.

On the main AWS console, click on EC2. Next on the left hand navigation panel select the Load
Balancers. Select the ose-master load balancer and on the Description page note the Port
Configuration and how it is configured for port 443. That is for the OpenShift web console traffic.
On the same tab, check the Availability Zones, note how those are Public subnets. Move to
the Instances tab. There should be three master instances running with a Status of InService.
Next check the Health Check tab and the options that were configured. Further details of the
configuration can be viewed by exploring the Ansible playbooks to see exactly what was configured.
Finally, change to the ose-internal-master and compare the subnets. The subnets for the
ose-internal-master are all private. They are private because that ELB is reserved for traffic
coming from the OpenShift infrastructure to the master servers. This results in reduced charges from
Amazon because the packets do not have to be processed by the public facing ELB.

4.9.7. Explore the AWS VPC

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

52

As mentioned earlier in the document a Virtual Private Cloud was created. The purpose of this
section is to encourage exploration of the VPC that was created.

Note

Perform the following steps from the AWS web console.

On the main Amazon Web Services console, click on VPC. Next on the left hand navigation panel
select the Your VPCs. Select the VPC recently created and explore the Summary and Tags tabs.
Next, on the left hand navigation panel, explore the Subnets, Route Tables, Internet
Gateways, DHCP Options Sets, NAT Gateways, Security Groups and Network ACLs.
More detail can be looked at with the configuration by exploring the Ansible playbooks to see exactly
what was configured.

4.10. TESTING FAILURE

In this section, reactions to failure are explored. After a successful install and some of the smoke
tests noted above have been completed, failure testing is executed.

4.10.1. Generate a Master Outage

Note

Perform the following steps from the AWS web console and the OpenShift public URL.

Log into the AWS console. On the dashboard, click on the EC2 web service and then click
Instances. Locate your running ose-master02.sysdeseng.com instance, select it, right click and
change the state to stopped.

Ensure the console can still be accessed by opening a browser and accessing openshift-
master.sysdeseng.com. At this point, the cluster is in a degraded state because only 2/3 master
nodes are running, but complete functionality remains.

4.10.2. Observe the Behavior of ETCD with a Failed Master Node

SSH into the first master node (ose-master01.sysdeseng.com). Using the output of the command
hostname issue the etcdctl command to confirm that the cluster is healthy.

$ ssh ec2-user@ose-master01.sysdeseng.com
$ sudo -i

hostname
ip-10-20-1-106.ec2.internal
etcdctl -C https://ip-10-20-1-106.ec2.internal:2379 --ca-file
/etc/etcd/ca.crt --cert-file=/etc/origin/master/master.etcd-client.crt
--key-file=/etc/origin/master/master.etcd-client.key cluster-health
failed to check the health of member 82c895b7b0de4330 on
https://10.20.2.251:2379: Get https://10.20.1.251:2379/health: dial tcp
10.20.1.251:2379: i/o timeout

CHAPTER 4. OPERATIONAL MANAGEMENT

53

member 82c895b7b0de4330 is unreachable: [https://10.20.1.251:2379] are
all unreachable
member c8e7ac98bb93fe8c is healthy: got healthy result from
https://10.20.3.74:2379
member f7bbfc4285f239ba is healthy: got healthy result from
https://10.20.1.106:2379
cluster is healthy

Notice how one member of the ETCD cluster is now unreachable. Restart ose-
master02.sysdeseng.com by following the same steps in the AWS web console as noted above.

4.10.3. Generate an Infrastructure Node outage

This section shows what to expect when an infrastructure node fails or is brought down intentionally.

4.10.3.1. Confirm Application Accessibility

Note

Perform the following steps from the browser on a local workstation.

Before bringing down an infrastructure node, check behavior and ensure things are working as
expected. The goal of testing an infrastructure node outage is to see how the OpenShift routers and
registries behave. Confirm the simple application deployed from before is still functional. If it is not,
deploy a new version. Access the application to confirm connectivity. As a reminder, to find the
required information the ensure the application is still running, list the projects, change to the project
that the application is deployed in, get the status of the application which including the URL and
access the application via that URL.

$ oc get projects
NAME DISPLAY NAME STATUS
openshift Active
openshift-infra Active
ttester Active
test-app1 Active
default Active
management-infra Active

$ oc project test-app1
Now using project "test-app1" on server "https://openshift-
master.sysdeseng.com".

$ oc status
In project test-app1 on server https://openshift-master.sysdeseng.com

http://php-test-app1.apps.sysdeseng.com to pod port 8080-tcp (svc/php-
prod)
 dc/php-prod deploys istag/php-prod:latest <-
 bc/php-prod builds https://github.com/openshift/cakephp-ex.git with
openshift/php:5.6
 deployment #1 deployed 27 minutes ago - 1 pod

1 warning identified, use 'oc status -v' to see details.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

54

Open a browser and ensure the application is still accessible.

4.10.3.2. Confirm Registry Functionality

This section is another step to take before initiating the outage of the infrastructure node to ensure
that the registry is functioning properly. The goal is to push to the OpenShift registry.

Note

Perform the following steps from CLI on a local workstation and ensure that the oc client
has been configured.

A token is needed so that the registry can be logged into.

oc whoami -t
feAeAgL139uFFF_72bcJlboTv7gi_bo373kf1byaAT8

Pull a new docker image for the purposes of test pushing.

docker pull fedora/apache
docker images

Capture the registry endpoint. The svc/docker-registry shows the endpoint.

oc status
In project default on server https://internal-openshift-
master.sysdeseng.com:443

https://docker-registry-default.apps.sysdeseng.com (passthrough)
(svc/docker-registry)
 dc/docker-registry deploys docker.io/openshift3/ose-docker-
registry:v3.5.5.5
 deployment #1 deployed 44 minutes ago - 3 pods

svc/kubernetes - 172.30.0.1 ports 443, 53->8053, 53->8053

https://registry-console-default.apps.sysdeseng.com (passthrough)
(svc/registry-console)
 dc/registry-console deploys
registry.access.redhat.com/openshift3/registry-console:3.5
 deployment #1 deployed 43 minutes ago - 1 pod

svc/router - 172.30.41.42 ports 80, 443, 1936
 dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.5.5.5
 deployment #1 deployed 45 minutes ago - 3 pods

View details with 'oc describe <resource>/<name>' or list everything
with 'oc get all'.

Tag the docker image with the endpoint from the previous step.

CHAPTER 4. OPERATIONAL MANAGEMENT

55

docker tag docker.io/fedora/apache
172.30.110.31:5000/openshift/prodapache

Check the images and ensure the newly tagged image is available.

docker images

Issue a Docker login.

docker login -u sysdesadmin -e sysdesadmin -p
_7yJcnXfeRtAbJVEaQwPwXreEhlV56TkgDwZ6UEUDWw 172.30.110.31:5000

oadm policy add-role-to-user admin sysdesadmin -n openshift
oadm policy add-role-to-user system:registry sysdesadmin
oadm policy add-role-to-user system:image-builder sysdesadmin

Push the image to the OpenShift registry now.

docker push 172.30.110.222:5000/openshift/prodapache
The push refers to a repository
[172.30.110.222:5000/openshift/prodapache]
389eb3601e55: Layer already exists
c56d9d429ea9: Layer already exists
2a6c028a91ff: Layer already exists
11284f349477: Layer already exists
6c992a0e818a: Layer already exists
latest: digest:
sha256:ca66f8321243cce9c5dbab48dc79b7c31cf0e1d7e94984de61d37dfdac4e381f
size: 6186

4.10.3.3. Get Location of Router and Registry.

Note

Perform the following steps from the CLI of a local workstation.

Change to the default OpenShift project and check the router and registry pod locations.

$ oc project default
Now using project "default" on server "https://openshift-
master.sysdeseng.com".

$ oc get pods
NAME READY STATUS RESTARTS AGE
docker-registry-2-gmvdr 1/1 Running 1 21h
docker-registry-2-jueep 1/1 Running 0 7h
router-1-6y5td 1/1 Running 1 21h
router-1-rlcwj 1/1 Running 1 21h

$ oc describe pod docker-registry-2-jueep | grep -i node
Node: ip-10-30-1-17.ec2.internal/10.30.1.17
$ oc describe pod docker-registry-2-gmvdr | grep -i node

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

56

Node: ip-10-30-2-208.ec2.internal/10.30.2.208
$ oc describe pod router-1-6y5td | grep -i node
Node: ip-10-30-1-17.ec2.internal/10.30.1.17
$ oc describe pod router-1-rlcwj | grep -i node
Node: ip-10-30-2-208.ec2.internal/10.30.2.208

4.10.3.4. Initiate the Failure and Confirm Functionality

Note

Perform the following steps from the AWS web console and a browser.

Log into the AWS console. On the dashboard, click on the EC2 web service. Locate your running
infra01 instance, select it, right click and change the state to stopped. Wait a minute or two for the
registry and pod to migrate over to infra01. Check the registry locations and confirm that they are on
the same node.

$ oc describe pod docker-registry-2-fw1et | grep -i node
Node: ip-10-30-2-208.ec2.internal/10.30.2.208
$ oc describe pod docker-registry-2-gmvdr | grep -i node
Node: ip-10-30-2-208.ec2.internal/10.30.2.208

Follow the procedures above to ensure an image can still be pushed to the registry now that infra01
is down.

4.11. UPDATING THE OPENSHIFT DEPLOYMENT

Playbooks are provided to upgrade the OpenShift deployment when minor releases occur.

4.11.1. Performing the Upgrade

From the workstation that was used to perform the installation of OpenShift on AWS run the
following to ensure that the newest openshift-ansible playbooks and roles are available and to
perform the minor upgrade against the deployed environment.

Note

Ensure the variables below are relevant to the deployed OpenShift environment. The
variables that should be customerized for the deployed OpenShift environment are
stack_name, public_hosted_zone, console_port, region, and containerized.

4.11.1.1. Non-Containerized Upgrade

Use the following lines below to perform the upgrade in a non-containerized environment.

$ yum update atomic-openshift-utils ansible
$ cd ~/git/openshift-ansible-contrib/reference-architecture/aws-ansible
$ ansible-playbook -i inventory/aws/hosts -e 'stack_name=openshift-
infra public_hosted_zone=sysdeseng.com console_port=443 region=us-east-

CHAPTER 4. OPERATIONAL MANAGEMENT

57

1' playbooks/openshift-minor-upgrade.yaml

4.11.1.2. Containerized Upgrade

Use the following lines below to perform the upgrade in a containerized environment.

$ yum update atomic-openshift-utils ansible
$ cd ~/git/openshift-ansible-contrib/reference-architecture/aws-ansible
$ ansible-playbook -i inventory/aws/hosts -e 'stack_name=openshift-
infra public_hosted_zone=sysdeseng.com console_port=443 region=us-east-
1 containerized=true' playbooks/openshift-minor-upgrade.yaml

4.11.2. Upgrading and Restarting the OpenShift Environment (Opitonal)

The openshift-minor-update.yaml playbook will not restart the instances after updating
occurs. Restarting the nodes including the masters can be completed by adding the following line to
the minor-update.yaml playbook.

$ cd ~/git/openshift-ansible-contrib/playbooks
$ vi minor-update.yaml
 openshift_rolling_restart_mode: system

4.11.3. Specifying the OpenShift Version when Upgrading

The deployed OpenShift environment may not be the latest major version of OpenShift. The
minor-update.yaml allows for a variable to be passed to perform an upgrade on previous
versions. Below is an example of performing the upgrade on a 3.3 non-containerized environment.

$ yum update atomic-openshift-utils ansible
$ cd ~/git/openshift-ansible-contrib/reference-architecture/aws-ansible
$ ansible-playbook -i inventory/aws/hosts -e 'stack_name=openshift-
infra public_hosted_zone=sysdeseng.com console_port=443 region=us-east-
1 openshift_vers=v3_4' playbooks/openshift-minor-upgrade.yaml

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

58

CHAPTER 5. PERSISTENT STORAGE

Container storage by default is not persistent. For example, if a new container build occurs then
data is lost because the storage is non-persistent. If a container terminates then of the all changes to
it’s local filesystem are lost. OpenShift offers many different types of persistent storage. Persistent
storage ensures that data that should persist between builds and container migrations is available.
The different storage options can be found at https://docs.openshift.com/container-
platform/3.5/architecture/additional_concepts/storage.html#types-of-persistent-volumes. When
choosing a persistent storage backend ensure that the backend supports the scaling, speed, and
redundancy that the project requires. This reference architecture will focus on cloud provider specific
storage, Container-Native Storage (CNS), and Container-Ready Storage(CRS).

5.1. PERSISTENT VOLUMES

Container storage is defined by the concept of persistent volumes (pv) which are OpenShift
objects that allow for storage to be defined and then used by pods to allow for data persistence.
Requesting of persistent volumes is done by using a persistent volume claim (pvc).
This claim, when successfully fulfilled by the system will also mount the persistent storage to a
specific directory within a pod or multiple pods. This directory is referred to as the mountPath and
facilitated using a concept known as bind-mount.

5.2. STORAGE CLASSES

The StorageClass resource object describes and classifies different types of storage that can be
requested, as well as provides a means for passing parameters to the backend for dynamically
provisioned storage on demand. StorageClass objects can also serve as a management
mechanism for controlling different levels of storage and access to the storage. Cluster
Administrators (cluster-admin) or Storage Administrators (storage-admin)
define and create the StorageClass objects that users can use without needing any intimate
knowledge about the underlying storage volume sources. Because of this the naming of the
storage class defined in the StorageClass object should be useful in understanding the type
of storage it maps to (ie., HDD vs SDD or st1 vs gp2).

5.3. CLOUD PROVIDER SPECIFIC STORAGE

Cloud provider specific storage is storage that is provided from AWS. This type of storage is
presented as an EBS volume and can be mounted by one pod at a time. The EBS volume must exist
in the same availability zone as the pod that requires the storage. This is because EBS volumes
cannot be mounted by an EC2 instance outside of the availability zone that it was created. For AWS
there are 4 types of persistent disks that can be utilized
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html [io1, gp2, sc1, and
st1] for cloud provider specific storage. Cloud provider storage can be created manually and
assigned as a persistent volume or a persistent volume can be created dynamically using a
StorageClass object. Note that EBS storage can only use the access mode of Read-Write-Once
(RWO).

5.3.1. Creating a Storage Class

When requesting cloud provider specific storage the name, zone, and type are configurable items.
Ensure that the zone configuration parameter specified when creating the StorageClass object is
an AZ that currently hosts application node instances. This will ensure that PVCs will be created in

CHAPTER 5. PERSISTENT STORAGE

59

https://docs.openshift.com/container-platform/3.5/architecture/additional_concepts/storage.html#types-of-persistent-volumes
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

the correct AZ in which containers are running. The cluster-admin or storage-admin can
perform the following commands which will allow for dynamically provisioned gp2 storage on
demand, in the us-east-1a AZ, and using the name "standard" as the name of the StorageClass
object.

$ vi standard-storage-class.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: standard
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
 zone: us-east-1a

The cluster-admin or storage-admin can then create the StorageClass object using the yaml file.

$ oc create -f standard-storage-class.yaml

Multiple StorageClassess objects can be defined depending on the storage needs of the pods
within OpenShift.

5.3.2. Creating and using a Persistent Volumes Claim

The example below shows a dynamically provisioned volume being requested from the
StorageClass named standard.

$ vi db-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: db
 annotations:
 volume.beta.kubernetes.io/storage-class: standard
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

$ oc create -f db-claim.yaml
persistentvolumeclaim "db" created

5.4. CONTAINER-NATIVE STORAGE OVERVIEW

Container-Native Storage (CNS) provides dynamically provisioned storage for containers on
OpenShift across cloud providers, virtual and bare-metal deployments. CNS relies on EBS volumes
mounted on the OpenShift nodes and uses software-defined storage provided by Red Hat Gluster
Storage. CNS runs Red Hat Gluster Storage containerized allowing OpenShift storage pods to

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

60

spread across the cluster and across Availabilty Zones. CNS enables the requesting and
mounting of Gluster storage across one or many containers with access modes of either
ReadWriteMany(RWX), ReadOnlyMany(ROX) or ReadWriteOnce(RWO). CNS can also be used
to host the OpenShift registry.

5.4.1. Prerequisites for Container-Native Storage

Deployment of Container-Native Storage (CNS) on OpenShift Container Platform (OCP) requires at
least three OpenShift nodes with at least one unused block storage device attached on each of the
nodes. Dedicating three OpenShift nodes to CNS will allow for the configuration of one
StorageClass object to be used for applications. If two types of CNS storage are required then a
minimum of six CNS nodes must be deployed and configured. This is because only a single CNS
container per OpenShift node is supported.

If the CNS instances will serve dual roles such as hosting application pods and glusterfs pods
ensure the instances have enough resources to support both operations. CNS hardware
requirements state that there must be 32GB of RAM per EC2 instance. There is a current limit of 300
volumes or PVs per 3 node CNS cluster. The CNS EC2 instance type may need to be increased to
support 300 volumes.

Note

If there is a need to use the CNS instances for application or infrastructure pods the label
role=app can be applied to the nodes. For nodes which carry both the app and the storage
label the EC2 instance type of m4.2xlarge is a conscious choice that provides balance
between enough memory requirements in the adoption phase and immediate EC2
instance cost. In the adoption phase it is expected that the platform will run less than 300
PVs and the remaining memory on the 32GB instance is enough to serve the application
pods. Over time the amount of apps and PVs will grow and the EC2 instance type choice
must be re-evaluated, or more app-only nodes need to be added.

5.4.2. Deployment of CNS Infrastructure

A python script named add-cns-storage.py is provided in the openshift-ansible-contrib
git repository which will deploy three nodes, add the nodes to the OpenShift environment with
specific OpenShift labels and attach an EBS volume to each node as an available block device to be
used for CNS. Do the following from the workstation performing the deployment of the OpenShift
Reference Architecture.

Note

On deployments of the Reference Architecture environment post OpenShift 3.5 --use-
cloudformation-facts is available to auto-populate values. An example of these values can
be viewed in the Post Provisioning Results section of this Reference Architecture.
If the deployment occurred before version 3.5 then it is required to fill in the values
manually. To view the possible configuration triggers run add-cns-storage.py -h . The
add-cns-storage.py script requires the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY exported as an environment variable.

If the Reference Architecture deployment version is >= 3.5. Use the deployment option --use-
cloudformation-facts to auto-populate some values based on the existing Cloudformations

CHAPTER 5. PERSISTENT STORAGE

61

stack.

$ cd /home/<user>/git/openshift-ansible-contrib/reference-
architecture/aws-ansible/
./add-cns-storage.py --rhsm-user=username --rhsm-password=password --
public-hosted-zone=sysdeseng.com --region=us-east-1 --gluster-stack=cns
\ --rhsm-pool="Red Hat OpenShift Container Platform, Premium, 2-Core" -
-keypair=OSE-key --existing-stack=openshift-infra --use-cloudformation-
facts

If the Reference Architecture deployment was performed before OpenShift version 3.5. Fill in the
values to represent the existing Cloudformations stack.

$ cd /home/<user>/git/openshift-ansible-contrib/reference-
architecture/aws-ansible/
./add-cns-storage.py --rhsm-user=username --rhsm-password=PASSWORD --
public-hosted-zone=sysdeseng.com --gluster-stack=cns \ --rhsm-pool="Red
Hat OpenShift Container Platform, Premium, 2-Core" --keypair=OSE-key --
existing-stack=openshift-infra \ --private-subnet-id1=subnet-ad2b23f6 -
-private-subnet-id2=subnet-7cd61a34 --region=us-east-1 \ --private-
subnet-id3=subnet-77e89a4b --node-sg=sg-0c7e0f73 \ --iam-role=backup-
NodeInstanceProfile-AX9H0AOAINY3

Note

The script above is optional. Instances can be deployed without using this script as long
as the new instances are added to the OpenShift cluster using the OpenShift add node
playbooks or using the add-node.py.

5.4.3. Firewall and Security Group Prerequisites

The following ports must be open on the CNS nodes and on the node security group in AWS. Ensure
the following ports defined in the table below are open. This configuration is automatically applied on
the nodes deployed using the add-cns-storage.py script.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

62

https://docs.openshift.com/container-platform/3.5/admin_guide/manage_nodes.html#adding-nodes

Table 5.1. AWS Nodes Security Group Details - Inbound

Inbound From

22 / TCP bastion_sg

2222 / TCP ose_node_sg

4789 / UDP ose_node_sg

10250 / TCP ose_master_sg

10250 / TCP ose_node_sg

24007 / TCP ose_node_sg

24008 / TCP ose_node_sg

49152-49664 / TCP ose_node_sg

CHAPTER 5. PERSISTENT STORAGE

63

5.5. CNS INSTALLATION OVERVIEW

The process for creating a CNS deployment on OpenShift starts with creating an OpenShift project
that will host the glusterfs pods and the CNS service/pod/route resources. The Red Hat utility
cns-deploy will automate the creation of these resources. After the creation of the CNS
components then a StorageClass can be defined for creating Persistent Volume Claims (PVCs)
against the Container-Native Storage Service. CNS uses services from heketi to create a gluster
Trusted Storage Pool.

Container-Native Storage service consists of a Red Hat Gluster Storage single container pods
running on OpenShift Nodes managed by a Heketi Service. A single heketi service can manage
multiple CNS Trusted Storage Pools. This is implemented using a DaemonSet, a specific way to
deploy containers to ensure nodes participating in that DaemonSet always run exactly one instance
of the glusterfs image as a pod. DaemonSets are required by CNS because the glusterfs
pods must use the host’s networking resources. The default configuration ensures that no more than
one glusterfs pod can run on an OpenShift node.

5.5.1. Creating CNS Project

These activities should be done on the master due to the requirement of setting the node
selector. The account performing the CNS activities must be a cluster-admin.

The project name used for this example will be storage but the project name can be whatever
value an administrator chooses.

If the CNS nodes will only be used for CNS then a node-selector should be supplied.

oadm new-project storage --node-selector='role=storage'

If the CNS nodes will serve the role of being used for both CNS and application pods then a node-
selector does not need to supplied.

oadm new-project storage

An oadm policy must be set to enable the deployment of the privileged containers as Red Hat
Gluster Storage containers can only run in the privileged mode.

oc project storage
oadm policy add-scc-to-user privileged -z default

5.5.2. Gluster Deployment Prerequisites

Perform the following steps from CLI on a local or deployment workstation and ensure that the oc
client has been installed and configured. An entitlement for Red Hat Gluster Storage is
required to install the Gluster services.

$ subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-
rpms
$ subscription-manager repos --enable=rhel-7-server-rpms
$ yum install -y cns-deploy heketi-client

5.5.3. Deploying Container-Native Storage

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

64

The Container-Native Storage glusterfs and heketi pods, services, and heketi route are
created using the cns-deploy tool which was installed during the prerequisite step.

A heketi topology file is used to create the Trusted Storage Pool. The topology describes the
OpenShift nodes that will host Red Hat Gluster Storage services and their attached storage devices.
A sample topology file topology-sample.json is installed with the heketi-client package in
the /usr/share/heketi/ directory. Below a table shows the different instances running in
different AZs to distinguish failure domains defined as a zone in heketi. This information will be
used to make intelligent decisions about how to structure a volume that is, to create Gluster volume
layouts that have no more than one brick or storage device from a single failure domain. This
information will also be used when healing degraded volumes in the event of a loss of device or an
entire node.

Table 5.2. CNS Topology file

Instance AZ Zone Device

ip-10-20-4-
163.ec2.internal

us-east-1a 1 /dev/xvdd

ip-10-20-5-
247.ec2.internal

us-east-1c 2 /dev/xvdd

ip-10-20-6-
191.ec2.internal

us-east-1d 3 /dev/xvdd

Note

These activities should be done on the workstation where cns-deploy and heketi-
client were installed. Ensure that the OpenShift client has the cluster-admin privilege
before proceeding.

Below is an example of 3 node topology.json file in the us-east-1 region with /dev/xvdd as
the EBS volume or device used for CNS. Edit the values of node.hostnames.manage,
node.hostnames.storage, and devices in the topology.json file based on the the OpenShift
nodes that have been deployed in the previous step.

vi gluster-topology.json
{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-4-163.ec2.internal"

CHAPTER 5. PERSISTENT STORAGE

65

],
 "storage": [
 "10.20.4.163"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/xvdd"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-5-247.ec2.internal"
],
 "storage": [
 "10.20.5.247"
]
 },
 "zone": 2
 },
 "devices": [
 "/dev/xvdd"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-6-191.ec2.internal"
],
 "storage": [
 "10.20.6.191"
]
 },
 "zone": 3
 },
 "devices": [
 "/dev/xvdd"
]
 }
]
 }
]
}

Ensure that the storage project is the current project.

oc project storage
Already on project "storage" on server "https://openshift-
master.sysdeseng.com"

To launch the deployment of CNS the script cns-deploy will be used. It is advised to specify an
admin-key and user-key for security reasons when launching the topology. Both admin-key

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

66

and user-key are user defined values, they do not exist before this step. The heketi admin key
(password) will later be used to create a heketi-secret in OpenShift. Be sure to note these
values as they will be needed in future operations. The cns-deploy script will prompt the user before
proceeding.

cns-deploy -n storage -g gluster-topology.json --admin-key
'myS3cr3tpassw0rd' --user-key 'mys3rs3cr3tpassw0rd'
Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:
 * Administrative access to an existing Kubernetes or OpenShift cluster
 * Access to a python interpreter 'python'
 * Access to the heketi client 'heketi-cli'

Each of the nodes that will host GlusterFS must also have appropriate
firewall
rules for the required GlusterFS ports:
 * 2222 - sshd (if running GlusterFS in a pod)
 * 24007 - GlusterFS Daemon
 * 24008 - GlusterFS Management
 * 49152 to 49251 - Each brick for every volume on the host requires
its own
 port. For every new brick, one new port will be used starting at
49152. We
 recommend a default range of 49152-49251 on each host, though you
can adjust
 this to fit your needs.

In addition, for an OpenShift deployment you must:
 * Have 'cluster_admin' role on the administrative account doing the
deployment
 * Add the 'default' and 'router' Service Accounts to the 'privileged'
SCC
 * Have a router deployed that is configured to allow apps to access
services
 running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: y
Using OpenShift CLI.
NAME STATUS AGE
storage Active 9m
Using namespace "storage".
template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
template "glusterfs" created
node "ip-10-20-4-163.ec2.internal" labeled
node "ip-10-20-5-247.ec2.internal" labeled
node "ip-10-20-6-191.ec2.internal" labeled

CHAPTER 5. PERSISTENT STORAGE

67

daemonset "glusterfs" created
Waiting for GlusterFS pods to start ... OK
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent
Left Speed
100 17 100 17 0 0 3 0 0:00:05 0:00:05 --:--
:-- 4
Creating cluster ... ID: 372cf750e0b256fbc8565bb7e4afb434
 Creating node ip-10-20-4-163.ec2.internal ... ID:
9683e22a0f98f8c40ed5c3508b2b4a38
 Adding device /dev/xvdd ... OK
 Creating node ip-10-20-5-247.ec2.internal ... ID:
b9bb8fc7be62de3152b9164a7cb3a231
 Adding device /dev/xvdd ... OK
 Creating node ip-10-20-6-191.ec2.internal ... ID:
790bff20ac0115584b5cd8225565b868
 Adding device /dev/xvdd ... OK
Saving heketi-storage.json
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
secret "heketi-storage-secret" deleted
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ... OK
Waiting for heketi pod to start ... OK
heketi is now running.
Ready to create and provide GlusterFS volumes.

After successful deploy validate that there are now 3 glusterfs pods and 1 heketi pod in the
storage project.

oc get pods
NAME READY STATUS RESTARTS AGE
glusterfs-7gr8y 1/1 Running 0 4m
glusterfs-fhy3e 1/1 Running 0 4m
glusterfs-ouay0 1/1 Running 0 4m
heketi-1-twis5 1/1 Running 0 1m

5.5.4. Exploring Heketi

A route will be created for the heketi service that was deployed during the run of the cns-deploy
script. The heketi route URL is used by the heketi-client. The same route URL will be used to
create StorageClass objects.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

68

The first step is to find the endpoint for the heketi service and then set the environment variables
for the route of the heketi server, the heketi cli user, and the heketi cli key.

oc get routes heketi
NAME HOST/PORT PATH SERVICES PORT TERMINATION
heketi heketi-storage.apps.sysdeseng.com heketi <all>
export HEKETI_CLI_SERVER=http://heketi-storage.apps.sysdeseng.com
export HEKETI_CLI_USER=admin
export HEKETI_CLI_KEY=myS3cr3tpassw0rd

To validate that heketi loaded the topology and has the cluster created execute the following
commands:

heketi-cli topology info
... ommitted ...
heketi-cli cluster list
Clusters:
372cf750e0b256fbc8565bb7e4afb434

Use the output of the cluster list to view the nodes and volumes within the cluster.

heketi-cli cluster info 372cf750e0b256fbc8565bb7e4afb434

5.5.5. Store the Heketi Secret

OpenShift allows for the use of secrets so that items do not need to be stored in clear text. The
admin password for heketi, specified during installation with cns-deploy, should be stored in
base64-encoding. OpenShift can refer to this secret instead of specifying the password in clear text.

To generate the base64-encoded equivalent of the admin password supplied to the cns-deploy
command perform the following.

echo -n myS3cr3tpassw0rd | base64
bXlzZWNyZXRwYXNzdzByZA==

On the master or workstation with the OpenShift client installed and a user with cluster-admin
privileges use the base64 password string in the following YAML to define the secret in OpenShift’s
default project or namespace.

vi heketi-secret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: heketi-secret
 namespace: default
data:
 key: bXlzZWNyZXRwYXNzdzByZA==
type: kubernetes.io/glusterfs

Create the secret by using the following command.

oc create -f heketi-secret.yaml
secret "heketi-secret" created

CHAPTER 5. PERSISTENT STORAGE

69

5.5.6. Creating a Storage Class

The StorageClass object created using the CNS components is a more robust solution than using
cloud provider specific storage due to the fact that the storage is not dependant on AZs. The cluster-
admin or storage-admin can perform the following which will allow for dynamically provisioned CNS
storage on demand. The key benefit of this storage is that the persistent storage created can be
configured with access modes of ReadWriteOnce(RWO), ReadOnlyMany (ROX), or
ReadWriteMany (RWX) adding much more flexibility than cloud provider specific storage.

If Multiple types of CNS storage are desired, additional StorageClass objects can be created to
realize multiple tiers of storage defining different types of storage behind a single heketi instance.
This will involve deploying more glusterfs pods on additional storage nodes (one gluster pod per
OpenShift node) with different type and quality of EBS volumes attached to achieve the desired
properties of a tier (e.g. io1 for “fast” storage, magnetic for “slow” storage). For the examples below
we will assume that only one type of storage is required.

Perform the following steps from CLI on a workstation or master node where the OpenShift client
has been configured.

oc project storage
oc get routes heketi
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
heketi heketi-storage.apps.sysdeseng.com heketi
<all>
export HEKETI_CLI_SERVER=http://heketi-storage.apps.sysdeseng.com
export HEKETI_CLI_USER=admin
export HEKETI_CLI_KEY=myS3cr3tpassw0rd

Record the cluster id of the glusterfs pods in heketi.

heketi-cli cluster list
 Clusters:
 eb08054c3d42c88f0924fc6a57811610

The StorageClass object requires both the cluster id and the heketi route to be defined to
successfully created. Use the information from the output of heketi-cli cluster list and oc
get routes heketi to fill in the resturl and clusterid. For OpenShift 3.4, the value of clusterid
is not supported for the StorageClass object. If a value is provided the StorageClass object will
fail to create for OpenShift version 3.4. The failure occurs because OpenShift 3.4 can only have a
single TSP or CNS cluster.

OpenShift 3.4

vi glusterfs-storageclass-st1.yaml
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: gluster-cns-slow
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: http://heketi-storage.apps.sysdeseng.com

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

70

 restauthenabled: "true"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"

The StorageClass object can now be created using this yaml file.

oc create -f glusterfs-storageclass-st1.yaml

OpenShift 3.5

vi glusterfs-storageclass-st1.yaml
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: gluster-cns-slow
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: http://heketi-storage.apps.sysdeseng.com
 clusterid: eb08054c3d42c88f0924fc6a57811610
 restauthenabled: "true"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"

The StorageClass object can now be created using this yaml file.

oc create -f glusterfs-storageclass-st1.yaml

To validate the StorageClass object was created perform the following.

oc get storageclass gluster-cns-slow
NAME TYPE
gluster-cns-dd kubernetes.io/glusterfs
oc describe storageclass gluster-cns-slow
Name: gluster-cns-slow
IsDefaultClass: No
Annotations: <none>
Provisioner: kubernetes.io/glusterfs
Parameters:
clusterid=e73da525319cbf784ed27df3e8715ea8,restauthenabled=true,resturl
=http://heketi-
storage.apps.sysdeseng.com,restuser=admin,secretName=heketi-
secret,secretNamespace=default
No events.

5.5.7. Creating a Persistent Volume Claim

The StorageClass object created in the previous section allows for storage to be dynamically
provisioned using the CNS resources. The example below shows a dynamically provisioned volume
being requested from the gluster-cns-slow StorageClass object A sample persistent volume
claim is provided below:

$ oc new-project test

CHAPTER 5. PERSISTENT STORAGE

71

$ oc get storageclass
NAME TYPE
gluster-cns-slow kubernetes.io/glusterfs

$ vi db-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: db
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-cns-slow
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

$ oc create -f db-claim.yaml
persistentvolumeclaim "db" created

5.6. ADDITIONAL CNS STORAGE DEPLOYMENTS (OPTIONAL)

An OpenShift administrator may wish to offer multiple storage tiers to developers and users of the
OpenShift Container Platform. Typically these tiers refer to certain performance characteristics, e.g.
a storage tier called “fast” might be backed by SSDs whereas a storage tier called “slow” is backed
by magnetic drives or HDDs. With CNS an administrator can realize this by deploying additional
storage nodes running glusterfs pods. The additional nodes allow for the creation of additional
Storage Classes. A developer then consumes different storage tiers by select the appropriate
StorageClass object by the objects name.

Note

Creating additional CNS storage deployments is not possible if using OpenShift 3.4. Only
one CNS and subsequent StorageClass object can be created.

5.6.1. Deployment of a second Gluster Storage Pool

To deploy an additional glusterfs pool OpenShift requires additional nodes to be available that
currently are not running glusterfs pods yet. This will require that another three OpenShift nodes
are available in the environment using either the add-cns-storage.py script or by manually
deploying three instances and installing and configuring those nodes for OpenShift.

Note

If running the add-cns-storage.py nodes a second time provide a unique value for
configuration parameter of --gluster-stack. If the value of --gluster-stack is the
same for the old environment and the new then the existing CNS deployment will be
replaced.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

72

Once the new nodes are available, the next step is to get glusterfs pods up and running on the
additional nodes. This is achieved by extending the members of the DaemonSet defined in the first
CNS deployment. The storagenode=glusterfs label must be applied to the nodes to allow for
the scheduling of the glusterfs pods.

First identify the three nodes that will be added to the CNS cluster and then apply the label.

oc get nodes
NAME STATUS AGE
...omitted...
ip-10-20-4-189.ec2.internal Ready 5m
ip-10-20-5-204.ec2.internal Ready 5m
ip-10-20-6-39.ec2.internal Ready 5m
...omitted...

oc label node ip-10-20-4-189.ec2.internal storagenode=glusterfs
oc label node ip-10-20-5-204.ec2.internal storagenode=glusterfs
oc label node ip-10-20-6-39.ec2.internal storagenode=glusterfs

Once the label has been applied then the glusterfs pods will scale from 3 pods to 6. The
glusterfs pods will be running on both the newly labeled nodes and the existing nodes.

[subs=+quotes]
oc get pods
NAME READY STATUS RESTARTS AGE
glusterfs-2lcnb 1/1 Running 0 26m
glusterfs-356cf 1/1 Running 0 26m
glusterfs-fh4gm 1/1 Running 0 26m
glusterfs-hg4tk 1/1 Running 0 2m
glusterfs-v759z 1/1 Running 0 1m
glusterfs-x038d 1/1 Running 0 2m
heketi-1-cqjzm 1/1 Running 0 22m

Wait until all of the glusterfs pods are in READY 1/1 state before continuing. The new pods are
not yet configured as a CNS cluster. The new glusterfs pods will be a new CNS cluster after the
topology.json file is updated to define the new nodes they reside on and the heketi-cli is
executed with this new topology.json file as input.

5.6.2. Modifying the Topology File

Modify the topology.json file of the first CNS cluster to include a second entry in the “clusters” list
containing the additional nodes. The initial nodes have been omitted from the output below but are
still required.

vi gluster-topology.json
{
 "clusters": [
 {
 "nodes": [
 {
 ... nodes from initial cns-deploy call ...
 }
]
 },

CHAPTER 5. PERSISTENT STORAGE

73

 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-4-189.ec2.internal"
],
 "storage": [
 "10.20.4.189"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/xvdd"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-5-204.ec2.internal"
],
 "storage": [
 "10.20.5.204"
]
 },
 "zone": 2
 },
 "devices": [
 "/dev/xvdd"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-6-39.ec2.internal"
],
 "storage": [
 "10.20.6.39"
]
 },
 "zone": 3
 },
 "devices": [
 "/dev/xvdd"
]
 }
]
 }
]
}

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

74

Using heketi-cli load the modified topology.json file via heketi to trigger the creation of a
second cluster using the steps below. The first step is to export the values of the heketi server,
user, and key. The HEKET_CLI_KEY value should be the same as that created for the first cluster
(set using --admin-key for cns-deploy).

export HEKETI_CLI_SERVER=http://heketi-storage.apps.sysdeseng.com
export HEKETI_CLI_USER=admin
export HEKETI_CLI_KEY=myS3cr3tpassw0rd

With these environment variables exported the next step is to load the topology.json.

heketi-cli topology load --json=gluster-topology.json
 Found node ip-10-20-4-163.ec2.internal on cluster
372cf750e0b256fbc8565bb7e4afb434
 Found device /dev/xvdd
 Found node ip-10-20-5-247.ec2.internal on cluster
372cf750e0b256fbc8565bb7e4afb434
 Found device /dev/xvdd
 Found node ip-10-20-6-191.ec2.internal on cluster
372cf750e0b256fbc8565bb7e4afb434
 Found device /dev/xvdd
Creating cluster ... ID: 269bb26142a15ee10fa8b1cdeb0a37b7
 Creating node ip-10-20-4-189.ec2.internal ... ID:
0bd56937ef5e5689e003f68a7fde7c69
 Adding device /dev/xvdd ... OK
 Creating node ip-10-20-5-204.ec2.internal ... ID:
f79524a4de9b799524c87a4feb41545a
 Adding device /dev/xvdd ... OK
 Creating node ip-10-20-6-39.ec2.internal ... ID:
4ee40aee71b60b0627fb57be3dd2c66e
 Adding device /dev/xvdd ... OK

Observe the second cluster being created and verify that there is a new clusterid created in the
console output. Verify you now have a second clusterid and that the correct EC2 nodes are in
the new cluster.

heketi-cli cluster list
heketi-cli topology info

5.6.3. Creating an Additional Storage Class

Create a second StorageClass object via a YAML file similar to the first one with the same
heketi route and heketi secret but using the new clusterid and a unique StorageClass
object name.

vi glusterfs-storageclass-gp2.yaml
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: gluster-cns-fast
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: http://heketi-storage.apps.sysdeseng.com
 clusterid: 269bb26142a15ee10fa8b1cdeb0a37b7

CHAPTER 5. PERSISTENT STORAGE

75

 restauthenabled: "true"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"

Using the OpenShift client create the StorageClass object.

oc create -f glusterfs-storageclass-gp2.yaml

The second StorageClass object will now be available to make storage requests using gluster-
cns-fast when creating the PVC.

vi claim2.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: db
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-cns-fast
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

5.7. CONTAINER-READY STORAGE OVERVIEW

Container-Ready Storage (CRS) like CNS, uses Red Hat Gluster Storage to provide dynamically
provisioned storage. Unlike CNS where OpenShift deploys glusterfs and heketi specific pods to
be used for OpenShift storage CRS requires an Administrator to install packages and enable the
storage services on EC2 instances. Like CNS, CRS enables the requesting and mounting of Red Hat
Gluster Storage across one or many containers (access modes RWX, ROX and RWO). CRS allows
for the Red Hat Gluster Storage to be used outside of OpenShift. CRS can also be used to host the
OpenShift registry as can CNS.

5.7.1. Prerequisites for Container-Ready Storage

Deployment of Container-Ready Storage (CRS) requires at least 3 AWS instances with at least one
unused block storage device or EBS volume on each node. The instances should have at least 4
CPUs, 32GB RAM, and an unused volume 100GB or larger per node. An entitlement for Red Hat
Gluster Storage is also required to install the Gluster services.

5.7.2. Deployment of CRS Infrastructure

A python script named add-crs-storage.py is provided in the openshift-ansible-contrib
git repository which will deploy three AWS instances, register the instances, and install the
prerequisites for CRS for Gluster on each instance. Perform the following from the workstation where
the deployment of the OpenShift Reference Architecture was initiated.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

76

Note

On deployments of the Reference Architecture environment post OpenShift 3.5 --use-
cloudformation-facts is available to auto-populate values. An example of these
values can be viewed in the Post Provisioning Results section of this Reference
Architecture. If the deployment occurred before 3.5 then it is required to fill in the values
manually. To view the possible configuration triggers run add-crs-storage.py -h.
The add-crs-storage.py script requires the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY exported as an environment variable.

If the Reference Architecture deployment is >= OpenShift 3.5

$ cd /home/<user>/git/openshift-ansible-contrib/reference-
architecture/aws-ansible/
./add-crs-storage.py --rhsm-user=username --rhsm-password=password --
region=us-east-1 --gluster-stack=crs --public-hosted-zone=sysdeseng.com
\ --rhsm-pool="Red Hat Gluster Storage , Standard" --keypair=OSE-key --
existing-stack=openshift-infra --use-cloudformation-facts

If the Reference Architecture deployment was performed before 3.5.

$ cd /home/<user>/git/openshift-ansible-contrib/reference-
architecture/aws-ansible/
./add-crs-storage.py --rhsm-user=username --rhsm-password=PASSWORD --
public-hosted-zone=sysdeseng.com \ --rhsm-pool="Red Hat Gluster Storage
, Standard" --keypair=OSE-key --existing-stack=openshift-infra \ --
private-subnet-id1=subnet-ad2b23f6 --private-subnet-id2=subnet-7cd61a34
--region=us-east-1 \ --private-subnet-id3=subnet-77e89a4b --node-sg=sg-
0c7e0f73 -- bastion-sg=sg-1a2b5a23 --gluster-stack=crs

Note

Using the script add-crs-storage.py is optional. Nodes can be deployed without using
this script as long as the 3 new instances have 4 CPUs, 32GB RAM, and an unused
storage device or EBS volume.

5.7.3. CRS Subscription Prerequisites

CRS requires the instances to use the Red Hat Gluster Storage entitlement which which
allows access to the rh-gluster-3-for-rhel-7-server-rpms repository containing the
required RPMs for a successful installation.

If the add-crs-storage.py script was not used perform the following on the 3 CRS instances to
enable the required repository. Ensure the pool that is specified matches a pool available to the
RHSM credentials provided (example pool ID shown below).

subscription-manager register
subscription-manager attach --pool=8a85f98156981319015699f0183a253c
subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-
rpms

CHAPTER 5. PERSISTENT STORAGE

77

5.7.4. Firewall and Security Group Prerequisites

The following ports must be opened on the CRS nodes and in the AWS gluster-crs-sg security
group. Ensure the following ports defined in the table below are opened. Iptables or firewalld can be
used depending on the preference of the Administrator. These steps are done as part of the
automated provisioning of the instances with the add-crs-storage.py.

Table 5.3. AWS Nodes Security Group Details - Inbound

Inbound From

22 / TCP bastion_sg

22 / TCP gluster-crs-sg

2222 / TCP gluster-crs-sg

8080 / TCP gluster-crs-sg

8080 / TCP ose-node-sg

24007 / TCP gluster-crs-sg

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

78

24007 / TCP ose-node-sg

24008 / TCP gluster-crs-sg

24008 / TCP ose-node-sg

49152-49664 / TCP gluster-crs-sg

49152-49664 / TCP ose-node-sg

Inbound From

The add-crs-gluster.py uses iptables and creates the rules shown in the table above on each
of the CRS nodes. The following commands can be ran on the 3 new instances if the instances were
built without using the add-crs-gluster.py script.

yum -y install firewalld
systemctl enable firewalld
systemctl disable iptables
systemctl stop iptables
systemctl start firewalld
firewall-cmd --add-port=24007/tcp --add-port=24008/tcp --add-
port=2222/tcp \ --add-port=8080/tcp --add-port=49152-49251/tcp --
permanent
firewall-cmd --reload

5.7.5. CRS Package Prerequisites

The redhat-storage-server package and dependencies will install all of the required RPMs for
a successful Red Hat Gluster Storage installation. If the add-crs-storage.py script was not used
perform the following on the each of the three CRS instances.

yum install -y redhat-storage-server

After successful installation enable and start the glusterd.service.

systemctl enable glusterd
systemctl start glusterd

5.7.6. Installing and Configuring Heketi

Heketi is used to manage the Gluster Trusted Storage Pool(TSP). Heketi is used to
perform tasks such as adding volumes, removing volumes, and creating the initial TSP. Heketi can
be installed on one of the CRS instances or even within OpenShift if desired. Regardless of whether

CHAPTER 5. PERSISTENT STORAGE

79

the add-crs-storage.py script was used or not the following must be performed on the CRS
instance chosen to run Heketi. For the steps below the first CRS Gluster instance will be used.

yum install -y heketi heketi-client

Create the heketi private key on the instance designated to run heketi.

ssh-keygen -f /etc/heketi/heketi_key -t rsa -N ''
chown heketi:heketi /etc/heketi/heketi_key.pub
chown heketi:heketi /etc/heketi/heketi_key

Copy the contents of the /etc/heketi/heketi_key.pub into a clipboard and login to each CRS
node and paste the contents of the clipboard as a new line into the /home/ec2-
user/.ssh/authorized_keys file. This must be done on all 3 instances including the CRS node
where the heketi services are running. Also, on each of the 3 instances requiretty must be
disabled or removed in /etc/sudoers to allow for management of those hosts using sudo. Ensure
that the line below either does not exist in sudoers or that it is commented out.

visudo
... omitted ...
#Defaults requiretty
... omitted ...

On the node where Heketi was installed, edit the /etc/heketi/heketi.json file to setup the
SSH executor and the admin and user keys. The heketi admin key (password) will be used to
create a heketi-secret in OpenShift. This secret will then be used during the creation of the
StorageClass object.

vi /etc/heketi/heketi.json
... omitted ...
"_use_auth": "Enable JWT authorization. Please enable for deployment",
"use_auth": true,

"_jwt": "Private keys for access",
"jwt": {
 "_admin": "Admin has access to all APIs",
 "admin": {
 "key": "myS3cr3tpassw0rd"
 },
 "_user": "User only has access to /volumes endpoint",
 "user": {
 "key": "mys3rs3cr3tpassw0rd"
 }
},

 "glusterfs": {
 "_executor_comment": [
 "Execute plugin. Possible choices: mock, ssh",
 "mock: This setting is used for testing and development.",
 " It will not send commands to any node.",
 "ssh: This setting will notify Heketi to ssh to the nodes.",
 " It will need the values in sshexec to be configured.",
 "kubernetes: Communicate with GlusterFS containers over",
 " Kubernetes exec api."
],

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

80

 "executor": "ssh",
 "_sshexec_comment": "SSH username and private key file
information",
 "sshexec": {
 "keyfile": "/etc/heketi/heketi_key",
 "user": "ec2-user",
 "sudo": true,
 "port": "22",
 "fstab": "/etc/fstab"
 },
... omitted ...

Restart and enable heketi service to use the configured /etc/heketi/heketi.json file.

systemctl restart heketi
systemctl enable heketi

The heketi service should now be running. Heketi provides an endpoint to perform a health
check. This validation can be done from either an OpenShift master or from any of the CRS
instances.

curl http://ip-10-20-4-40.ec2.internal:8080/hello
Hello from Heketi

5.7.7. Loading Topology File

The topology.json is used to tell heketi about the environment and which nodes and storage
devices it will manage. There is a sample file located in /usr/share/heketi/topology-
sample.json and an example shown below for 3 CRS nodes in 3 zones. Both CRS and CNS use
the same format for the topology.json file.

vi topology.json
{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-4-40.ec2.internal"
],
 "storage": [
 "10.20.4.40"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/xvdb"
]
 },
 {
 "node": {

CHAPTER 5. PERSISTENT STORAGE

81

 "hostnames": {
 "manage": [
 "ip-10-20-5-104.ec2.internal"
],
 "storage": [
 "10.20.5.104"
]
 },
 "zone": 2
 },
 "devices": [
 "/dev/xvdb"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "ip-10-20-6-79.ec2.internal"
],
 "storage": [
 "10.20.6.79"
]
 },
 "zone": 3
 },
 "devices": [
 "/dev/xvdb"
]
 }
]
 }
]
}

The HEKETI_CLI_SERVER, HEKETI_CLI_USER, and HEKETI_CLI_KEY environment variables
are required for heketi-cli commands to be ran. The HEKETI_CLI_SERVER is the AWS instance
name where the heketi services are running. The HEKETI_CLI_KEY is the admin key value
configured in the /etc/heketi/heketi.json file.

export HEKETI_CLI_SERVER=http://ip-10-20-4-40.ec2.internal:8080
export HEKETI_CLI_USER=admin
export HEKETI_CLI_KEY=myS3cr3tpassw0rd

Using heketi-cli, run the following command to load the topology of your environment.

heketi-cli topology load --json=topology.json
 Found node ip-10-20-4-40.ec2.internal on cluster
c21779dd2a6fb2d665f3a5b025252849
 Adding device /dev/xvdb ... OK
 Creating node ip-10-20-5-104.ec2.internal ... ID:
53f9e1af44cd5471dd40f3349b00b1ed

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

82

 Adding device /dev/xvdb ... OK
 Creating node ip-10-20-6-79.ec2.internal ... ID:
328dfe7fab00a989909f6f46303f561c
 Adding device /dev/xvdb ... OK

5.7.8. Validating Gluster Installation(Optional)

From the instance where heketi client is installed and the heketi environment variables has
been exported create a Gluster volume to verify heketi.

heketi-cli volume create --size=50
Name: vol_4950679f18b9fad6f118b2b20b0c727e
Size: 50
Volume Id: 4950679f18b9fad6f118b2b20b0c727e
Cluster Id: b708294a5a2b9fed2430af9640e7cae7
Mount: 10.20.4.119:vol_4950679f18b9fad6f118b2b20b0c727e
Mount Options: backup-volfile-servers=10.20.5.14,10.20.6.132
Durability Type: replicate
Distributed+Replica: 3

The command gluster volume info can provide further information on the newly created
Gluster volume.

gluster volume info

Volume Name: vol_f2eec68b2dea1e6c6725d1ca3f9847a4
Type: Replicate
Volume ID: f001d6e9-fee4-4e28-9908-359bbd28b8f5
Status: Started
Snapshot Count: 0
Number of Bricks: 1 x 3 = 3
Transport-type: tcp
Bricks:
Brick1:
10.20.5.104:/var/lib/heketi/mounts/vg_9de785372f550942e33d0f3abd8cd9ab/
brick_03cfb63f8293238affe791032ec779c2/brick
Brick2:
10.20.4.40:/var/lib/heketi/mounts/vg_ac91b30f6491c571d91022d24185690f/b
rick_2b60bc032bee1be7341a2f1b5441a37f/brick
Brick3:
10.20.6.79:/var/lib/heketi/mounts/vg_34faf7faaf6fc469298a1c15a0b2fd2f/b
rick_d7181eb86f3ca37e4116378181e28855/brick
Options Reconfigured:
transport.address-family: inet
performance.readdir-ahead: on
nfs.disable: on

5.8. CRS FOR OPENSHIFT

5.8.1. Store the heketi secret

OpenShift allows for the use of secrets so that items do not need to be stored in clear text. The
admin password for heketi, specified during configuration of the heketi.json file, should be

CHAPTER 5. PERSISTENT STORAGE

83

stored in base64-encoding. OpenShift can refer to this secret instead of specifying the password in
clear text.

To generate the base64-encoded equivalent of the admin password supplied to the cns-deploy
command perform the following.

echo -n myS3cr3tpassw0rd | base64
bXlzZWNyZXRwYXNzdzByZA==

On the master or workstation with the OpenShift client installed with cluster-admin privileges
use the base64 password string in the following YAML to define the secret in OpenShift’s default
namespace.

vi heketi-secret.yaml
apiVersion: v1
kind: Secret
metadata:
 name: heketi-secret
 namespace: default
data:
 key: bXlzZWNyZXRwYXNzdzByZA==
type: kubernetes.io/glusterfs

Create the secret by using the following command.

oc create -f heketi-secret.yaml
secret "heketi-secret" created

5.8.2. Creating a Storage Class

CRS storage has all of the same benefits that CNS storage has with regard to OpenShift storage.
The cluster-admin or storage-admin can perform the following which will allow for
dynamically provisioned CRS storage on demand. The key benefit of this storage is that the
persistent storage can be created with access modes ReadWriteOnce(RWO),
ReadOnlyMany(ROX), or ReadWriteMany(RWX) adding more flexibility than cloud provider
specific storage.

A StorageClass object requires certain parameters to be defined to successfully create the
resource. Use the values of the exported environment variables from the previous steps to define
the resturl, restuser, secretNamespace, and secretName.

vi storage-crs.json
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: crs-slow-st1
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://ip-10-20-4-40.ec2.internal:8080"
 restauthenabled: "true"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

84

Once the Storage Class json file has been created use the oc create command to create the
object in OpenShift.

oc create -f storage-crs.json

To validate the Storage Class was created perform the following.

oc get storageclass
NAME TYPE
crs-slow-st1 kubernetes.io/glusterfs

oc describe storageclass crs-slow-st1
Name: crs-slow-st1
IsDefaultClass: No
Annotations: storageclass.beta.kubernetes.io/is-default-class=true
Provisioner: kubernetes.io/glusterfs
Parameters: restauthenabled=true,resturl=http://ip-10-20-4-
40.ec2.internal:8080,
restuser=admin,secretName=heketi-secret,secretNamespace=default
No events.

5.8.3. Creating a Persistent Volume Claim

The Storage Class created in the previous section allows for storage to be dynamically
provisioned using the CRS resources. The example below shows a dynamically provisioned volume
being requested from the crs-slow-st1 StorageClass object. A sample persistent volume
claim is provided below:

$ oc new-project test

$ vi db-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: db
 annotations:
 volume.beta.kubernetes.io/storage-class: crs-slow-st1
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

$ oc create -f db-claim.yaml
persistentvolumeclaim "db" created

5.9. RWO PERSISTENT STORAGE EXAMPLE (OPTIONAL)

For ReadWriteOnce storage, any of the StorageClass objects created in the above sections can
be used. The persistent volume claim will be done at the time of application deployment and
provisioned based on the rules in the StorageClass object. The example below uses a MySQL
deployment using an OpenShift standard template and one of the StorageClass objects defined

CHAPTER 5. PERSISTENT STORAGE

85

above.

Create an OpenShift project for MySQL deployment.

oc new-project rwo

The ‘mysql-persistent’ template will be used for deploying MySQL. The first step is to check to see if
the template is available for use.

oc get templates -n openshift | grep "MySQL database service, with
persistent storage"
mysql-persistent MySQL database service, with persistent storage.

Export the default mysql-persistent template content into a yaml file. The OpenShift client can
provide a view of the available parameters for this template.

oc export template/mysql-persistent -n openshift -o yaml > mysql-
persistent.yaml
oc process -f mysql-persistent.yaml --parameters

View the contents of the yaml file and add the lines below to identify the StorageClass object the
MySQL PVC will be created from. If these lines are not added the default StorageClass object will be
used.

Note

Any of the StorageClass objects created in this reference architecture can be used.

vi mysql-persistent.yaml
…. omitted ….
- apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: ${DATABASE_SERVICE_NAME}
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-cns-fast
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: ${VOLUME_CAPACITY}
…. omitted ….

Create a deployment manifest from the mysql-persistent.yaml template file and view
contents. Make sure to modify the ‘storage: ${VOLUME_CAPACITY}’ to be the desired size for the
database (1Gi is default value).

oc process -f mysql-persistent.yaml -o yaml > cns-mysql-
persistent.yaml
vi cns-mysql-persistent.yaml
…. omitted ….
- apiVersion: v1

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

86

 kind: PersistentVolumeClaim
 metadata:
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-cns-fast
 labels:
 template: mysql-persistent-template
 name: mysql
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
…. omitted ….

Using the deployment manifest, create the the objects for the MySQL application.

oc create -f cns-mysql-persistent.yaml
secret "mysql" created
service "mysql" created
persistentvolumeclaim "mysql" created
deploymentconfig "mysql" created

Validate application is using a persistent volume claim.

oc describe dc mysql
…. omitted ….
 Volumes:
 mysql-data:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim
in the same namespace)
 ClaimName: mysql
 ReadOnly: false
…. omitted ….

oc get pvc mysql
NAME STATUS VOLUME
CAPACITY ACCESSMODES
mysql Bound pvc-fc297b76-1976-11e7-88db-067ee6f6ca67 1Gi
RWO

Validate that the MySQL pod has a PV mounted at /var/lib/mysql/data directory.

oc volumes dc mysql
deploymentconfigs/mysql
pvc/mysql (allocated 1GiB) as mysql-data
mounted at /var/lib/mysql/data

The option also exists to connect to the running pod to view the storage that is currently in use.

oc rsh mysql-1-4tb9g
sh-4.2$ df -h /var/lib/mysql/data
Filesystem Size Used Avail
Use% Mounted on
10.20.4.40:vol_e9b42baeaaab2b20d816b65cc3095558 1019M 223M 797M 22%

CHAPTER 5. PERSISTENT STORAGE

87

/var/lib/mysql/data

5.10. RWX PERSISTENT STORAGE (OPTIONAL)

One of the benefits of using Red Hat Gluster Storage is the ability to use access mode
ReadWriteMany(RWX) for container storage. This example is for a PHP application which has
requirements for a persistent volume mount point. The application will be scaled to show the
benefits of RWX persistent storage.

Create a test project for the demo application.

oc new-project rwx

Create the application using the following github link:

oc new-app
openshift/php:7.0~https://github.com/christianh814/openshift-php-
upload-demo --name=demo
--> Found image d3b9896 (2 weeks old) in image stream "openshift/php"
under tag "7.0" for "openshift/php:7.0"

 Apache 2.4 with PHP 7.0

 Platform for building and running PHP 7.0 applications

 Tags: builder, php, php70, rh-php70

 * A source build using source code from
https://github.com/christianh814/openshift-php-upload-demo will be
created
 * The resulting image will be pushed to image stream
"demo:latest"
 * Use 'start-build' to trigger a new build
 * This image will be deployed in deployment config "demo"
 * Port 8080/tcp will be load balanced by service "demo"
 * Other containers can access this service through the hostname
"demo"

--> Creating resources ...
 imagestream "demo" created
 buildconfig "demo" created
 deploymentconfig "demo" created
 service "demo" created
--> Success
 Build scheduled, use 'oc logs -f bc/demo' to track its progress.
 Run 'oc status' to view your app.

Validate that the build is complete and the pods are running.

oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 20s
demo-1-sch77 1/1 Running 0 7s

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

88

The next step is to retrieve the name of the OpenShift svc which will be used to create a route.

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
demo 172.30.211.203 <none> 8080/TCP 1m

Expose the service as a public route by using the oc expose command.

oc expose svc/demo
route "demo" exposed

OpenShift will create a route based on the application name, project, and wildcard zone. This will be
the URL that can be accessed by browser.

oc get route
NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
demo demo-manual.apps.rcook-aws.sysdeseng.com demo
8080-tcp None

Using a web browser validate the application (example http://demo-manual.apps.sysdeseng.com/)
using the route defined in the previous step.

Upload a file using the web UI.

CHAPTER 5. PERSISTENT STORAGE

89

http://demo-manual.apps.sysdeseng.com/

Connect to the demo-1-sch77 and verify the file exists.

oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-sch77 1/1 Running 0 5m
oc rsh demo-1-sch77
sh-4.2$ cd uploaded
sh-4.2$ pwd
/opt/app-root/src/uploaded
sh-4.2$ ls -lh
total 16K
-rw-r--r--. 1 1000080000 root 16K Apr 26 21:32 cns-deploy-4.0.0-
15.el7rhgs.x86_64.rpm.gz

Scale up the number of demo-1 pods from 1 to 2.

oc scale dc/demo --replicas=2

oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 7m
demo-1-sch77 1/1 Running 0 7m
demo-1-sdz28 0/1 Running 0 3s

Login to the newly created pod and view the uploaded directory.

oc rsh demo-1-sdz28
sh-4.2$ cd uploaded
sh-4.2$ pwd
/opt/app-root/src/uploaded
sh-4.2$ ls -lh
total 0

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

90

The uploaded file is not available to this newly created second pod because the storage is local to
the pod, demo-1-sch77. In the next steps, the storage for the pods will be changed from local or
ephemeral storage to a RWX persistent volume claim for the mount point /opt/app-
root/src/uploaded.

First, add a persistent volume claim to the project. The existing OCP StorageClass object created
for a CNS cluster (gluster-cns-slow) will be used to create a PVC with the acces mode of RWX.

Note

A CRS StoreClass object can be used in the steps below as well.

The first step is to create the app-claim.yaml file.

vi app-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: app
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-cns-slow
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi

Using the app-claim.yaml file use the OpenShift client to create the PVC.

oc create -f app-claim.yaml
persistentvolumeclaim "app" created

Verify the PVC was created.

oc get pvc app
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
app Bound pvc-418330b7-2ac9-11e7-946e-067f85bdafe9 10Gi
RWX 46s

Now that the PVC exists tie the claim to the deployment configuration using the existing mount path
/opt/app-root/src/uploaded for demo pods.

oc volume dc/demo --add --name=persistent-volume --
type=persistentVolumeClaim --claim-name=app --mount-path=/opt/app-
root/src/uploaded

A new deployment is created using the PVC and there are two new demo pods

oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 16m

CHAPTER 5. PERSISTENT STORAGE

91

demo-2-9cv88 1/1 Running 0 8s
demo-2-m1mwt 1/1 Running 0 13s

Now there is a persistent volume allocated using the gluster-cns-slow storage class and mounted at
/opt/app-root/src/uploaded on the demo-2 pods.

oc volumes dc demo
deploymentconfigs/demo
 pvc/app (allocated 10GiB) as persistent-volume
 mounted at /opt/app-root/src/uploaded

Using the route for the demo-2 deployment upload a new file (example http://demo-
manual.apps.sysdeseng.com/).

Now login to both pods and validate that both pods can read the newly uploaded file.

On the first pod perform the following.

oc rsh demo-2-9cv88
sh-4.2$ df -h
Filesystem
Size Used Avail Use% Mounted on
….omitted….
10.20.4.115:vol_624ec880d10630989a8bdf90ae183366
10G 39M 10G 1% /opt/app-root/src/uploaded
sh-4.2$ cd /opt/app-root/src/uploaded
sh-4.2$ ls -lh
total 5.6M
-rw-r--r--. 1 1000080000 2002 5.6M Apr 26 21:51 heketi-client-4.0.0-
7.el7rhgs.x86_64.rpm.gz

On the second pod perform the following.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

92

http://demo-manual.apps.sysdeseng.com/

oc rsh demo-2-m1mwt
sh-4.2$ df -h
Filesystem
Size Used Avail Use% Mounted on
….omitted….
10.20.4.115:vol_624ec880d10630989a8bdf90ae183366
10G 39M 10G 1% /opt/app-root/src/uploaded
sh-4.2$ cd /opt/app-root/src/uploaded
sh-4.2$ ls -lh
total 5.6M
-rw-r--r--. 1 1000080000 2002 5.6M Apr 26 21:51 heketi-client-4.0.0-
7.el7rhgs.x86_64.rpm.gz

Scale up the number of demo-2 pods from two to three.

oc scale dc/demo --replicas=2

Verify the third pod has a STATUS of Running.

oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 43m
demo-2-9cv88 1/1 Running 0 26m
demo-2-kcc16 1/1 Running 0 5s
demo-2-m1mwt 1/1 Running 0 27m

Login to the third pod and validate the uploaded file exists.

oc rsh demo-2-kcc16
sh-4.2$ cd uploaded
sh-4.2$ ls -lh
total 5.6M
-rw-r--r--. 1 1000080000 2002 5.6M Apr 26 21:51 heketi-client-4.0.0-
7.el7rhgs.x86_64.rpm.gz

Because of the use of a CNS RWX persistent volume for the mount point /opt/app-
root/src/uploaded the file that was uploaded using the Web UI for the demo application is now
available to be read or downloaded by all demo-2 pods no matter how they are scaled up or down.

5.11. DELETING A PVC (OPTIONAL)

There may become a point in which a PVC is no longer necessary for a project. The following can be
done to remove the PVC.

oc delete pvc db
persistentvolumeclaim "db" deleted
oc get pvc db
No resources found.
Error from server: persistentvolumeclaims "db" not found

CHAPTER 5. PERSISTENT STORAGE

93

CHAPTER 6. EXTENDING THE CLUSTER

By default, the reference architecture playbooks are configured to deploy 3 master, 3 application,
and 2 infrastructure nodes. This cluster size provides enough resources to get started with
deploying a few test applications or a Continuous Integration Workflow example. However, as the
cluster begins to be utilized by more teams and projects, it will be become necessary to provision
more application or infrastructure nodes to support the expanding environment. To facilitate easily
growing the cluster, the add-node.py python script (similar to ose-on-aws.py) is provided in the
openshift-ansible-contrib repository. It will allow for provisioning either an Application or
Infrastructure node per run and can be ran as meany times as needed. The add-node.py script
launches a new AWS Cloudformation Stack to provision the new resource.

6.1. PREREQUISITES FOR ADDING A NODE

Verify the quantity and type of the nodes in the cluster by using the oc get nodes command. The
output below is an example of a complete OpenShift environment after the deployment of the
reference architecture environment.

$ oc get nodes
NAME STATUS AGE
ip-10-20-4-198.ec2.internal Ready,SchedulingDisabled 14m
ip-10-20-4-209.ec2.internal Ready 14m
ip-10-20-4-232.ec2.internal Ready 14m
ip-10-20-5-187.ec2.internal Ready 14m
ip-10-20-5-22.ec2.internal Ready 14m
ip-10-20-5-94.ec2.internal Ready,SchedulingDisabled 14m
ip-10-20-6-42.ec2.internal Ready 14m
ip-10-20-6-20.ec2.internal Ready,SchedulingDisabled 14m

6.2. INTRODUCTION TO ADD-NODE.PY

The python script add-node.py is operationally similar to the ose-on-aws.py script. Parameters
can optionally be passed in when calling the script. The existing-stack trigger allows the Ansible
playbooks to associate the new node with the existing AWS instances. The existing-stack is the
value of --stack-name when running ose-on-aws.py. Any required parameters not already set
will automatically prompted for at run time. To see all allowed parameters, the --help trigger is
available.

Note

On deployments of the Reference Architecture environment post 3.5 --use-
cloudformation-facts is available to auto-populate values. If the deployment occurred
before 3.5 then it is required to fill in the values manually. To view the possible
configuration triggers run add-node.py -h

6.3. ADDING AN APPLICATION NODE

To add an application node, run the add-node.py script following the example below. Once the
instance is launched, the installation of OpenShift will automatically begin.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

94

Note

If --use-cloudformation-facts is not used the --iam-role or Specify the
name of the existing IAM Instance Profile is available by logging into the
IAM Dashboard and selecting the role sub-menu. Select the node role and record the
information from the Instance Profile ARN(s) line. An example Instance Profile
would be OpenShift-Infra-NodeInstanceProfile-TNAGMYGY9W8K.

If the Reference Architecture deployment is >= 3.5

$./add-node.py --existing-stack=dev --rhsm-user=rhsm-user --rhsm-
password=password --public-hosted-zone=sysdeseng.com --keypair=OSE-key
--rhsm-pool="Red Hat OpenShift Container Platform, Premium, 2-Core" --
use-cloudformation-facts --shortname=ose-app-node03 --subnet-id=subnet-
0a962f4

If the Reference Architecture deployment was performed before 3.5.

$./add-node.py --existing-stack=dev --rhsm-user=rhsm-user --rhsm-
password=password --public-hosted-zone=sysdeseng.com --keypair=OSE-key
--rhsm-pool="Red Hat OpenShift Container Platform, Premium, 2-Core" --
node-sg=sg-309f0a4a --shortname=ose-app-node03 --iam-role=OpenShift-
Infra-NodeInstanceProfile-TNAGMYGY9W8K --subnet-id=subnet-0a962f4

6.4. ADDING AN INFRASTRUCTURE NODE

The process for adding an Infrastructure Node is nearly identical to adding an Application Node. The
only differences in adding an Infrastructure node is the requirement of the infrastructure
security group (ose_infra_node_sg) and the name of the ELB used by the router
(ose_router_elb). Follow the example steps below to add a new infrastructure node.

Note

If --use-cloudformation-facts is not used the --iam-role or Specify the
name of the existing IAM Instance Profile: is available visiting the IAM
Dashboard and selecting the role sub-menu. Select the node role and record the
information from the Instance Profile ARN(s) line. An example Instance Profile
would be OpenShift-Infra-NodeInstanceProfile-TNAGMYGY9W8K.

If the Reference Architecture deployment is >= 3.5

$./add-node.py --existing-stack=dev --rhsm-user=rhsm-user --rhsm-
password=password --public-hosted-zone=sysdeseng.com --keypair=OSE-key
--rhsm-pool="Red Hat OpenShift Container Platform, Premium, 2-Core" --
use-cloudformation-facts --shortname=ose-infra-node04 --node-type=infra
--subnet-id=subnet-0a962f4

If the Reference Architecture deployment was performed before 3.5.

$./add-node.py --rhsm-user=user --rhsm-password=password --public-

CHAPTER 6. EXTENDING THE CLUSTER

95

hosted-zone=sysdeseng.com --keypair=OSE-key --rhsm-pool="Red Hat
OpenShift Container Platform, Premium, 2-Core" --node-type=infra --iam-
role=OpenShift-Infra-NodeInstanceProfile-TNAGMYGY9W8K --node-sg=sg-
309f9a4a --infra-sg=sg-289f9a52 --shortname=ose-infra-node04 --subnet-
id=subnet-0a962f4 --infra-elb-name=OpenShift-InfraElb-1N0DZ3CFCAHLV

6.5. VALIDATING A NEWLY PROVISIONED NODE

To verify a newly provisioned node that has been added to the existing environment, use the oc
get nodes command. In this example, node ip-10-20-6-198.ec2.internal is an application
node newly deployed by the add-node.py playbooks..

$ oc get nodes
NAME STATUS AGE
ip-10-20-4-198.ec2.internal Ready,SchedulingDisabled 34m
ip-10-20-4-209.ec2.internal Ready 34m
ip-10-20-4-232.ec2.internal Ready 34m
ip-10-20-5-187.ec2.internal Ready 34m
ip-10-20-5-22.ec2.internal Ready 34m
ip-10-20-5-94.ec2.internal Ready,SchedulingDisabled 34m
ip-10-20-6-198.ec2.internal Ready 1m
ip-10-20-6-42.ec2.internal Ready 14m
ip-10-20-6-20.ec2.internal Ready,SchedulingDisabled 34m

$ oc get nodes --show-labels | grep app | wc -l
3

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

96

CHAPTER 7. MULTIPLE OPENSHIFT DEPLOYMENTS

7.1. PREREQUISITES

The prerequisites described in Section 3.1, “Prerequisites for Provisioning” are required when
deploying another OCP environment into AWS. Below is a checklist to perform to prepare for the
deployment of another OCP cluster.

Create subdomain

Map subdomain NS records to root domain

Configure authentication

7.1.1. SSH Configuration

The .ssh/config will need to reflect both the existing environment and the new environment.
Below is an example. The environment of dev will be the existing deployment and prod will be the
new deployment.

Host dev
 Hostname bastion.dev.sysdeseng.com
 user ec2-user
 StrictHostKeyChecking no
 ProxyCommand none
 CheckHostIP no
 ForwardAgent yes
 IdentityFile /home/<user>/.ssh/id_rsa

Host *.dev.sysdeseng.com
 ProxyCommand ssh ec2-user@dev -W %h:%p
 user ec2-user
 IdentityFile /home/<user>/.ssh/id_rsa

Host prod
 Hostname bastion.prod.sysdeseng.com
 user ec2-user
 StrictHostKeyChecking no
 ProxyCommand none
 CheckHostIP no
 ForwardAgent yes
 IdentityFile /home/<user>/.ssh/id_rsa

Host *.prod.sysdeseng.com
 ProxyCommand ssh ec2-user@prod -W %h:%p
 user ec2-user
 IdentityFile /home/<user>/.ssh/id_rsa

7.2. DEPLOYING THE ENVIRONMENT

Using the ose-on-aws.py script to deploy another OCP cluster is almost exactly the same as
defined in Section 3.1, “Prerequisites for Provisioning” the important difference is --stack-name.
In the event that ose-on-aws.py is launched with the same stack name as the previously

CHAPTER 7. MULTIPLE OPENSHIFT DEPLOYMENTS

97

deployed environment the cloudformation facts will be changed causing the existing deployment to
be broken.

Note

Verify the existing stack name by browsing to AWS and clicking the Cloudformation
service before proceeding with the steps below.

$ export AWS_ACCESS_KEY_ID=<key_id>
$ export AWS_SECRET_ACCESS_KEY=<access_key>
$./ose-on-aws.py --stack-name=prod --rhsm-user=rhsm-user --rhsm-
password=rhsm-password \ --public-hosted-zone=prod.sysdeseng.com --
keypair=OSE-key \ --github-client-
secret=47a0c41f0295b451834675ed78aecfb7876905f9 \ --github-
organization=openshift \ --github-organization=RHSyseng --github-
client-id=3a30415d84720ad14abc --rhsm-pool="Red Hat OpenShift Container
Platform, Standard, 2-Core"

Example of Greenfield Deployment Values

The highlighted value stack_name: prod ensures that the dev deployment will not be
compromised.

Configured values:
 stack_name: prod
 ami: ami-10251c7a
 region: us-east-1
 master_instance_type: m4.large
 node_instance_type: t2.medium
 app_instance_type: t2.medium
 bastion_instance_type: t2.micro
 keypair: OSE-key
 create_key: no
 key_path: /dev/null
 create_vpc: yes
 vpc_id: None
 private_subnet_id1: None
 private_subnet_id2: None
 private_subnet_id3: None
 public_subnet_id1: None
 public_subnet_id2: None
 public_subnet_id3: None
 byo_bastion: no
 bastion_sg: /dev/null
 console port: 443
 deployment_type: openshift-enterprise
 openshift_sdn: openshift-ovs-subnet
 public_hosted_zone: prod.sysdeseng.com
 app_dns_prefix: apps
 apps_dns: apps.prod.sysdeseng.com
 rhsm_user: rhsm-user
 rhsm_password: rhsm_pool: Red Hat OpenShift Container Platform,

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

98

Standard, 2-Core containerized: False s3_bucket_name: prod-ocp-
registry-prod s3_username: prod-s3-openshift-user github_client_id:
 github_client_secret: *
 github_organization: openshift,RHSyseng

CHAPTER 7. MULTIPLE OPENSHIFT DEPLOYMENTS

99

CHAPTER 8. CONCLUSION

Red Hat solutions involving the OpenShift Container Platform are created to deliver a
production-ready foundation that simplifies the deployment process, shares the latest best
practices, and provides a stable highly available environment on which to run your
production applications.

This reference architecture covered the following topics:

A completely provisioned infrastructure in AWS

OpenShift Masters in Multiple Availability Zones

Infrastructure nodes in Multiple Availability Zones with Router and Registry pods
scaled accordingly

Native integration with AWS services like Route53, EBS, S3, IAM, EC2

Elastic Load Balancers for the Master instances and for the Infrastructure instances

S3 storage for persistent storage of container images

EBS storage for /var/lib/docker on each node

A role assigned to instances that will allow OpenShift to mount EBS volumes

Creation of applications

Validating the environment

Testing failover

For any questions or concerns, please email refarch-feedback@redhat.com and ensure to
visit the Red Hat Reference Architecture page to find about all of our Red Hat solution
offerings.

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

100

mailto:refarch-feedback@redhat.com
http://red.ht/1IEYbQT

APPENDIX A. REVISION HISTORY

Revision Release Date Author(s)

1.0 Tuesday September 8, 2016 Scott Collier / Ryan Cook

1.1 Tuesday September 20, 2016 Scott Collier / Ryan Cook

1.2 Tuesday September 27, 2016 Scott Collier / Ryan Cook

1.3 Friday September 30, 2016 Scott Collier / Ryan Cook

1.4 Friday October 21, 2016 Scott Collier / Ryan Cook

1.5 Friday October 28, 2016 Scott Collier / Ryan Cook

1.6 Monday November 14, 2016 Scott Collier / Ryan Cook

1.7 Monday December 9, 2016 Scott Collier / Ryan Cook

1.8 Tuesday January 24, 2017 Scott Collier / Ryan Cook

1.9 Tuesday February 21, 2017 Scott Collier / Ryan Cook

1.10 Friday April 28, 2017 Scott Collier / Ryan Cook

PDF generated by Asciidoctor PDF

Reference Architecture Theme version 1.2

1.10 Revision Changelog

Moving of container storage to it’s own chapter

OpenShift 3.5

APPENDIX A. REVISION HISTORY

101

https://github.com/asciidoctor/asciidoctor-pdf

CNS deployment defined

CRS deployment defined

Safer method of installing Ansible

1.9 Revision Changelog

Addition of minor upgrade playbook

SDN selection

Suggestions and fixes of document

1.8 Revision Changelog

Addition of 1 infrastructure node to allow for 0 downtime upgrade of OpenShift

Dynamic Provisioning and Storage Classes Defined in Ch4

3.3 → 3.4 of OpenShift Container Platform

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

102

APPENDIX B. CONTRIBUTORS

Jason DeTiberus, content provider

Annette Clewett, content provider

Daniel Messer, content provider

Erik Jacobs, content reviewer

Matt Woodson, content reviewer

Rayford Johnson, content reviewer

Roger Lopez, content reviewer

APPENDIX B. CONTRIBUTORS

103

APPENDIX C. INSTALLATION FAILURE

In the event of an OpenShift installation failure perform the following steps. The first step is
to create an inventory file and run the uninstall playbook.

C.1. INVENTORY

The static inventory is used with the uninstall playbook to identify OpenShift nodes. Modify
the inventory below to match the deployed environment or use the Ansible playbook located
at openshift-ansible-contrib/reference-architecture/aws-
ansible/playbooks/create-inventory-file.yaml to create an inventory.

Automated inventory creation

cd /home/USER/git/openshift-ansible-contrib/reference-
architecture/aws-ansible
ansible-playbook -i inventory/aws/hosts -e 'region=us-east-1
stack_name=openshift-infra
github_client_secret=c3cd9271ffb9f7258e135fcf3ea3a358cffa46b1
github_organization=["openshift"] console_port=443
wildcard_zone=apps.sysdeseng.com public_hosted_zone=sysdeseng.com
playbooks/create-inventory-file.yaml

Manual creation

vi /home/user/inventory
[OSEv3:children]
masters
etcd
nodes

[OSEv3:vars]
debug_level=2
openshift_debug_level="{{ debug_level }}"
openshift_node_debug_level="{{ node_debug_level | default(debug_level,
true) }}"
openshift_master_debug_level="{{ master_debug_level |
default(debug_level, true) }}"
openshift_master_access_token_max_seconds=2419200
openshift_master_api_port=443
openshift_master_console_port=443
osm_cluster_network_cidr=172.16.0.0/16
openshift_registry_selector="role=infra"
openshift_router_selector="role=infra"
openshift_hosted_router_replicas=3
openshift_hosted_registry_replicas=3
openshift_master_cluster_method=native
openshift_node_local_quota_per_fsgroup=512Mi
openshift_cloudprovider_kind=aws
openshift_master_cluster_hostname=internal-openshift-
master.sysdeseng.com
openshift_master_cluster_public_hostname=openshift-master.sysdeseng.com
osm_default_subdomain=apps.sysdeseng.com
openshift_master_default_subdomain=apps.sysdeseng.com

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

104

osm_default_node_selector="role=app"
deployment_type=openshift-enterprise
os_sdn_network_plugin_name="redhat/openshift-ovs-subnet"
openshift_master_identity_providers=[{'name': 'github',
'mapping_method': 'claim', 'clientID': 's3taasdgdt34tq',
'clientSecret': 'asfgasfag34qg3q4gq43gv', 'login': 'true', 'challenge':
'false', 'kind': 'GitHubIdentityProvider', 'organizations': 'openshift'
}]
osm_use_cockpit=true
containerized=false
openshift_hosted_registry_storage_kind=object
openshift_hosted_registry_storage_provider=s3
openshift_hosted_registry_storage_s3_accesskey="{{
hostvars['localhost']['s3user_id'] }}"
openshift_hosted_registry_storage_s3_secretkey="{{
hostvars['localhost']['s3user_secret'] }}"
openshift_hosted_registry_storage_s3_bucket="{{ hostvars['localhost']
['s3_bucket_name'] }}"
openshift_hosted_registry_storage_s3_region="{{ hostvars['localhost']
['region'] }}"
openshift_hosted_registry_storage_s3_chunksize=26214400
openshift_hosted_registry_storage_s3_rootdirectory=/registry
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true

[masters]
ose-master01.sysdeseng.com openshift_node_labels="{'role': 'master'}"
ose-master02.sysdeseng.com openshift_node_labels="{'role': 'master'}"
ose-master03.sysdeseng.com openshift_node_labels="{'role': 'master'}"

[etcd]
ose-master01.sysdeseng.com
ose-master02.sysdeseng.com
ose-master03.sysdeseng.com
[nodes]
ose-master01.sysdeseng.com openshift_node_labels="{'role': 'master'}"
ose-master02.sysdeseng.com openshift_node_labels="{'role': 'master'}"
ose-master03.sysdeseng.com openshift_node_labels="{'role': 'master'}"
ose-infra-node01.sysdeseng.com openshift_node_labels="{'role':
'infra'}"
ose-infra-node02.sysdeseng.com openshift_node_labels="{'role':
'infra'}"
ose-infra-node03.sysdeseng.com openshift_node_labels="{'role':
'infra'}"
ose-app-node01.sysdeseng.com openshift_node_labels="{'role': 'app'}"
ose-app-node02.sysdeseng.com openshift_node_labels="{'role': 'app'}"

C.2. RUNNING THE UNINSTALL PLAYBOOK

The uninstall playbook removes OpenShift related packages, ETCD, and removes any
certificates that were created during the failed install.

ansible-playbook -i /home/user/inventory /usr/share/ansible/openshift-
ansible/playbooks/adhoc/uninstall.yml

APPENDIX C. INSTALLATION FAILURE

105

C.3. MANUALLY LAUNCHING THE INSTALLATION OF OPENSHIFT

The playbook below is the same playbook that is ran once the deployment of AWS resources
is completed. Replace the rhsm_user and rhsm_password, stack_name, set the
wildcard_zone and public_hosted_zone relevant to the information in Route53 and
optionally modify the AWS region in the event us-east-1 was not used..

ansible-playbook -i inventory/aws/hosts -e 'region=us-east-1
stack_name=openshift-infra
keypair=OSE-key public_hosted_zone=sysdeseng.com
wildcard_zone=apps.sysdeseng.com
console_port=443 deployment_type=openshift-enterprise
rhsm_user=RHSM_USER
rhsm_password=RHSM_PASSWORD rhsm_pool="Red Hat OpenShift Container
Platform, Standard, 2-Core"
containerized=False github_client_id=e76865557b0417387b35
github_client_secret=c3cd9271ffb9f7258e135fcf3ea3a358cffa46b1
github_organization=["openshift"]' playbooks/openshift-install.yaml

Also, the ose-on-aws.py can be executed again but this must be done with caution. If any
of the variables in ose-on-aws.py are changed the cloudformation may update causing the
AWS components to change.

./ose-on-aws.py --rhsm-user=RHSM_USER --rhsm-password=RHSM_PASSWORD --
public-hosted-zone=sysdeseng.com
--rhsm-pool="Red Hat OpenShift Container Platform, Standard, 2-Core" --
keypair=OSE-key
--master-instance-type=t2.medium --stack-name=tag --github-client-
id=e76865557b0417387b35
--github-organization=openshift --github-client-
secret=c3cd9271ffb9f7258e135fcf3ea3a358cffa46b1

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

106

APPENDIX D. FAILURE WHEN ADDING NODE(S)

At the time of writing there is a known bug in the OpenShift installation routine that may
cause a failure when adding nodes either with the add-cns-storage.py or add-node.py
playbooks. The failure occurs during the step “Generate the node client config”. In this case
the output of the the installation routine is similar to the following:

failed: [ose-ocp-cns01-node03.sysdeseng.com -> ose-
master03.sysdeseng.com] (item=ose-ocp-cns01-node03.sysdeseng.com) => {
 "changed": true,
 "cmd": [
 "oc",
 "adm",
 "create-api-client-config",
 "--certificate-authority=/etc/origin/master/ca.crt",
 "--client-dir=/etc/origin/generated-configs/node-ip-10-20-6-
56.us-west-2.compute.internal",
 "--groups=system:nodes",
 "--master=https://internal-openshift-master.sysdeseng.com",
 "--signer-cert=/etc/origin/master/ca.crt",
 "--signer-key=/etc/origin/master/ca.key",
 "--signer-serial=/etc/origin/master/ca.serial.txt",
 "--user=system:node:ip-10-20-6-56.us-west-2.compute.internal"
],
 "delta": "0:00:00.158849",
 "end": "2017-04-17 17:27:29.789575",
 "failed": true,
 "item": "ose-ocp-cns01-node03.sysdeseng.com",
 "rc": 1,
 "start": "2017-04-17 17:27:29.630726",
 "warnings": []
}

STDERR:

error: --signer-serial, "/etc/origin/master/ca.serial.txt" must be a
valid file
See 'oc adm create-api-client-config -h' for help and examples.

In this case the Ansible deployment routine picks the wrong OpenShift master node to
create the client configuration. Only one of the 3 master nodes has the file
/etc/origin/master/ca.serial.txt present and in the case above an OpenShift master
was used, that doesn’t have this file. If this error occurs, find the master node on which this
file exists and copy the file to the all master nodes where this file does not exist in the
/etc/origin/master directory. The file should only contain 2 hexadecimal digits therefore
creating the file in /etc/origin/master path on the master nodes by copy/pasting the
content is sufficient as well. The file needs to be owned by the user and group “root” and
carries the permission mask 0644. When done, simply re-run the deployment script again
with the same arguments and this error should not reappear. Once the node installation is
successful remove the ca.serial.txt from the masters that did not initially have the file.

APPENDIX D. FAILURE WHEN ADDING NODE(S)

107

APPENDIX E. TROUBLESHOOTING CNS DEPLOYMENT
FAILURES

If the CNS deployment process fails, it is possible to use the following command to clean up
all the resource that were created in the current installation:

cns-deploy -n <project_name> -g topology.json --abort

There are a couple of recurring reasons why the deployment might fail: The current
OpenShift user doesn’t have permission in the current project The OpenShift app nodes
don’t have connectivity to the Red Hat Registry to download the GlusterFS container images
The firewall rules on the EC2 app nodes or the AWS security groups is blocking traffic on
one or more ports The initialization of the block devices referenced in the topology fails
because There are some unexpected partitioning structures. Use the following command to
completely wipe the disk of EC2 nodes being used for CNS cluster deployments.

sgdisk --zap-all /dev/<block-device>

The device specified is already part of a LVM volume group (potentially due to a previous
failed run of the cns-deploy installer), remove it with the following commands. This must be
done on all EC2 nodes referenced in the topology.json file.

lvremove -y vg_xxxxxxxxxxxxxxxx
pvremove /dev/<block-device>

Reference Architectures 2017 Deploying OpenShift Container Platform 3.5 on Amazon Web Services

108

	Table of Contents
	COMMENTS AND FEEDBACK
	CHAPTER 1. EXECUTIVE SUMMARY
	CHAPTER 2. COMPONENTS AND CONFIGURATION
	2.1. ELASTIC COMPUTE CLOUD INSTANCE DETAILS
	2.2. ELASTIC LOAD BALANCERS DETAILS
	2.3. SOFTWARE VERSION DETAILS
	2.4. REQUIRED CHANNELS
	2.5. AWS REGION REQUIREMENTS
	2.6. PERMISSIONS FOR AMAZON WEB SERVICES
	2.7. VIRTUAL PRIVATE CLOUD (VPC)
	2.8. NAT GATEWAY
	2.9. SECURITY GROUPS
	2.9.1. Master ELB Security Group
	2.9.2. Internal Master ELB Security Group
	2.9.3. Bastion Security Group
	2.9.4. Master Security Group
	2.9.5. ETCD Security Group
	2.9.6. Router ELB Security Group
	2.9.7. Infrastructure Nodes Security Group
	2.9.8. Nodes Security Group

	2.10. ROUTE53
	2.10.1. Public Zone

	2.11. AMAZON MACHINE IMAGES
	2.11.1. Red Hat Gold Image

	2.12. IDENTITY AND ACCESS MANAGEMENT
	2.13. DYNAMIC INVENTORY
	2.14. BASTION
	2.15. NODES
	2.15.1. Master nodes
	2.15.2. Infrastructure nodes
	2.15.3. Application nodes
	2.15.4. Node labels

	2.16. OPENSHIFT PODS
	2.17. ROUTER
	2.18. REGISTRY
	2.19. AUTHENTICATION

	CHAPTER 3. DEPLOYING OPENSHIFT
	3.1. PREREQUISITES FOR PROVISIONING
	3.1.1. Tooling Prerequisites
	3.1.1.1. Ansible Setup
	3.1.1.2. Git Repository
	3.1.1.3. GitHub Repositories
	3.1.1.4. Directory Setup

	3.1.2. Authentication
	3.1.2.1. Create an Organization
	3.1.2.2. Configuring OAuth

	3.1.3. DNS
	3.1.4. SSH
	3.1.4.1. SSH Configuration

	3.1.5. AWS Authentication
	3.1.5.1. AWS Configuration

	3.1.6. Red Hat Subscription

	3.2. PROVISIONING THE ENVIRONMENT
	3.2.1. The ose-on-aws.py Script
	3.2.2. Containerized Deployment
	3.2.3. SDN Selection
	3.2.4. Greenfield Deployment
	3.2.5. Brownfield Deployment

	3.3. POST ANSIBLE DEPLOYMENT
	3.4. POST PROVISIONING RESULTS

	CHAPTER 4. OPERATIONAL MANAGEMENT
	4.1. VALIDATE THE DEPLOYMENT
	4.2. GATHERING HOSTNAMES
	4.3. RUNNING DIAGNOSTICS
	4.4. CHECKING THE HEALTH OF ETCD
	4.5. DEFAULT NODE SELECTOR
	4.6. MANAGEMENT OF MAXIMUM POD SIZE
	4.7. YUM REPOSITORIES
	4.8. CONSOLE ACCESS
	4.8.1. Log into GUI console and deploy an application
	4.8.2. Log into CLI and Deploy an Application

	4.9. EXPLORE THE ENVIRONMENT
	4.9.1. List Nodes and Set Permissions
	4.9.2. List Router and Registry
	4.9.3. Explore the Registry
	4.9.4. Explore Docker Storage
	4.9.5. Explore Security Groups
	4.9.6. Explore the AWS Elastic Load Balancers
	4.9.7. Explore the AWS VPC

	4.10. TESTING FAILURE
	4.10.1. Generate a Master Outage
	4.10.2. Observe the Behavior of ETCD with a Failed Master Node
	4.10.3. Generate an Infrastructure Node outage
	4.10.3.1. Confirm Application Accessibility
	4.10.3.2. Confirm Registry Functionality
	4.10.3.3. Get Location of Router and Registry.
	4.10.3.4. Initiate the Failure and Confirm Functionality

	4.11. UPDATING THE OPENSHIFT DEPLOYMENT
	4.11.1. Performing the Upgrade
	4.11.1.1. Non-Containerized Upgrade
	4.11.1.2. Containerized Upgrade

	4.11.2. Upgrading and Restarting the OpenShift Environment (Opitonal)
	4.11.3. Specifying the OpenShift Version when Upgrading

	CHAPTER 5. PERSISTENT STORAGE
	5.1. PERSISTENT VOLUMES
	5.2. STORAGE CLASSES
	5.3. CLOUD PROVIDER SPECIFIC STORAGE
	5.3.1. Creating a Storage Class
	5.3.2. Creating and using a Persistent Volumes Claim

	5.4. CONTAINER-NATIVE STORAGE OVERVIEW
	5.4.1. Prerequisites for Container-Native Storage
	5.4.2. Deployment of CNS Infrastructure
	5.4.3. Firewall and Security Group Prerequisites

	5.5. CNS INSTALLATION OVERVIEW
	5.5.1. Creating CNS Project
	5.5.2. Gluster Deployment Prerequisites
	5.5.3. Deploying Container-Native Storage
	5.5.4. Exploring Heketi
	5.5.5. Store the Heketi Secret
	5.5.6. Creating a Storage Class
	5.5.7. Creating a Persistent Volume Claim

	5.6. ADDITIONAL CNS STORAGE DEPLOYMENTS (OPTIONAL)
	5.6.1. Deployment of a second Gluster Storage Pool
	5.6.2. Modifying the Topology File
	5.6.3. Creating an Additional Storage Class

	5.7. CONTAINER-READY STORAGE OVERVIEW
	5.7.1. Prerequisites for Container-Ready Storage
	5.7.2. Deployment of CRS Infrastructure
	5.7.3. CRS Subscription Prerequisites
	5.7.4. Firewall and Security Group Prerequisites
	5.7.5. CRS Package Prerequisites
	5.7.6. Installing and Configuring Heketi
	5.7.7. Loading Topology File
	5.7.8. Validating Gluster Installation(Optional)

	5.8. CRS FOR OPENSHIFT
	5.8.1. Store the heketi secret
	5.8.2. Creating a Storage Class
	5.8.3. Creating a Persistent Volume Claim

	5.9. RWO PERSISTENT STORAGE EXAMPLE (OPTIONAL)
	5.10. RWX PERSISTENT STORAGE (OPTIONAL)
	5.11. DELETING A PVC (OPTIONAL)

	CHAPTER 6. EXTENDING THE CLUSTER
	6.1. PREREQUISITES FOR ADDING A NODE
	6.2. INTRODUCTION TO ADD-NODE.PY
	6.3. ADDING AN APPLICATION NODE
	6.4. ADDING AN INFRASTRUCTURE NODE
	6.5. VALIDATING A NEWLY PROVISIONED NODE

	CHAPTER 7. MULTIPLE OPENSHIFT DEPLOYMENTS
	7.1. PREREQUISITES
	7.1.1. SSH Configuration

	7.2. DEPLOYING THE ENVIRONMENT

	CHAPTER 8. CONCLUSION
	APPENDIX A. REVISION HISTORY
	APPENDIX B. CONTRIBUTORS
	APPENDIX C. INSTALLATION FAILURE
	C.1. INVENTORY
	C.2. RUNNING THE UNINSTALL PLAYBOOK
	C.3. MANUALLY LAUNCHING THE INSTALLATION OF OPENSHIFT

	APPENDIX D. FAILURE WHEN ADDING NODE(S)
	APPENDIX E. TROUBLESHOOTING CNS DEPLOYMENT FAILURES

