
ExEcutivE Summary
The term “cloud computing” is often associated with virtual machines, but
many emerging and rapidly growing cloud technologies now make use of
containerization. Containers can now be used as an alternative to OS-level
virtualization to run multiple isolated applications on a single host with a much
smaller footprint than virtual machines require. Container-based virtualization
offers many benefits when compared to traditional virtualization technologies,
and containers are perceived as an even more portable and faster way to deploy
services on cloud infrastructures.

While containers themselves provide many benefits, they are not easily
manageable in large environments. That’s why many container orchestration tools
have increased in momentum and gained popularity. Each orchestration tool is
different, however, and should be chosen individually for specific purposes.

This reference architecture (RA) will show you how to prepare, provision, deploy,
and manage a Red Hat OpenShift Container Platform 3.5–based private cloud
environment. The intended audience for this RA is system administrators or system
architects. Some experience with Docker* and OpenShift technologies might be
helpful, but is not required.

intEl, lEnovo, rEd Hat, and opEnSHift
OpenShift Container Platform 3.5 by Red Hat is built around a core of application
containers powered by Docker, with orchestration and management provided
by Kubernetes, on a foundation of Red Hat® Enterprise Linux* Atomic Host.
It provides many enterprise-ready features, like enhanced security features,
multitenancy, simplified application deployment, and continuous integration/
continuous deployment tools. With Lenovo™ servers and technologies,
provisioning and managing the OpenShift Container Platform 3.5 infrastructure
becomes practically effortless and produces a resilient solution.

This document describes the system architecture for the OpenShift platform based
on Lenovo™ System x3550 M5 servers and network switches. These servers are
powered by the Intel® Xeon® processor E5-2600 v4 product family, which provides
more than 20 percent more cores than the Intel Xeon processor E5-2600 v3 product
family, supports faster memory, and includes technologies for accelerating specific
workloads. This document provides detail of the hardware requirements to support
various OpenShift node roles and the corresponding configuration of the systems. It
also describes the network architecture and details for the switch configurations. The
hardware bill of materials for all required components to assemble the OpenShift
cluster is provided, in addition to the rack-level design and power configuration. The
automation logic for deploying the hardware infrastructure in preparation for the
OpenShift implementation is also described.

Deploying Red Hat® OpenShift®
Container Platform 3.5 on Lenovo™
System x3550 M5 Rack Servers

Intel® Builders
Intel® Xeon® Processors

Authors
Srihari Angaluri

Joe Carvalho

Ta Ming Chen

Dariusz Komła

Łukasz Łuczaj

Jose Palafox

Markesha Parker

Łukasz Sztachański

RefeRence ARchitectuRe

Hardware Summary
In this RA, the following hardware is included:

• Lenovo System x3550 M5 rack servers, which are 1U, two-socket servers
that can handle complex workloads, including big data and virtualization

• Two (2) Lenovo™ ThinkSystem® NE10032 RackSwitch switches, which are
data plane, entry-level layer-2 switches

• Lenovo RackSwitch™ G7052 switch, which is a management plane, entry-
level layer-2 switch

Software Summary
In this RA, the following software is included:

• Extreme Cluster/Cloud Administration Toolkit* (xCAT*) to deploy the
operating system for the Red Hat Enterprise Linux (RHEL) (for bastion
and infra) and Red Hat Enterprise Linux Atomic Host (for master and
application nodes)

• RHEL and Red Hat Enterprise Linux Atomic Host operating systems
installed on OpenShift cluster nodes

• OpenShift Container Platform, which adds developer- and operation-centric
tools to enable rapid application development, easy deployment, scaling, and
long-term lifecycle maintenance for small and large teams and applications

• Lenovo™ XClarity® Administrator for management of the operating
systems on bare-metal servers

Furthermore, OpenShift Container Platform architecture makes use of the
following software:

• Docker to build, ship, and run containerized applications

• Kubernetes to orchestrate and manage containerized applications

• Etcd*, which is a key-value store for the OpenShift Container Platform cluster

• Open vSwitch* to provide software-defined networking (SDN)-specific
functions in the OpenShift Container Platform environment

• Ansible® for installation and management of the OpenShift Container
Platform deployment

• HAProxy* for routing and load-balancing purposes

• Keepalived* for virtual IP management for HAProxy instances

• A Network File System (NFS) server for storing application images and
providing persistent volumes (PV) functionality

• Distributed Replicated Block Device* (DRBD*) to provide a backup device
for Docker images distributed via the NFS server

All software components were installed using the versions shown in Table 1.

Table 1. Software versions

Component Versions

Red Hat Enterprise Linux 7.3

Red Hat Enterprise Linux Atomic Host 7.3.3

OpenShift Container Platform 3.5

Docker 1.12.6

Ansible 2.2.1.0

Etcd 3.1.0

Open vSwitch 2.6.1

HAProxy 1.5.18

Keepalived 1.2.13

DRBD 8.9.8

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

Contents
Executive Summary .1
Intel, Lenovo, Red Hat, and Openshift 1
 Hardware Summary2
 Software Summary .2
 Red Hat Enterprise Linux Atomic Host . . . 3
 Ansible® .3
OpenShift System Architecture 3
 Hardware Detail .3
 Lenovo System x3550 M5
 Rack Servers .4
 The Intel® Xeon® Processor
 E5-2600 v4 Product Family4
 The Lenovo™ ThinkSystem®
 NE10032 RackSwitch 5
	 Hardware	Configuration5
	 Power	Configuration 6
 Networking Overview7
 Network Architecture 7
 Network Addresses8
 Switch Management Addresses8
 Server Addresses8
 Management Network9
 Lenovo™ XClarity®
 Administrator Software 9
 Installing Lenovo XClarity
 Administrator on the Bastion Node 10
Bare Metal Provisioning
and Orchestration . 10
 Extreme Cluster/Cloud
 Administration Toolkit (xCAT) 10
 Lenovo Platform Deployer 11
Provisioning . 11
	 Network	Configuration 11
 Automatic Switch Provisioning 11
	 	 Manual	Switch	Configuration 11
 Prepare the Management Switch . . . 12
Prerequisites . 14
 Inventory . 14
 Node Preparation 16
 Automatic Prerequisites Installation . 16
 Manual Steps . 16
 Keepalived* . 18
 Automatic Keepalived Deployment 18
 Manual Keepalived Deployment . . . 18
 NFS + DRBD . 19
 Automatic DRBD Deployment 19
 Manual DRBD Deployment 20
 Disaster Recovery 20
Openshift Container
Platform Deployment. 21
 OpenShift Container
 Platform Installation 21
 Deployment Validation 21
Openshift Container Platform Scaling 22
 OpenShift Node Scale Up 22
 OpenShift Master Scale Up 22
 Etcd Cluster Scale Up 23
Summary and Conclusions 24
Appendix A: OCP Deployment
Inventory File . 25

2

Red Hat Enterprise Linux Atomic Host
This RA uses two types of operating systems—Red Hat
Enterprise Linux 7.3 (for bastion and infrastructure nodes)
and Red Hat Enterprise Linux Atomic Host 7.3.3 (for master
and application nodes). RHEL Atomic Host is a lightweight
variant of the RHEL operating system, designed to run Linux
containers. The RHEL operating system helps ensure high
quality and a reliable base for the whole system, provides
strong security features, and supports business-critical
workloads, interoperability between a variety of operating
systems, and much more.

Ansible®
Ansible is an IT automation tool capable of provisioning,
deploying applications, and configuration and management
of operating system’s components and other devices. The
OpenShift RA is based largely on Ansible playbooks due to its
simplicity and extensibility. That is also the reason why this RA
adopts and distributes improvements in the same manner.

opEnSHift SyStEm arcHitEcturE
The OpenShift Container Platform is a complete
container application platform that provides all aspects
of the application development process in one consistent
solution across multiple infrastructure footprints. OpenShift
integrates the architecture, processes, platforms, and
services needed to help development and operations
teams traverse traditional siloed structures and produce
applications that help businesses succeed.

The OpenShift cluster platform is managed by the
Kubernetes container orchestrator, which manages
containerized applications across a cluster of systems
running the Docker container runtime environment. The
physical configuration of the OpenShift platform is based on
the Kubernetes cluster architecture.

This OpenShift RA contains four types of nodes: bastion,
master, infrastructure, and application, which are
described below.

Bastion Node
This is a dedicated node that serves as the main deployment
and management server for the OpenShift cluster. This
is used as the logon node for the cluster administrators
to perform the system deployment and management
operations, such as running the Ansible OpenShift
deployment playbooks. The bastion node runs RHEL 7.3 with
the Linux KVM packages installed.

OpenShift Master
The OpenShift Container Platform master is a server
that performs control functions for the whole cluster
environment. It is responsible for the creation, scheduling,
and management of all objects specific to OpenShift. It
includes API, controller manager, and scheduler capabilities
in one OpenShift binary. It is also a common practice to
install an etcd key-value store on OpenShift masters to

achieve a low-latency link between etcd and OpenShift
masters. It is recommended that you run both OpenShift
masters and etcd in highly available environments. This
can be achieved by running multiple OpenShift masters in
conjunction with an external active-passive load balancer
and the clustering functions of etcd. The OpenShift master
node runs RHEL Atomic Host.

OpenShift Infrastructure Node
The OpenShift infrastructure node runs infrastructure-
specific services: Docker Registry* and the HAProxy
router. Docker Registry stores application images in the
form of containers. The HAProxy router provides routing
functions for OpenShift applications. It currently supports
HTTP(S) traffic and TLS-enabled traffic via Server Name
Indication (SNI). Additional applications and services can be
deployed on OpenShift infrastructure nodes. The OpenShift
infrastructure node runs RHEL 7.3.

OpenShift Application Nodes
The OpenShift application nodes run containerized
applications created and deployed by developers. An
OpenShift application node contains the OpenShift node
components combined into a single binary, which can be used
by OpenShift masters to schedule and control containers. An
OpenShift application node runs RHEL Atomic Host.

Figure 1. OpenShift Node Roles

Hardware Detail
The OpenShift RA is validated using Lenovo servers and
network switches. The configuration includes six application
nodes, three master nodes, two infrastructure nodes, and one
bastion node. Figure 2 shows the rack-level diagram of the
hardware. In addition to the servers and switches, the rack also
includes power distribution units (PDUs) and the necessary
cables for management and data connectivity across the
servers and switches. The full bill of materials required to
implement this infrastructure is provided in Table 3.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

3

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/containers

Figure 2. Rack diagram for the Lenovo and OpenShift RA

Lenovo System x3550 M5 Rack Servers
The Lenovo System x3550 M5 rack server is a 1U, two-socket
rack server available in many configurations optimized
to handle various workload requirements for compute,
storage, and input/output (I/O). The server supports the
Intel® Xeon® processor E5-2600 v4 product family and fast,
energy-efficient TruDDR4* memory to deliver exceptional
performance. Flexible and scalable internal storage
configurations include up to twelve 2.5-inch or four 3.5-inch
drives with a wide selection of drive sizes and types. Lenovo
System x3550 M5 rack servers offer a 12 gigabit per second
(Gbps) Serial Attached SCSI (SAS) RAID controller with support
for hardware RAID 0/1/10. Flexible and scalable internal
storage configurations provide up to 92 TB of storage capacity
with 7.68 TB 2.5-inch solid-state drives (SSDs) in a 1U rack
form factor. A Lenovo System x3550 M5 rack server has four
integrated gigabit Ethernet (GbE) ports and optional 10 GbE
ports with mezzanine LOM (ML2) adapters.

Lenovo servers offer industry-leading reliability with
Predictive Failure Analysis (PFA) and smart diagnostic tools
that help to reduce downtime. Users can also reduce the cost
of their infrastructures by using energy-smart features for
efficient performance.

The Lenovo x3550 M5 rack server includes an Integrated
Management Module II (IMM2.1) to monitor server availability
and perform remote management. Provisioning and
management of a Lenovo System x3550 M5 rack server is
simplified with the Lenovo XClarity enterprise management
tool. Lenovo XClarity Administrator offers many enterprise
features like automated discovery, inventory tracking, real-
time monitoring, and provisioning of the operating system on
bare-metal servers.

Figure 3. The Lenovo System x3550 M5 rack server

More information on the Lenovo System x3550 M5 server is
available here: https://lenovopress.com/
lp0067-lenovo-system-x3550-m5-machine-type-8869

The Intel® Xeon® Processor E5-2600 v4
Product Family
The Intel Xeon processor E5-2600 v4 product family is
designed to help enterprises, cloud service providers, and
telecommunications companies accelerate the move toward
next-generation software-defined infrastructure (SDI).
The Intel Xeon processor E5-2600 v4 product family is
manufactured on 14 nm processor technology. It provides
more than 20 percent more cores than the Intel Xeon
processor E5-2600 v3 product family, and it supports faster
memory and includes technologies for accelerating specific
workloads. Examples of such technologies include:

• Intel® QuickPath Interconnect (Intel® QPI) for fast and
resilient system communications with up to 9.6 GT/s of
Intel QPI speed per channel1

• Intel® Transactional Synchronization Extensions
(Intel® TSX) for high performance of multi-threaded
workloads

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

4

https://lenovopress.com/lp0067-lenovo-system-x3550-m5-machine-type-8869
https://lenovopress.com/lp0067-lenovo-system-x3550-m5-machine-type-8869

• Intel® Advanced Vector Extensions 2.0 (Intel® AVX2)
for high performance of mixed workloads

• Enhanced Intel® Data Direct I/O (Intel® DDIO) for fast
access to critical data

• Intel® Virtual Machine Control Structure (Intel VMCS)
for enhanced virtualization

• Intel® Resource Director Technology (Intel RDT) for
smarter resource orchestration

The Lenovo™ ThinkSystem® NE10032 RackSwitch
The Lenovo ThinkSystem NE10032 RackSwitch is a newly
available 1U top-of-rack (ToR) switch designed to deliver a
high performing 100 Gbps data center server-connectivity
solution. It offers thirty-two 100 Gbps QSFP28 data ports and
one RJ45* 10/100/1000M port for out-of-band management.
It is powered by an Intel Atom® processor C2558 with four
2.4 GHz cores, 4 GB RAM, and a 16 GB Serial ATA (SATA) SSD.
Redundant power supplies and hot-swappable fans improve
reliability in the data center infrastructure. The switch runs
the Lenovo Cloud Network Operating System (CNOS) version
10.4.1.x, which provides scalable, open switching with
support for scripting and software-defined networking (SDN)
designed to scale for business needs. Lenovo ThinkSystem
NE10032 RackSwitch management can be easily automated
with use of Ansible tools, Python* scripts, and REST APIs.

The Lenovo ThinkSystem NE10032 RackSwitch data ports
support configurations of 1x100GbE, 1x40GbE, 2x50GbE,
4x25GbE, or 4x10GbE on the PHY. Depending upon the type
of network adapters installed on the server side, such as
100GbE, 40GbE, 25GbE, or 10GbE, the ports’ profiles on the
switch need to be configured accordingly. This RA uses Intel®
Ethernet Converged Network Adapter X710 DA2 dual-port

10 Gbps SFP+ adapters on the Lenovo System x3550 M5 rack
servers. Each of the switch ports is configured in 4x10GbE
mode and uses the QSFP28-4xSFP28 breakout cables to
connect each switch port to four servers in the cluster.

Figure 4. The Lenovo ThinkSystem NE10032 RackSwitch 100
Gbps switch

Figure 4 shows the Lenovo ThinkSystem NE10032
RackSwitch and the connectivity between the OpenShift
cluster nodes and the switch using the QSFP28-4xSFP28
breakout cables.

Hardware Configuration
Table 2 summarizes the configuration of the various node
types in the OpenShift cluster in this RA.

In addition to the servers, the other rack infrastructure
components required are listed in Table 3.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

Table	2.	OpenShift	node	roles	and	hardware	configuration

OpenShift Role Qty. Platform Configuration

Bastion Node 1 Lenovo System
x3550 M5

• 2x Intel® Xeon® processor E5-2630 v4 at 2.20 GHz
• 256 GB memory (16x 16 GB)
• 2x Intel® SSD DC S3520 Series 150 GB enterprise entry SATA G3HS 2.5” SSDs (RAID1)
• 1x ServeRAID* M1215 SAS/SATA controller
• 1x Intel® Ethernet Converged Network Adapter X710, dual-port 10 Gbps SFP+ ML2

Master Node 3 Lenovo System
x3550 M5

• 2x Intel Xeon processor E5-2630 v4 at 2.20 GHz
• 256 GB memory (16x 16 GB)
• 2x Intel SSD DC S3520 Series 150 GB enterprise entry SATA G3HS 2.5” SSD (RAID1)
• 1x ServeRAID M1215 SAS/SATA controller
• 1x Intel Ethernet Converged Network Adapter X710, dual-port 10 Gbps SFP+ ML2

Infrastructure Node 2 Lenovo System
x3550 M5

• 2x Intel Xeon processor E5-2630 v4 at 2.20 GHz
• 256 GB memory (16x 16 GB)
• 2x Intel SSD DC S3520 Series 480 GB enterprise entry SATA G3HS 2.5” SSD (RAID1)
• 1x ServeRAID M1215 SAS/SATA controller
• 1x Intel Ethernet Converged Network Adapter X710, dual-port 10 Gbps SFP+ ML2

App node 6 Lenovo System
x3550 M5

• 2x Intel Xeon processor E5-2680 v4 at 2.40 GHz
• 256 GB memory (16x 16 GB)
• 2x Intel SSD DC S3520 Series 480 GB enterprise entry SATA G3HS 2.5” SSD (RAID1)
• 1x ServeRAID M1215 SAS/SATA controller
• 1x Intel Ethernet Converged Network Adapter X710, dual-port 10 Gbps SFP+ ML2

5

As shown in Table 4, there are power options available for
30A single phase, 60A single phase, or 60A three phase
power (and the equivalent for non-U.S. countries), depending
upon the customer’s data center environment. Choosing your
power configuration based on the initial cluster configuration
and the future scaling requirements can help you avoid
expensive reconfiguration of the customer’s environment.
In addition, the total power draw requirements for the
configured cluster should be calculated to be within the
rated power specifications of the PDUs. For example, 30A
single phase PDUs could be used for a cluster of four to eight
nodes, but 60A single phase or three phase PDUs are needed
for clusters of more than eight nodes.

For more information on Lenovo PDUs, see
https://support.lenovo.com/us/en/solutions/lnvo-powinf.

Power Configuration
For the OpenShift solution, various power configuration choices
are available from Lenovo. We recommend using the Lenovo
switched and monitored PDUs, which are optimized for rack
integration. In addition, the Lenovo 42U dynamic 1,100 mm
rack cabinet provides six vertical side pockets for installing the
PDUs without occupying the rack’s horizontal slots, leaving
space for installing servers and switches in those slots. Table 4
also provides the list of the standard part numbers for the rack
cabinet and PDUs with various power ratings, depending upon
the customer’s data center power needs.

The recommended power connectivity is shown in Figure 5.
The diagram shows the power connectivity for the full rack
with 12 Lenovo System x3550 M5 rack server–based nodes

and three Lenovo switches with redundant power supplies.
The recommended PDUs are 60 amp single phase 208 VAC
PDUs (which are de-rated to 48 A of current in the United
States) to support all devices in the rack. Each power domain
contains two PDUs. The first eight nodes are wired to PDU 1,
and the second set of four nodes and the three switches are
wired to PDU 3. The same connections are made to PDUs 2
and 4 in the second power domain.

Figure 5. Rack power diagram

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

Table 3. The Lenovo and OpenShift RA hardware bill of materials

Quantity Description MTM FC Notes

1x Rack Enclosure 42U 1,200 mm Deep Dynamic Rack
(six sidewall compartments)

9363-4PX 7649 https://lenovopress.com/
lp0658-lenovo-rack-cabinet-reference

1x Management
Switch

Lenovo RackSwitch G7052 (1Gbps) 7159-HCT AT0A https://lenovopress.com/
tips1269-lenovo-rackswitch-g7052

2x Cluster Traffic
Switches

Lenovo ThinkSystem NE10032
RackSwitch (100 Gbps)

https://lenovopress.com/lp0609.pdf

• 1x Bastion
• 2x Infrastructure
• 3x Management
• 6x Application

Lenovo System x3550 M5 Server 8869 https://lenovopress.com/
lp0067-lenovo-system-x3550-m5-machine-
type-8869

2-4 Rack power distribution units (PDUs) Refer to Table 4.

Table 4. Lenovo power distribution units (PDUs)

Part Number Feature MFI Description

9363-RC4 A1RC 90Y3067 42U 1,100 mm Enterprise V2 Dynamic Rack

46M4005 5895 46M4011 1U 12 C13 Switched and Monitored 60A 3 Phase PDU

46M4004+40K9614 5908 46M4010 (unit), 41Y9256 (line cord) C13 PDU & 1p, 30A/208V, NEMA L6-30P(US)LC

46M4004+40K9615 5909 46M4010 (unit), 41Y9257 (line cord) C13 PDU & 1p, 60A/208V, IEC 309 2P+G(US)LC

46M4004+40K9612 5910 46M4010 (unit), 41Y9258 (line cord) C13 PDU &1p, 32A/230V, IEC309 P+N+G(non-US)LC

46M4004+40K9613 5911 46M4010 (unit), 41Y9259 (line cord) C13 PDU & 1p, 63A/230V, IEC309 P+N+G(non-US)LC

6

https://support.lenovo.com/us/en/solutions/lnvo-powinf
https://lenovopress.com/lp0658-lenovo-rack-cabinet-reference
https://lenovopress.com/lp0658-lenovo-rack-cabinet-reference
https://lenovopress.com/tips1269-lenovo-rackswitch-g7052
https://lenovopress.com/tips1269-lenovo-rackswitch-g7052
https://lenovopress.com/lp0609.pdf
https://lenovopress.com/lp0067-lenovo-system-x3550-m5-machine-type-8869
https://lenovopress.com/lp0067-lenovo-system-x3550-m5-machine-type-8869
https://lenovopress.com/lp0067-lenovo-system-x3550-m5-machine-type-8869

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

Networking Overview
The Lenovo OpenShift platform uses the 10 GbE network
as the primary fabric for inter-node communication. As
described previously, two Lenovo ThinkSystem NE10032
RackSwitch switches are part of the solution to provide
data layer communication, and one management Lenovo
RackSwitch G7052 is used for “out-of-band” communication.
Figure 6 shows the network architecture for this solution.

Figure 6. Virtual Link Aggregation (VLAG)

In this RA, the solution is designed to deliver maximum
availability. Virtual Link Aggregation Group (VLAG) is a
feature of the Lenovo CNOS operating system that allows
a pair of Lenovo switches to work as a single virtual switch.
Each of the cluster nodes has a link to each VLAG peer switch
for redundancy. This provides improved high availability (HA)
for the nodes using the link aggregation control protocol
(LACP) for aggregated bandwidth capacity. Connection to
the uplink core network is facilitated by the VLAG peers,
which present a logical switch to the uplink network,
enabling connectivity with all links active and without a
hard requirement for spanning-tree protocol (STP). The link
between the two VLAG peers is an inter-switch link (ISL) and
provides excellent support of east-west cluster traffic the
nodes. The VLAG presents a flexible basis for interconnecting
to the uplink/core network, ensures the active usage of
all available links, and provides high availability in case of
a switch failure or a required maintenance outage. (The
remaining switch carries all the traffic.)

Network Architecture
There are three logical networks in this RA:

• External: The external network is used for the public
API, the OpenShift web interface, and exposed
applications (services and routes).

• Internal: This is the primary, non-routable network used
for cluster management and inter-node communication.
The same network acts as the layer for server
provisioning using PXE and HTTP. Domain Name Servers
(DNS) and Dynamic Host Configuration Protocol (DHCP)
services also reside on this network to provide the
functionality necessary for the deployment process and
the cluster to work. Communication with the Internet is
provided by NAT configured on the bastion node.

• Out-of-band/IPMI: This is a secured and isolated
network used for switch and server hardware
management, such as access to the IMM module and
SoL (Serial-over-LAN).

Figure 7. OpenShift logical/physical network connectivity

Figure 7 shows the components of the Red Hat OpenShift
solution and their logical architecture. All OpenShift
nodes are connected via the internal network, where they
can communicate with each other. Furthermore, Open
vSwitch creates its own network for OpenShift pod-to-
pod communication. Because of the multi-tenant plugin,
Open vSwitch pods can communicate to each other only if
they share the same project namespace. There is a virtual
IP address managed by Keepalived on two infrastructure
hosts for external access to the OpenShift web console and
applications. Lastly, there is an NFS server that shares disk
space with Docker Registry for Docker image storage. This
storage is backed up by Distributed Replicated Block Device
(DRBD), so Docker Registry storage can be easily switched in
case of a node failure.

Figure 8. OpenShift Container Platform logical environment

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

7

Network Addresses
Table 5 shows the network and subnet addresses for the
various networks in the OpenShift cluster.

Table 5. Network addresses

Network Network purpose VLAN ID Interface

172.20.3.0/24 IPMI Network In-band interface

172.30.4.0/22 Internal Network bond0

10.240.37.0/22 External Network 546 eno1.546

Switch Management Addresses
Table 6 lists the management IP addresses for the switches.

Table 6. Switch addresses

Network Network purpose Interface

Lenovo ThinkSystem
NE10032 RackSwitch

172.20.4.3 13

Lenovo ThinkSystem
NE10032 RackSwitch

172.20.4.4 14

Lenovo RackSwitch G7052 172.20.4.1

Server Addresses

Table 7. Server addresses

Host name bond0 eno1.546 In-bound IMM

master1 172.30.4.9 172.20.3.9

master2 172.30.4.10 172.20.3.10

master3 172.30.4.11 172.20.3.11

infra1 172.30.4.7 VIP 10.240.37.132
VIP 10.240.37.133

172.20.3.7

infra2 172.30.4.8 VIP 10.240.37.132
VIP 10.240.37.134

172.20.3.8

app1 172.30.4.1 172.20.3.1

app2 172.30.4.2 172.20.3.2

app3 172.30.4.3 172.20.3.3

app4 172.30.4.4 172.20.3.4

app5 172.30.4.5 172.20.3.5

app6 172.30.4.6 172.20.3.6

b01 172.30.4.12 10.240.37.131 172.20.3.12

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

 Table 9. Network connectivity table

Device name Device type Device role

IMM
Switch
Port

10G #1 10G #1 Node Ports

Switch
#1 Port

Switch
#2 Port IMM

Data
Port 1

Data
Port 2

1 GbE
Switch

Lenovo RackSwitch G7052 Management
switch

10 GbE
Switch 2

Lenovo ThinkSystem
NE10032 RackSwitch

Data switch 2 14 1/32 1/32

10 GbE
Switch 1

Lenovo ThinkSystem
NE10032 RackSwitch

Data switch 1 13 1/31 1/31

node12 Lenovo System x3550 M5 Bastion node 12 1/3/4 1/3/4 Dedicated IMM port ens1f0 ens1f1

node11 Lenovo System x3550 M5 Master node 3 11 1/3/3 1/3/3 Dedicated IMM port ens1f0 ens1f1

node10 Lenovo System x3550 M5 Master node 2 10 1/3/2 1/3/2 Dedicated IMM port ens1f0 ens1f1

node09 Lenovo System x3550 M5 Master node 1 9 1/3/1 1/3/1 Dedicated IMM port ens1f0 ens1f1

node08 Lenovo System x3550 M5 Infra node 2 8 1/2/4 1/2/4 Dedicated IMM port ens1f0 ens1f1

node07 Lenovo System x3550 M5 Infra node 1 7 1/2/3 1/2/3 Dedicated IMM port ens1f0 ens1f1

node06 Lenovo System x3550 M5 App node 6 6 1/2/2 1/2/2 Dedicated IMM port ens1f0 ens1f1

node05 Lenovo System x3550 M5 App node 5 5 1/2/1 1/2/1 Dedicated IMM port ens1f0 ens1f1

node04 Lenovo System x3550 M5 App node 4 4 1/1/4 1/1/4 Dedicated IMM port ens1f0 ens1f1

node03 Lenovo System x3550 M5 App node 3 3 1/1/3 1/1/3 Dedicated IMM port ens1f0 ens1f1

node02 Lenovo System x3550 M5 App node 2 2 1/1/2 1/1/2 Dedicated IMM port ens1f0 ens1f1

node01 Lenovo System x3550 M5 App node 1 1 1/1/1 1/1/1 Dedicated IMM port ens1f0 ens1f1

8

Management Network
For out-of-band management of the servers and initial
cluster deployment over the network from the bastion
node, use the 1 Gbps management fabric via the Lenovo
RackSwitch G7052. The Lenovo System x3550 M5 rack
server a dedicated 1 GbE port for the IMM. The IMM enables
remote-manage capabilities for the servers, access to the
server’s remote console for troubleshooting, and running the
IPMI commands via the embedded baseboard management
controller (BMC) module.

In addition to in-band management via IPMI, the Lenovo
XClarity Administrator software provides out-of-band
management of the servers. Lenovo XClarity Administrator
is a centralized systems-management solution. This solution
integrates easily with Lenovo System x M5 and X6 rack
servers, Lenovo™ Converged HX Series appliances, and
Lenovo™ Flex System, providing automated agent-less
discovery, monitoring, firmware updates, and configuration
management. The Lenovo XClarity software runs as a
virtual appliance, meaning it does not require a dedicated
physical system to run. The virtual appliance is available for
multiple different hypervisors, including Linux KVM, VMware
vSphere*, and Microsoft Hyper-V*.

Lenovo™ XClarity® Administrator Software
Lenovo XClarity is a fast, flexible, and scalable hardware
systems management application that enables
administrators to deploy infrastructure faster and with less
effort. The application seamlessly integrates into Lenovo
servers, Lenovo Flex System, Lenovo RackSwitch networking,
and Lenovo™ S Series storage.

Figure 9. Lenovo XClarity Administrator graphical interface

Lenovo XClarity Administrator features are summarized below.

• Dashboard-driven interface helps administrators find
information and complete tasks faster

• Automatically discover Lenovo System x3550 and
Lenovo Flex System infrastructure, and gain at-a-glance
views of hardware inventory status

• Reduce the manual effort required to track and comply
with user-specified firmware levels throughout the
system lifecycle

• Rapidly provision and pre-provision multiple systems
using configuration patterns, which contain a single
set of defined configuration settings. Predefined UEFI
settings can help jumpstart optimal configuration
patterns for specific workload environments

• For simpler and faster delivery of systems, the solution
uniquely deploys operating systems or hypervisors
onto bare metal servers

• Grant users role-based access and authenticate
them using the Lenovo XClarity internal LDAP server,
an external Microsoft Active Directory* server, or a
third-party enterprise single sign-on or multifactor
authentication service

• Manage systems from external, higher-level cloud
orchestration and IT service-management software
tools, making use of available REST APIs

• Forward Simple Network Management Protocol (SNMP)
and Syslogs to external event consolidation software
tools to aggregate, correlate, and monitor hardware
events and runtime issues

Figure 10. Server overview in Lenovo XClarity Administrator

Figure 11. Policy deployment controls in Lenovo
XClarity Administrator

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

9

Figure 12. Server management interface in Lenovo
XClarity Administrator

Installing Lenovo XClarity Administrator on the
Bastion Node
The steps to install the Lenovo XClarity Administrator
software on the bastion node are described below:

1. Download the KVM version of the Lenovo XClarity
virtual appliance image from the following site:
http://lenovofiles.com/downloads/xclarity-trial.
You need to download the Linux qcow2 formatted image
for the Lenovo XClarity virtual appliance.

2. Ensure the pre-requisites for installing Lenovo XClarity
on Linux KVM hypervisor are configured on the
bastion node. Follow the guidance on this page:
http://flexsystem.lenovofiles.com/help/topic/
com.lenovo.lxca.doc/setup_kvm_installlxca.
html?cp=1_6_0_1

3. Create a network configuration file to define the
“external” network interface that will be used to access
the Lenovo XClarity Administrator. Name this file “eth0_
config,” and add the following parameters to this file:

IPV4 _ ADDR=<<External IP address for xClarity access>>

IPV4 _ NETMASK=<<external network subnet mask>>

IPV4 _ GATEWAY=<<external network gateway IP>>

4. Following the steps described in the link above, create
an ISO image of this file, which will be mounted to the
Lenovo XClarity image while being deployed.

5. Create a non-root user account for deploying the Lenovo
XClarity image and give it “sudo” access. Then create a
bash shell script as shown below:

#!/bin/bash

sudo virt-install \

 --name=lxca-1.3.1-74-2 \

 --disk path=/home/user/lnvgy _ sw _ lxca _ 74-1.3.1 _

kvm _ x86-6.qcow2,format=qcow2,bus=virtio \

 --graphics vnc,listen=0.0.0.0 \

 --vcpus=2 --ram=8192 \

 --network bridge=virbr0 \

 --network bridge=virbr1 \

 --os-type=generic \

 --arch=x86 _ 64 \

 --cdrom=/home/srihari/boot.iso \

 --noautoconsole

6. From the non-root account, run the above bash script to
deploy the Lenovo XClarity Administrator image. Once
the deployment is successful, you should be able to ping
the IP address of the Lenovo XClarity Administrator.

7. Log on to the Lenovo XClarity Administrator dashboard.
The first time, the Lenovo XClarity setup wizard will run.
Follow the steps in the setup wizard to configure the user
accounts and other settings.

Once Lenovo XClarity is successfully deployed, you will
be able to start managing your hardware. The steps for
managing the systems are described in this guide:
http://flexsystem.lenovofiles.com/help/topic/
com.lenovo.lxca.doc/server_manage.html?cp=1_14

BarE mEtal proviSioning
and orcHEStration
Extreme Cluster/Cloud
Administration Toolkit (xCAT)
xCAT is a tool used to easily manage large number of
physical servers. Figure 13 shows the architecture and main
components of this solution. Lenovo xCAT code can be found
on Github at https://github.com/lenovo/lpd-openshift-ra.
xCAT key features include:

• Discover hardware and node registration in an
internal database

• Operating system deployment

• Switch management

• Remote command execution and power control

• Operating system deployment and configuration

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

10

http://lenovofiles.com/downloads/xclarity-trial
http://flexsystem.lenovofiles.com/help/topic/com.lenovo.lxca.doc/setup_kvm_installlxca.html?cp=1_6_0_1
http://flexsystem.lenovofiles.com/help/topic/com.lenovo.lxca.doc/setup_kvm_installlxca.html?cp=1_6_0_1
http://flexsystem.lenovofiles.com/help/topic/com.lenovo.lxca.doc/setup_kvm_installlxca.html?cp=1_6_0_1
https://github.com/lenovo/lpd-openshift-ra

Figure 13. xCAT architecture

There are various network services necessary to perform
operating system deployment over the network. xCAT brings
up the network services automatically during installation
without any intervention from the system administrator.

Services used to provide functionality:
• DHCP: DHCP is a protocol that automatically provides IP

addresses and simple interface configuration to provide
information such as PXE/iPXE server configuration and
localization of the bootloader.

• TFTP: File transfer protocol that is used to provide the
necessary files, download a bootloader, and execute it.

• HTTP: This protocol is used to serve unattended files
for the operating system installer and post-installation
configuration scripts.

• DNS: This network service, combined with DHCP,
ensures a name configuration for the node servers.

• Database: xCAT holds all information about devices
as objects. The objects and configuration data are
stored in a database. By default, xCAT uses SQLite*, but
databases like MySQL, MariaDB, PostgreSQL are also
supported here.

• IPMI: A module embedded in the hardware server used
to perform the out-of-band hardware control (such as
IMM, Flexible Service Processor [FSP], and BMC).

Lenovo Platform Deployer
Lenovo Platform Deployer (LPD) is an xCAT-based
infrastructure configuration and orchestration tool. Some of
its key features include:

• Simplicity: Automated hardware provisioning

• Lenovo hardware awareness: Custom tailored for
Lenovo servers based on Intel® processors with IMM2
modules and switches with Lenovo CNOS

• Portability: Implemented as a Docker container
application

• All-inclusiveness: All required dependencies, including
xCAT, are embedded in the container

• Toolset with additional underlying APIs

• Extensibility: Can be used to deploy additional
software on top of the host operating system

• Ansible tie-in: Generate an Ansible inventory file

proviSioning
Network Configuration
The Lenovo ThinkSystem NE10032 RackSwitch, thanks
to CNOS, provides a simple, open, and programmable
network infrastructure. This RA makes use of its management
capabilities to implement automated network provisioning.

Automatic Switch Provisioning
This RA contains a submodule provided by Lenovo Modules
for Ansible. To obtain the submodule, execute the following
commands in the main directory of the RA repository:

$ git submodule init

$ git submodule update

Fill the main inventory file with switch information:

[switches]

x.x.x.x username=SWITCH _ ADMIN _ USER password=SWITCH _

ADMIN _ PASSWORD

y.y.y.y username=SWITCH _ ADMIN _ USER password=SWITCH _

ADMIN _ PASSWORD

Enable VLAG on the switches, if not configured already:

vlag tier-id 10

vlag isl port-aggregation 1

vlag hlthchk peer-ip neighbor-switch-ip vrf management

vlag enable

Enter the directory containing the switch configuration
component and run a playbook with the appropriate
Python path:

$ cd src/cnos-configuration/roles/configure-networking
$ env PYTHONPATH=̀ pwd /̀ansible-cnos/library/ ansible-

playbook \

 configure-networking.yaml

After completing the playbook, the network interfaces on the
switches are configured according to the RA.

Manual Switch Configuration
If you choose to use manual steps, you must perform the
following steps on both switches.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

11

http://systemx.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.switchmgt.ansible.doc%2Fcnos_command.html
http://systemx.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.switchmgt.ansible.doc%2Fcnos_command.html

Enable VLAG:

vlag tier-id 10

vlag isl port-aggregation 1

vlag hlthchk peer-ip neighbor-switch-ip vrf management

vlag enable

Configure matching Ethernet interfaces per machine bonding
through the aggregation group:

interface Ethernet1/X/Y

 bridge-port mode trunk

 bridge-port trunk native vlan 1001

 bridge-port trunk allowed vlan 1,1001

 aggregation-group 32 mode active

 spanning-tree port type edge

Configure aggregation ports:

interface port-aggregation32

 bridge-port mode trunk

 bridge-port trunk native vlan 1001

 bridge-port trunk allowed vlan 1,1001

Save the running configuration.

Prepare the Management Switch
Before starting use of the LPD, set up the Lenovo RackSwitch
G7052 management switch as the following:

• Cable the server IMM ports to port 1 to 12 of the Lenovo
RackSwitch G7052.

• Cable the server’s onboard Ethernet 1 ports to port 23
to 34 of the Lenovo RackSwitch G7052.

• Enable these ports on the Lenovo RackSwitch G7052
and configure them to use VLANs if necessary.

• Cable and configure the uplink ports to the two Lenovo
ThinkSystem NE10032 RackSwitch switches.

• Configure the switches with static IP addresses:
172.20.4.1 for the Lenovo RackSwitch G7052,
1720.20.4.3 and 172.20.4.4 for the two Lenovo
ThinkSystem NE10032 RackSwitch switches.

Downloading Lenovo Platform Deployer code
The source for building the LPD docker container image is
available from the Lenovo public github site hosted here:
https://github.com/lenovo/lpd-openshift-ra.

You can “git clone” the repository to your management (or
deployer) server and follow the instructions on the site above
to build your container image.

Install the LPD container on the bastion node by loading the
lpd_deployer image. For example:

docker load –I ./lpd _ deployer-170520

After the loading, prepare a configuration file for LPD.
The format is:

first _ node last _ node os _ type (rhels7/rhela7) node _
nic node _ type (app/infra/master)
1 6 rhela7 1 app

7 8 rhels7 1 infra

9 11 rhela7 1 master

Each line specifies a range of server nodes in the test bed in
sequential order and indicates the desired operating system
type, the intended onboard Ethernet port, and the role of
the node, which can be one of the following: application,
infrastructure, or master. Save this file to a shared directory
that can be mounted with the Docker container. For example,
save it to /shared/lpd_config.txt. With the configuration file,
run the container by issuing the following command:

docker run -dit -e THINKAGILE _ CONFIG _ FILE=/shared/

lpd _ config.txt --stop-signal=RTMIN+3 -v /shared:/
shared --net=host --privileged -e “container=docker”

--cap-add SYS _ ADMIN -v /sys/fs/cgroup:/sys/fs/cgroup
--security-opt seccomp:unconfined --name=lpd-deployer
localhost:5000/lcideployer: lpd _ deployer-170520 bash

In this example, the LPD is run as a daemon (with –d) with a
predefined configuration file, /shared/lpd_config.txt; whereas
the directory, /shared, is used as a shared directory between
the host and the container.

Check the installation is successful with the following commands:

docker exec -it lpd-deployer lpdeploy -h

The Lenovo Platform Deployer is a management tool which

provides a simple interface to configure and deploy OS/
Apps to a Lenovo ThinkAgile™ platform.

Usage: lpdeploy [-c <file>] Configure and deploy the
target using <file> as input if specified.
 Otherwise, use the file
in the THINKAGILE _ CONFIG environment variable.

 -i <interface> Use the network interface

on the Deployer host to configure
 -h/-? Print this help

 -v Display the current

Deployer version

 -l List/generate an ansible

inventory file to /shared/lpd _ inventory.txt
 -x <cmd> Execute a (xcat) command
 -s Show the setup info from

the previous run

 -p <passwd> Set a default password

Examples:
>lpdeploy

>lpdeploy -c /shared/lpd _ config.txt
>lpdeploy -i eno2

>lpdeploy -x “lsdef hosts”

docker exec -it lpd-deployer lpdeploy -v

Lenovo Platform Deployer version 0.51.osp

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

12

https://github.com/lenovo/lpd-openshift-ra

Before provisioning the hardware and installing the host
operating system, make sure the following checklist is ready:

• Check that the servers are reset to the factory defaults.

• Check if the desired virtual drive is created on each
server (for example, a virtual drive consisting of two 480
GB drives should be created on the infrastructure nodes
as RAID1).

• Make sure the bastion node can connect to the
switches, and gather the server IMM link local addresses
(e.g., fe80::0a94:efff:fe25:b198). These addresses can
be found on either the physical server tags or from the
switches by looking into the MAC address table.

• Test the server IMM port connections by issuing the
following (assuming the server is reachable via eno1):

ping6 fe80::0a94:efff:fe25:b198%eno1

When the servers and switches are ready, start the
deployment by issuing:

docker exec –it lpd-deployer lpdeploy

Figure 14 shows the LPD workflow.

Figure 14. LPD workflow

The entire provisioning and orchestration process
takes about 30 minutes for 11 nodes. The LPD logs its
orchestration process in a tmux window, which can be
reviewed using the following command:

docker exec -it lpd _ deployer lpdeploy “tmux a”

This displays a tmux screen similar to the following:

Select a network interface connecting to the test bed and
start the installation. After the process completes, retrieve
the successful result, which includes a list of server MAC and
host addresses, using the following command:

docker exec –it lpd _ deployer lpdeploy –s

Appliance MAC Addresses:
[50/1993]

infra1-mgmt: MAC Address 1: 08:94:ef:25:b1:93
infra1-mgmt: MAC Address 2: 08:94:ef:25:b1:94
infra1-mgmt: MAC Address 3: 08:94:ef:25:b1:95
infra1-mgmt: MAC Address 4: 08:94:ef:25:b1:96
app6-mgmt: MAC Address 1: 08:94:ef:25:b2:bb
app6-mgmt: MAC Address 2: 08:94:ef:25:b2:bc
app6-mgmt: MAC Address 3: 08:94:ef:25:b2:bd
app6-mgmt: MAC Address 4: 08:94:ef:25:b2:be
app2-mgmt: MAC Address 1: 08:94:ef:25:aa:db
app2-mgmt: MAC Address 2: 08:94:ef:25:aa:dc
app2-mgmt: MAC Address 3: 08:94:ef:25:aa:dd
app2-mgmt: MAC Address 4: 08:94:ef:25:aa:de
app5-mgmt: MAC Address 1: 08:94:ef:25:b8:2b
app5-mgmt: MAC Address 2: 08:94:ef:25:b8:2c
app5-mgmt: MAC Address 3: 08:94:ef:25:b8:2d
app5-mgmt: MAC Address 4: 08:94:ef:25:b8:2e
app1-mgmt: MAC Address 1: 08:94:ef:25:a5:83
app1-mgmt: MAC Address 2: 08:94:ef:25:a5:84
app1-mgmt: MAC Address 3: 08:94:ef:25:a5:85
app1-mgmt: MAC Address 4: 08:94:ef:25:a5:86
master3-mgmt: MAC Address 1: 08:94:ef:25:a9:13
master3-mgmt: MAC Address 2: 08:94:ef:25:a9:14
master3-mgmt: MAC Address 3: 08:94:ef:25:a9:15
master3-mgmt: MAC Address 4: 08:94:ef:25:a9:16
master1-mgmt: MAC Address 1: 08:94:ef:25:a3:5b
master1-mgmt: MAC Address 2: 08:94:ef:25:a3:5c
master1-mgmt: MAC Address 3: 08:94:ef:25:a3:5d
master1-mgmt: MAC Address 4: 08:94:ef:25:a3:5e
master2-mgmt: MAC Address 1: 08:94:ef:25:a2:8b

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

(Continued on next page)
13

master2-mgmt: MAC Address 2: 08:94:ef:25:a2:8c
master2-mgmt: MAC Address 3: 08:94:ef:25:a2:8d
master2-mgmt: MAC Address 4: 08:94:ef:25:a2:8e
infra2-mgmt: MAC Address 1: 08:94:ef:25:a2:3b
infra2-mgmt: MAC Address 2: 08:94:ef:25:a2:3c
infra2-mgmt: MAC Address 3: 08:94:ef:25:a2:3d
infra2-mgmt: MAC Address 4: 08:94:ef:25:a2:3e
app4-mgmt: MAC Address 1: 08:94:ef:25:a9:ab
app4-mgmt: MAC Address 2: 08:94:ef:25:a9:ac
app4-mgmt: MAC Address 3: 08:94:ef:25:a9:ad
app4-mgmt: MAC Address 4: 08:94:ef:25:a9:ae
app3-mgmt: MAC Address 1: 08:94:ef:25:af:53
app3-mgmt: MAC Address 2: 08:94:ef:25:af:54
app3-mgmt: MAC Address 3: 08:94:ef:25:af:55
app3-mgmt: MAC Address 4: 08:94:ef:25:af:56
IMM info:
app1-mgmt: 08:94:ef:25:a5:88 ()
app2-mgmt: 08:94:ef:25:aa:e0 ()
[3/1993]

app3-mgmt: 08:94:ef:25:af:58 ()
app4-mgmt: 08:94:ef:25:a9:b0 ()
app5-mgmt: 08:94:ef:25:b8:30 ()
app6-mgmt: 08:94:ef:25:b2:c0 ()
infra1-mgmt: 08:94:ef:25:b1:98 ()
infra2-mgmt: 08:94:ef:25:a2:40 ()
master1-mgmt: 08:94:ef:25:a3:60 ()
master2-mgmt: 08:94:ef:25:a2:90 ()
master3-mgmt: 08:94:ef:25:a9:18 ()
/etc/hosts:
127.0.0.1 localhost

172.30.4.1 app1 app1.ocp.example.local

172.20.2.1 app1-mgmt app1-mgmt.ocp.example.local app1

172.30.4.2 app2 app2.ocp.example.local

172.20.2.2 app2-mgmt app2-mgmt.ocp.example.local app2

172.30.4.3 app3 app3.ocp.example.local

172.20.2.3 app3-mgmt app3-mgmt.ocp.example.local app3

172.30.4.4 app4 app4.ocp.example.local

172.20.2.4 app4-mgmt app4-mgmt.ocp.example.local app4

172.30.4.5 app5 app5.ocp.example.local

172.20.2.5 app5-mgmt app5-mgmt.ocp.example.local app5

172.30.4.6 app6 app6.ocp.example.local

172.20.2.6 app6-mgmt app6-mgmt.ocp.example.local app6

172.20.4.1 gswitch1 gswitch1.ocp.example.local

172.20.4.2 gswitch2 gswitch2.ocp.example.local

172.20.4.3 gswitch3 gswitch3.ocp.example.local

172.20.4.4 gswitch4 gswitch4.ocp.example.local

172.30.4.7 infra1 infra1.ocp.example.local

172.20.2.7 infra1-mgmt infra1-mgmt.ocp.example.local

infra1

172.30.4.8 infra2 infra2.ocp.example.local

172.20.2.8 infra2-mgmt infra2-mgmt.ocp.example.local

infra2

172.30.4.9 master1 master1.ocp.example.local

172.20.2.9 master1-mgmt master1-mgmt.ocp.example.local

master1

172.30.4.10 master2 master2.ocp.example.local

172.20.2.10 master2-mgmt master2-mgmt.ocp.example.local

master2

172.30.4.11 master3 master3.ocp.example.local

172.20.2.11 master3-mgmt master3-mgmt.ocp.example.local

master3

172.20.3.1 app1-IMM

172.20.3.2 app2-IMM

172.20.3.3 app3-IMM

172.20.3.4 app4-IMM

172.20.3.5 app5-IMM

172.20.3.6 app6-IMM

172.20.3.7 infra1-IMM

172.20.3.8 infra2-IMM

172.20.3.9 master1-IMM

172.20.3.10 master2-IMM

172.20.3.11 master3-IMM

prErEQuiSitES
Inventory
In order to perform initial configuration and installation
of the OpenShift Container Platform cluster, an Ansible
inventory file has to be created with the environment’s
description. A full inventory for this RA can be found in
Appendix A. Copy this inventory to the /etc/ansible/hosts
file. All sections of the inventory file specific to OpenShift for
this RA are described in this chapter. The following chapters
provide additional variables that are used for automatic
prerequisites and Keepalived deployment.

[OSEv3:children]
nodes

masters

nfs

etcd

lb

local

This section specifies the types of nodes that are used in
an OpenShift Container Platform environment. Required
groups are nodes, masters, and etcd. Optional groups
are nfs (for Docker Registry persistent storage), lb (for
load balancing in multi-master clusters), and local (which
specifies the bastion node).

[OSEv3:vars]
ansible _ ssh _ user=openshift

ansible _ become=true

openshift _ master _ cluster _ method=native

openshift _ master _ cluster _ hostname=ocp.example.local

openshift _ master _ cluster _ public _ hostname=ocp.

example.com

deployment _ type=openshift-enterprise

openshift _ master _ identity _ providers=[{‘name’:
‘htpasswd _ auth’, ‘login’: ‘true’, ‘challenge’:
‘true’, ‘kind’: ‘HTPasswdPasswordIdentityProvider’,
‘filename’: ‘/etc/origin/master/users.htpasswd’}]
os _ sdn _ network _ plugin _ name=’redhat/openshift-ovs-

multitenant’

openshift _ hosted _ registry _ storage _ kind=nfs

openshift _ hosted _ registry _ storage _ volume _ size=300G

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

14

This section describes global cluster parameters. Parameter
openshift_master_cluster_method specifies the load
balancing method in a multi-master environment. With the
native value, there will be a separated HAProxy load balancer
installed on the specified host and configured for the whole
environment. The hostname for users and cluster components
to access the cluster load balancer from external and internal
networks is set in the openshift_master_cluster_hostname
and openshift_master_cluster_public_hostname parameters.
The parameter openshift_master_identity_providers
configures the way for authentication of OpenShift users. In
this example, this parameter is based on htpasswd files stored
in the OpenShift configuration directory. However, you can use
many other authentication methods like LDAP, Keystone*, or
GitHub* accounts. os_sdn_network_plugin_name specifies
the SDN Open vSwitch plugin used in environment. In this
RA, redhat/openshift-ovs-multitenant provides isolation
between OpenShift projects on the network level. The last
two sections specify the storage backend type and its size for
Docker Registry. In this solution, Docker Registry uses NFS
server for Docker image storage.

[masters]

master1.ocp.example.local containerized=True

openshift _ ip=172.30.4.9 openshift _ hostname=master1.

ocp.example.local

master2.ocp.example.local containerized=True

openshift _ ip=172.30.4.10 openshift _ hostname=master2.

ocp.example.local

master3.ocp.example.local containerized=True

openshift _ ip=172.30.4.11 openshift _ hostname=master3.

ocp.example.local

This section describes which servers act as OpenShift
masters. In this RA, three OpenShift masters are
implemented for control plane HA purposes. OpenShift
master components can be installed with two methods:
rpm-based or container-based. In this RA, all OpenShift
components are implemented as containers, which is
determined by the containerized=True parameter.

[nodes]

master1.ocp.example.local containerized=True

openshift _ schedulable=False openshift _ ip=172.30.4.9

openshift _ hostname=master1.ocp.example.local

master2.ocp.example.local containerized=True

openshift _ schedulable=False openshift _ ip=172.30.4.10

openshift _ hostname=master2.ocp.example.local

master3.ocp.example.local containerized=True

openshift _ schedulable=False openshift _ ip=172.30.4.11

openshift _ hostname=master3.ocp.example.local

infra1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}” openshift _ ip=172.30.4.7 openshift _
hostname=infra1.ocp.example.local

infra2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}” openshift _ ip=172.30.4.8 openshift _
hostname=infra2.ocp.example.local

app1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.1 openshift _

hostname=app1.ocp.example.local

app2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.2 openshift _

hostname=app2.ocp.example.local

app3.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.3 openshift _

hostname=app3.ocp.example.local

app4.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.4 openshift _

hostname=app4.ocp.example.local

app5.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.5 openshift _

hostname=app5.ocp.example.local

app6.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.6 openshift _

hostname=app6.ocp.example.local

This section describes which servers act as OpenShift nodes.
In this RA, seven OpenShift nodes are implemented. Two of
them perform infrastructure functions, which is determined
by the openshift_node_labels=”{‘region’: ‘infra’}”
parameter. OpenShift node components are also installed
on OpenShift master servers. However, no user application
should be deployed on these servers because of the
openshift_schedulable=False parameter. All other nodes
have scheduling enabled. In this RA, all node components
are implemented as containers, which is determined by the
containerized=True parameter.

[nfs]

nfs1.ocp.example.local openshift _ hostname=nfs1.ocp.

example.local openshift _ ip=172.30.4.7

nfs2.ocp.example.local openshift _ hostname=nfs2.ocp.

example.local openshift _ ip=172.30.4.8

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

(Continued)

15

In this section, the hosts that will run NFS server are
specified. NFS server is used as a storage backend for
Docker Registry. In OpenShift, NFS server has to be installed
on a host with the RHEL operating system (that is, an
infrastructure node). In this RA, the first NFS server uses a
special partition with the /export mount point. This partition
is replicated and backed up by DRBD to a secondary NFS
server node. In case of a failure of the first node, the DRBD
partition can easily switch into the secondary node with no
data loss.

[etcd]

etcd1.ocp.example.local containerized=True openshift _

ip=172.30.4.9 openshift _ hostname=etcd1.ocp.example.local

etcd2.ocp.example.local containerized=True openshift _

ip=172.30.4.10 openshift _ hostname=etcd2.ocp.example.

local

etcd3.ocp.example.local containerized=True openshift _

ip=172.30.4.11 openshift _ hostname=etcd3.ocp.example.

local

This section describes hosts that will run etcd instances. In
this RA, three etcd instances are installed on three master
servers to achieve low-latency traffic between them. When
many etcd instances are specified in an inventory file, they
are automatically clustered in order to provide a highly
available key-value etcd store. An etcd cluster that consists of
three etcd instances resists a failure of one etcd instance. It is
also recommended to have an odd number of etcd instances
in a cluster.

[lb]

lb1.ocp.example.local openshift _ hostname=lb1.ocp.

example.local openshift _ ip=172.30.4.7

lb2.ocp.example.local openshift _ hostname=lb2.ocp.

example.local openshift _ ip=172.30.4.8

When openshift_master_cluster_method is set to native,
then this section specifies a host on which HAProxy load
balancer will be installed and configured. In this RA, two
HAProxy load balancers are installed on two infrastructure
servers. They use one common virtual IP address that
is managed by Keepalived software to achieve a highly
available OpenShift Container Platform cluster.

Node Preparation
When operating system deployment is finished, the nodes
must be prepared for OpenShift installation. Perform the
following preliminary steps: prepare an openshift account
and exchange SSH keys across all nodes, attach software
licenses, install and configure the DNS service, install
additional packages, and configure Docker Engine. All
tasks can be executed either automatically, using Ansible
playbooks available at https://github.com/intel/openshift-
container-architecture, or manually.

Automatic Prerequisites Installation
All required tasks are prepared as Ansible playbooks,
which are ready to use and available at https://github.com/
intel/openshift-container-architecture/. You can use those
playbooks to prepare all needed tasks automatically instead
of completing the manual steps.

Based on information from the operating system
deployment, prepare a hosts file. Refer to the example in the
Appendix A, and place it in the location /etc/ansible/hosts.
After that, clone the Git* repository:

$ git clone https://github.com/intel/openshift-container-
architecture/

$ cd ra-redhat-openshift/src/prerequisitesa

In the inventory file, set up additional variables, as shown in
Table 10.

Table 10. Additional variables

Variable Description

rhel _ subscription _
user:

Name of the user who will be used
for registration

rhel _ subscription _
pass:

Password of the user who will be used
for registration

ansible _ ssh _ user: Insert root or other user with root
privileges

ansible _ become: Set to True to run commands with
sudo privileges

local _ dns: Type a proper IP address for your
bastion node that runs the DNS service

Start the playbook by entering the following command:

$ ansible-playbook nodes _ setup.yaml -k

Manual Steps
If desired, you can omit automatic prerequisites installation and
perform manual steps instead. In order to do so on each node,
the openshift user must be created with proper SSH keys.

$ sudo useradd -m -G root openshift

OpenShift Container Platform Ansible installation requires
additional privileges provided through sudo:

$ echo openshift ALL=\(root\) NOPASSWD: ALL \
 | sudo tee /etc/sudoers.d/openshift

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

16

https://github.com/intel/openshift-container-architecture
https://github.com/intel/openshift-container-architecture
https://github.com/intel/openshift-container-architecture/
https://github.com/intel/openshift-container-architecture/
https://github.com/intel/openshift-container-architecture/
https://github.com/intel/openshift-container-architecture/

SSH keys have to be generated on the bastion node and
distributed across the cluster:

$ ssh-keygen

$ ssh-copy-id -i ~/.ssh/id _ rsa.pub $host

All nodes must be registered with Red Hat Subscription
Manager and have an active OpenShift Container Platform
subscription attached.

$ sudo subscription-manager register --username=<user _

name> \

 --password=<password>

Available subscriptions can be listed with the
following command:

$ sudo subscription-manager list --available --matches

‘*OpenShift*’

Next, attach an OpenShift Container Platform subscription
from the available license pool:

$ sudo subscription-manager attach --pool=<pool _ id>

To ensure proper software versions, only specific repositories
should be enabled:

$ sudo subscription-manager repos --disable=”*”

$ sudo subscription-manager repos \

 --enable=”rhel-7-server-rpms” \

 --enable=”rhel-7-server-extras-rpms” \

 --enable=”rhel-7-server-ose-3.5-rpms”

By default, RHEL uses a DNS server. It must be configured
to reflect network IP space and the chosen domain. The
configuration file /etc/dnsmasq.conf must contain the
following lines:

no-hosts

conf-dir=/etc/dnsmasq.d

The next step is to create a DNS configuration with domain-
to-IP mappings. Below is the DNS file used in this RA. It
should be placed in /etc/dnsmasq.d/hosts.

#[master/worker private ip]

address=/master1.ocp.example.local/master1.ocp.example.

local/172.30.4.9

address=/master2.ocp.example.local/master2.ocp.example.

local/172.30.4.10

address=/master3.ocp.example.local/master3.ocp.example.

local/172.30.4.11

address=/infra1.ocp.example.local/infra1.ocp.example.

local/172.30.4.7

address=/infra2.ocp.example.local/infra2.ocp.example.

local/172.30.4.8

address=/app1.ocp.example.local/app1.ocp.example.

local/172.30.4.1

address=/app2.ocp.example.local/app2.ocp.example.

local/172.30.4.2

address=/app3.ocp.example.local/app3.ocp.example.

local/172.30.4.3

address=/app4.ocp.example.local/app4.ocp.example.

local/172.30.4.4

address=/app5.ocp.example.local/app5.ocp.example.

local/172.30.4.5

address=/app6.ocp.example.local/app6.ocp.example.

local/172.30.4.6

address=/etcd1.ocp.example.local/etcd1.ocp.example.

local/172.30.4.9

address=/etcd2.ocp.example.local/etcd2.ocp.example.

local/172.30.4.10

address=/etcd3.ocp.example.local/etcd3.ocp.example.

local/172.30.4.11

address=/lb1.ocp.example.local/lb1.ocp.example.

local/172.30.4.7

address=/lb2.ocp.example.local/lb2.ocp.example.

local/172.30.4.8

address=/nfs1.ocp.example.local/nfs1.ocp.example.

local/172.30.4.7

address=/nfs2.ocp.example.local/nfs2.ocp.example.

local/172.30.4.8

[lb private ip]

host-record=ocp.example.local,172.30.4.132

[lb public ip]

address=/ocp.example.com/10.240.37.132

All internal interfaces should be configured in bonds. This
step should be done during operating system, provisioning.
However, manual configuration might be necessary. Below
is an example of a configuration file for the appropriate
interface on one of the application nodes:

DEVICE=bond0

NAME=bond0

TYPE=Bond

BOOTPROTO=none

BONDING _ MASTER=yes

BONDING _ OPTS=”miimon=1000 mode=4”

ONBOOT=yes

IPADDR=172.30.4.1

PREFIX=16

DEFROUTE=yes

GATEWAY=172.30.4.12

DNS1=172.30.4.12

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

17

Key options:

GATEWAY=172.30.4.12—set the gateway address for the host
(bastion node)

DNS1=172.30.4.12—set the DNS server address for the host
(bastion node)

Those options must be configured only on one of the interfaces.

Nodes with RHEL should have proper packages installed. Run
those commands on the bastion and infrastructure nodes.

$ sudo yum -y install wget git net-tools bind-utils

iptables-services bridge-utils bash-completion

$ sudo yum -y install atomic-openshift-excluder atomic-

openshift-docker-excluder

$ sudo yum -y install docker

$ sudo yum update

On the bastion node, install the packages required by
OpenShift installer:

$ sudo yum -y install atomic-openshift-utils

On RHEL Atomic Host systems, ensure that they are up to
date by upgrading to the latest RHEL Atomic Host tree if one
is available:

$ sudo atomic host upgrade

After the package installation is complete, verify that that
version matches 1.12:

$ docker version

Edit the /etc/sysconfig/docker file and add --insecure-
registry 172.30.0.0/16’ to the OPTIONS parameter. This
causes Docker to accept insecure registries from the internal
OpenShift Container Platform network.

OPTIONS=’--selinux-enabled --insecure-registry

172.30.0.0/16’

Keepalived*
OpenShift Container Platform delivers two flavors of
HAProxy load balancing software. The first flavor, spawned
as a daemon, distributes API calls between master servers.
The second flavor, spawned as a Docker container, provides
the router mechanism for exposing applications inside
a cluster. To achieve HA, maximum fault tolerance, and
performance, this RA includes an additional Keepalived
component. Keepalived is an open-source software
distributed under GPL license. It is recognized by Red Hat as
a recommended solution, and this implementation is based
on the official Red Hat Enterprise Linux documentation.

This RA uses HAProxy instances (in both flavors), which are
installed on both infra nodes. In conjunction with floating
IP addressed provided by Keepalived, a single point of
failure is eliminated. Installation and configuration can be
performed manually or through a single command (using an
Ansible playbook).

Automatic Keepalived Deployment
The following variables must be defined in the
Ansible inventory:

external _ interface=eno1

external _ vlan=546

internal _ interface=bond0

openshift _ master _ cluster _ ip=172.30.4.132

openshift _ master _ cluster _ public _ ip=10.240.37.132

To deploy Keepalived daemons using an Ansible playbook
on infra nodes, enter following command inside the forked
Git repository:

$ su openshift

$ ansible-playbook \

ra-redhat-openshift/src/keepalived-multimaster/

keepalived.yaml

Manual Keepalived Deployment
In order to omit automatic deployment and install Keepalived
manually, enter the following command on both infra nodes:

$ sudo yum -y install keepalived

On the first infra node, paste the following configuration
in /etc/keepalived/keepalived.conf, changing the auth_
pass values to random passwords:

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

18

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/keepalived_install_example1.html

global _ defs {

 router _ id LVS _ DEVEL

}
vrrp _ script haproxy _ check {

 script “killall -0 haproxy”

 interval 2

 weight 2

}
vrrp _ instance OCP _ EXT {

 interface eno1.546

 virtual _ router _ id 51

 priority 98

 state MASTER

 virtual _ ipaddress {

 10.240.37.132 dev eno1.546

 }
 track _ script {

 haproxy _ check

 }
 authentication {

 auth _ type PASS

 auth _ pass RANDOM1

 }
}
vrrp _ instance OCP _ INT {

 interface bond0

 virtual _ router _ id 91

 priority 98

 state MASTER

 virtual _ ipaddress {

 172.30.4.132 dev bond0

 }
 track _ script {

 haproxy _ check

 }
 authentication {

 auth _ type PASS

 auth _ pass RANDOM2

 }
}

On the second infra node, paste the following configuration
in /etc/keepalived/keepalived.conf, changing auth_pass to
match the previously generated passwords:

global _ defs {

 router _ id LVS _ DEVEL

}
vrrp _ script haproxy _ check {

 script “killall -0 haproxy”

 interval 2

 weight 2

}
vrrp _ instance OCP _ EXT {

 interface eno1.546

 virtual _ router _ id 51

 priority 98

 state MASTER

 virtual _ ipaddress {

 10.240.37.132 dev eno1.546

 }
 track _ script {

 haproxy _ check

 }
 authentication {

 auth _ type PASS

 auth _ pass RANDOM1

 }
}
vrrp _ instance OCP _ INT {

 interface bond0

 virtual _ router _ id 91

 priority 98

 state MASTER

 virtual _ ipaddress {

 172.30.4.132 dev bond0

 }
 track _ script {

 haproxy _ check

 }
 authentication {

 auth _ type PASS

 auth _ pass RANDOM2

 }
}

Allow Virtual Router Redundancy Protocol (VRRP) traffic on
all interfaces:

$ sudo iptables -I INPUT -p vrrp -j ACCEPT

Enable and start Keepalived on both infra nodes:

$ sudo systemctl enable keepalived

$ sudo systemctl start keepalived

NFS + DRBD
In this RA, DRBD provides backup for the NFS storage
backend, where private Docker images are stored. DRBD
is not a part of RHEL repositories, but it is supported and
certified on RHEL 5/6/7 systems by LINBIT*. Also, DRBD
is not a part of the core OpenShift Container Platform
architecture, and its installation is optional. However, DRBD is
an important component of this solution—it removes a single
point of failure for NFS-based Docker Registry storage.

Automatic DRBD Deployment
DRBD can be deployed automatically with use of the Ansible
playbooks. It will be installed on nodes that are listed in [nfs]
secrion in the inventory file (refer to Appendix A). In order to
install DRBD automatically, perform the following steps.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

(Continued)

19

$ git clone https://github.com/intel/openshift-container-
architecture/

$ su openshift

$ cd ra-redhat-openshift/src/drbd

$ ansible-playbook drbd.yml

Manual DRBD Deployment
If you prefer, you can install DRBD and configure it manually.
DRBD is installed on two OpenShift infra nodes. The first
acts as an active DRBD instance, and the second acts as a
backup DRBD instance. In order to install and configure DRBD
on infra nodes, firstly, you must create an LVM partition
on both of them. You can do this during operating system
provisioning or later with the following command:

$ sudo lvcreate --name drbd _ registry --size 300G vg00

Next, DRBD needs to be installed on both nodes.

$ sudo rpm -ivh http://www.elrepo.org/elrepo-release-7.0-2.
el7.elrepo.noarch.rpm

$ sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-elrepo.org

$ sudo yum -y install drbd84-utils kmod-drbd84

Create a DRBD config file on both nodes in /etc/drbd.d/nfs.res.

resource nfs {

protocol C;

on infra1 {

 device /dev/drbd0;

 disk /dev/mapper/rhel _ infra1-drbd _

registry;

 address 172.30.4.7:7788;
 meta-disk internal;

 }
on infra2 {

 device /dev/drbd0;

 disk /dev/mapper/rhel _ infra2-drbd _

registry;

 address 172.30.4.8:7788;
 meta-disk internal;

 }
}

Run the following commands on both nodes:

$ sudo drbdadm create-md nfs

$ sudo drbdadm up nfs

$ sudo drbdadm primary nfs --force (only on infra1
node)
$ sudo drbdadm secondary nfs (only on infra2
node)
$ sudo iptables -I INPUT -p tcp --dport 7788 -j ACCEPT

$ sudo systemctl start drbd

$ sudo systemctl enable drbd

Create a file system and mount a DRBD partition on the
primary node (infra1).

$ sudo mkfs.xfs /dev/drbd0

$ mkdir /exports

$ sudo mount /dev/drbd0 /exports

All Docker images will now be stored on the DRBD partition
mounted to the /exports mount point on the first OpenShift
infrastructure node. All data from this partition will be
backed up on a second infrastructure node, and, in case of
a failure on the primary node, you can switch to the backup
DRBD node (infra2).

Disaster Recovery
In case of primary DRBD node failure, you can switch Docker
Registry and NFS services to make use of a secondary DRBD
node. If the primary infrastructure (DRBD) node fails, perform
the following steps to switch into the secondary NFS server
for Docker Registry.

Log on to the infra2 node from the bastion node, enable
DRBD in primary mode, and then mount the partition.

$ ssh infra2.ocp.example.local

$ drbdadm primary nfs

$ sudo mount /dev/drbd0 /exports

Next, log on to the OpenShift Container Platform master node
and change the NFS server address in registry-volume PV.

$ ssh master1.ocp.example.local

$ oc edit pv registry-volume

Change the following section:
nfs:
 path: /exports/registry
 server: nfs1.ocp.example.local

Into:
nfs:
 path: /exports/registry
 server: nfs2.ocp.example.local

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

20

https://github.com/intel/openshift-container-architecture/
https://github.com/intel/openshift-container-architecture/

The last step is to delete Docker Registry pods so that the
deployment config will run them again with new configs and
binded volumes.

$ oc get pods | grep registry

docker-registry-1-7h4k4 1/1 Running 0

37m

docker-registry-1-7rzjg 1/1 Running 0

37m

$ oc delete pod docker-registry-1-7h4k4

$ oc delete pod docker-registry-1-7rzjg

At this time, Docker Registry deployment config should start
new pods with new volumes binded from secondary NFS
(DRBD) server. All Docker images that were available on the
primary node should also be available on the secondary
node now. When the primary infrastructure node is back
online, you can perform reverse steps in order to switch to
this node for a Docker Registry NFS storage backend.

opEnSHift containEr
platform dEploymEnt
OpenShift Container Platform Installation
When the inventory file with the environment description is
prepared and all prerequisites are configured, you can perform
OpenShift Container Platform installation from the bastion
host. This process is simple, and requires a single command:

$ ansible-playbook \

/usr/share/ansible/openshift-ansible/playbooks/byo/

config.yml

After the installation process, the Ansible playbook should
report no errors, so the OpenShift Container Platform
environment will be set up. If needed, you can easily uninstall
the environment with the following command:

$ ansible-playbook \

/usr/share/ansible/openshift-ansible/playbooks/adhoc/

uninstall.yml

When installation completes, you must create user
credentials. In order to do this, run the following commands:

$ sudo yum install httpd-tools

$ touch users.htpasswd

$ htpasswd -n <user _ name> >> users.htpasswd

You should execute the htpasswd command multiple times
to create multiple user accounts. Propagate this file to
every OpenShift master node, into the /etc/origin/master/
directory, and then restart the API services on each of them.

$ sudo systemctl restart atomic-openshift-master-api

Users can now log on to the OpenShift Container Platform
web panel available at https://ocp.example.com:8443.

Deployment Validation
When installation completes without any errors, you should
also validate the deployment. There are a few components you
should check. Firstly, log on to onte of the OpenShift master
nodes and check if all nodes are connected to the cluster:

$ ssh master1.ocp.example.local

$ oc get nodes

NAME STATUS AGE

master1.ocp.example.local Ready,SchedulingDisabled

5m

master2.ocp.example.local Ready,SchedulingDisabled

5m

master3.ocp.example.local Ready,SchedulingDisabled

5m

infra1.ocp.example.local Ready 5m

infra2.ocp.example.local Ready 5m

app1.ocp.example.local Ready 5m

app2.ocp.example.local Ready 5m

app3.ocp.example.local Ready 5m

app4.ocp.example.local Ready 5m

app5.ocp.example.local Ready 5m

app6.ocp.example.local Ready 5m

You can use the above command to verify OpenShift node
states. All cluster nodes should be listed and marked as
Ready. If any node is in a NotReady state then it is not
properly assigned to a cluster and should be inspected.

$ sudo etcdctl -C https://etcd1.ocp.example.local:2379
--ca-file=/etc/etcd/ca.crt --cert-file=/etc/etcd/peer.crt
--key-file=/etc/etcd/peer.key cluster-health

member 5f0aab880290ddeb is healthy: got healthy result
from https://etcd1.ocp.example.local:2379
member c305190f3c57613c is healthy: got healthy result
from https://etcd2.ocp.example.local:2379
member c434590bbf158f3d is healthy: got healthy result
from https://etcd3.ocp.example.local:2379

You can use the above command to verify the etcd cluster state.
All etcd members should be listed and marked as healthy. If
any etcd member is in an unhealthy state then it is not properly
assigned to an etcd cluster and should be further inspected.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

21

$ oc get pods --namespace=default

NAME READY STATUS RESTARTS

AGE

docker-registry-2-qql92 1/1 Running 0

5m

docker-registry-2-uh7op 1/1 Running 0

5m

router-1-2vgcm 1/1 Running 0

5m

router-1-cbz87 1/1 Running 0 5m

Type the preceding command to verify the infrastructure
node components of the OpenShift Container Platform
cluster. It should result with a list of pods that run Docker
Registry and router services, and they all should have a
Running status.

Log on to the OpenShift Container Platform web console
using the following URL address: https://ocp.example.
com:8443. Verify that you can create a project, services, and
other OpenShift application components.

opEnSHift containEr platform Scaling
OpenShift Container Platform is a highly scalable and elastic
platform that helps users handle a growing need for compute
resources in their environments. It offers functions for easy
scale up of OpenShift master and node components.

OpenShift Node Scale Up
OpenShift nodes can be scaled up when a cluster is
deployed with the quick installation method or the advanced
installation method. In order to add new OpenShift node
hosts to an existing cluster, there should be an additional
group, new_nodes, added to its inventory.

[OSEv3:children]
nodes

masters

nfs

etcd

lb

new _ nodes

This group should also provide a definition of all new hosts that
will be assigned to an existing cluster. The following example
shows the inventory for two additional OpenShift nodes.

[new _ nodes]

app7.ocp.example.local containerized=True openshift _

schedulable=True

app8.ocp.example.local containerized=True openshift _

schedulable=True

You must configure the DNS server with new node hostnames
so they will be available from the bastion node. Also, their
keys should already be added to the known_hosts file on the
bastion node. The last step is to run the OpenShift Ansible
scale up playbook. After it’s done, new OpenShift nodes
should be added and configured in the cluster environment.

$ su openshift

$ ansible-playbook /usr/share/ansible/openshift-ansible/

playbooks/byo/openshift-node/scaleup.yml

When the scaling process is finished without failures, remove
the new_nodes group from the inventory file and add the
newly created OpenShift node’s definition to the nodes group.

[nodes]

master1.ocp.example.local containerized=True openshift _

schedulable=False

master2.ocp.example.local containerized=True openshift _

schedulable=False

master3.ocp.example.local containerized=True openshift _

schedulable=False

infra1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}”
infra2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}”

app1.ocp.example.local containerized=True openshift _

schedulable=True

app2.ocp.example.local containerized=True openshift _

schedulable=True

app3.ocp.example.local containerized=True openshift _

schedulable=True

app4.ocp.example.local containerized=True openshift _

schedulable=True

app5.ocp.example.local containerized=True openshift _

schedulable=True

app6.ocp.example.local containerized=True openshift _

schedulable=True

app7.ocp.example.local containerized=True openshift _

schedulable=True

app8.ocp.example.local containerized=True openshift _

schedulable=True

OpenShift Master Scale Up
When the OpenShift Container Platform cluster was
deployed with an advanced installation method, its control
plane can be easily scaled up. In order to add new OpenShift
master hosts to an existing cluster, there should be an
additional new_masters group added to its inventory. Every
OpenShift master also has OpenShift node components
installed. This means that the new_nodes group also needs
to be added to an inventory file.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

22

[OSEv3:children]
nodes

masters

nfs

etcd

lb

new _ masters

new _ nodes

Also, those groups should provide a definition of all new
hosts that will be assigned to an existing cluster. The
following example shows the inventory for two additional
OpenShift masters.

[new _ masters]

master4.ocp.example.local containerized=True

master5.ocp.example.local containerized=True

[new _ nodes]

master4.ocp.example.local containerized=True openshift _

schedulable=false

master5.ocp.example.local containerized=True openshift _

schedulable=false

You must configure the DNS server with new master hostnames
so they will be available from the bastion node. Their keys
should also already be added to the known_hosts file on the
bastion node. The last step is to run OpenShift Ansible scale
up playbook. After it’s done, new OpenShift masters should be
added and configured in the cluster environment.

$ su openshift

$ ansible-playbook /usr/share/ansible/openshift-ansible/

playbooks/byo/openshift-master/scaleup.yml

When the scaling process is finished without failures,
remove the new_nodes and new_masters groups from the
inventory file and add the newly created OpenShift node and
OpenShift master definitions to their proper groups so they
will map to a new cluster topology.

[masters]

master1.ocp.example.local containerized=True

master2.ocp.example.local containerized=True

master3.ocp.example.local containerized=True

master4.ocp.example.local containerized=True

master5.ocp.example.local containerized=True

[nodes]

master1.ocp.example.local containerized=True openshift _

schedulable=False

master2.ocp.example.local containerized=True openshift _

schedulable=False

master3.ocp.example.local containerized=True openshift _

schedulable=False

master4.ocp.example.local containerized=True openshift _

schedulable=False

master5.ocp.example.local containerized=True openshift _

schedulable=False

infra1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}”
infra2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ node _ labels=”{‘region’:
‘infra’}”

app1.ocp.example.local containerized=True openshift _

schedulable=True

app2.ocp.example.local containerized=True openshift _

schedulable=True

app3.ocp.example.local containerized=True openshift _

schedulable=True

app4.ocp.example.local containerized=True openshift _

schedulable=True

app5.ocp.example.local containerized=True openshift _

schedulable=True

app6.ocp.example.local containerized=True openshift _

schedulable=True

Etcd Cluster Scale Up
Although it is easy and fast to scale OpenShift master and
OpenShift node components, it can be problematic to
scale up an etcd cluster with OpenShift Ansible playbooks.
However, when needed, an etcd cluster can be scaled up with
the Ansible playbook available at https://github.com/intel/
openshift-container-architecture. In order to add new etcd
members to an existing etcd cluster, add a new_etcd group to
the OpenShift inventory file.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

23

https://github.com/intel/openshift-container-architecture/
https://github.com/intel/openshift-container-architecture/

[OSEv3:children]
nodes

masters

nfs

etcd

lb

new _ etcd

This group should provide a definition of all new hosts that
will be assigned to an existing cluster. The following example
shows the inventory for two additional etcd members:

[new _ etcd]

etcd4.ocp.example.local containerized=True

etcd5.ocp.example.local containerized=True

You must configure the DNS server with new etcd hostnames
so they will be available from bastion node. Also, their keys
should already be added to known_hosts file on the bastion
node. The last step is to run the Ansible scale up playbook
available at https://github.com/intel/openshift-container-
architecture. After it’s done, new etcd members should be
added and configured in the cluster environment.

$ su openshift

$ ansible-playbook src/etcd-scaling/scale.yml

When the scaling process is finished without failures,
remove the new_etcd group from the inventory file and add
the newly created etcd member definitions to their proper
groups so they will map to a new cluster topology.

[etcd]

etcd1.ocp.example.local containerized=True

etcd2.ocp.example.local containerized=True

etcd3.ocp.example.local containerized=True

etcd4.ocp.example.local containerized=True

etcd5.ocp.example.local containerized=True

Summary and concluSionS
Red Hat solutions involving the Red Hat OpenShift
Container Platform are created to deliver a production-
ready foundation that simplifies the deployment process,
shares the latest best practices, and provides a stable, highly
available environment on which to run your production
applications. This RA covered the process of provisioning and
deploying a highly available OpenShift Container Platform
cluster on a private cloud environment with use of Lenovo
System x3550 M5 rack servers powered by Intel Xeon
processor E5-2600 v4 family.

For any questions or concerns, please contact your account
representative or visit Github to provide input on the
product: https://github.com/intel/openshift-container-
architecture/issues.

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

1 Intel. “The Engine for Digital Transformation in the Data Center.” March 2016. intel.com/content/www/us/en/processors/xeon/xeon-e5-brief.html.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit intel.com/benchmarks.

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configura-
tion. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

Red Hat, Ansible, OpenShift, the OpenShift logo, and the Red Hat “Shadowman” logo are registered trademarks of Red Hat, Inc. in the United States and other countries.

Lenovo, the Lenovo system, Lenovo RackSwitch, ThinkSystem, and XClarity are trademarks of Lenovo in the United States, other countries, or both.

Intel, the Intel logo, Intel Atom, and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

Printed in USA 0717/CM/PRW/PDF Please Recycle 336171-001US

24

https://github.com/intel/openshift-container-architecture
https://github.com/intel/openshift-container-architecture
https://github.com/intel/openshift-container-architecture/issues
https://github.com/intel/openshift-container-architecture/issues
http://intel.com/content/www/us/en/processors/xeon/xeon-e5-brief.html
http://www.intel.com/benchmarks
http://www.intel.com

Reference Architecture | Deploying Red Hat® OpenShift® Container Platform 3.5 on Lenovo™ System x3550 M5 Rack Servers

[OSEv3:children]
masters

nodes

nfs

etcd

lb

local

[OSEv3:vars]
ansible _ ssh _ user=openshift

ansible _ become=true

openshift _ use _ dnsmasq=false

openshift _ master _ cluster _ method=native

openshift _ master _ cluster _ hostname=ocp.example.local

openshift _ master _ cluster _ public _ hostname=ocp.example.

com

openshift _ master _ default _ subdomain=apps.ocp.example.

com

deployment _ type=openshift-enterprise

os _ sdn _ network _ plugin _ name=’redhat/openshift-ovs-

multitenant’

openshift _ master _ identity _ providers=[{‘name’:
‘htpasswd _ auth’, ‘login’: ‘true’, ‘challenge’: ‘true’,
‘kind’: ‘HTPasswdPasswordIdentityProvider’, ‘filename’: ‘/
etc/origin/master/users.htpasswd’}]

openshift _ hosted _ registry _ storage _ kind=nfs

openshift _ hosted _ registry _ storage _ volume _ size=300Gi

local _ dns=172.30.4.12

external _ interface=eno1

external _ vlan=546

internal _ interface=bond0

openshift _ master _ cluster _ ip=172.30.4.132

openshift _ master _ cluster _ public _ ip=10.240.37.132

openshift _ master _ portal _ net=10.0.0.0/16

openshift _ release=v3.5

rhel _ subscription _ user=RED _ HAT _ PORTAL _ LOGIN

rhel _ subscription _ pass=RED _ HAT _ PORTAL _ PASSWORD

external _ gateway=10.240.36.1

[local]

127.0.0.1

[masters]

master1.ocp.example.local containerized=True openshift _

ip=172.30.4.9 openshift _ hostname=master1.ocp.example.local

master2.ocp.example.local containerized=True openshift _

ip=172.30.4.10 openshift _ hostname=master2.ocp.example.

local

master3.ocp.example.local containerized=True openshift _

ip=172.30.4.11 openshift _ hostname=master3.ocp.example.

local

[nodes]

master1.ocp.example.local containerized=True openshift _

schedulable=False openshift _ ip=172.30.4.9 openshift _

hostname=master1.ocp.example.local

master2.ocp.example.local containerized=True openshift _

schedulable=False openshift _ ip=172.30.4.10 openshift _

hostname=master2.ocp.example.local

master3.ocp.example.local containerized=True openshift _

schedulable=False openshift _ ip=172.30.4.11 openshift _

hostname=master3.ocp.example.local

infra1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.7 openshift _

hostname=infra1.ocp.example.local openshift _ node _

labels=”{‘region’: ‘infra’}”
infra2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.8 openshift _

hostname=infra2.ocp.example.local openshift _ node _

labels=”{‘region’: ‘infra’}”

app1.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.1 openshift _

hostname=app1.ocp.example.local

app2.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.2 openshift _

hostname=app2.ocp.example.local

app3.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.3 openshift _

hostname=app3.ocp.example.local

app4.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.4 openshift _

hostname=app4.ocp.example.local

app5.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.5 openshift _

hostname=app5.ocp.example.local

app6.ocp.example.local containerized=True openshift _

schedulable=True openshift _ ip=172.30.4.6 openshift _

hostname=app6.ocp.example.local

[nfs]

nfs1.ocp.example.local openshift _ hostname=nfs1.ocp.

example.local openshift _ ip=172.30.4.7

nfs2.ocp.example.local openshift _ hostname=nfs2.ocp.

example.local openshift _ ip=172.30.4.8

[etcd]

etcd1.ocp.example.local containerized=True openshift _

ip=172.30.4.9 openshift _ hostname=etcd1.ocp.example.local

etcd2.ocp.example.local containerized=True openshift _

ip=172.30.4.10 openshift _ hostname=etcd2.ocp.example.local

etcd3.ocp.example.local containerized=True openshift _

ip=172.30.4.11 openshift _ hostname=etcd3.ocp.example.local

[lb]

lb1.ocp.example.local openshift _ hostname=lb1.ocp.example.

local openshift _ ip=172.30.4.7

lb2.ocp.example.local openshift _ hostname=lb2.ocp.example.

local openshift _ ip=172.30.4.8

appEndix a: ocp dEploymEnt invEntory filE

(Continued) 25

