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CHAPTER 1

Loading and Preprocessing Data
with TensorFlow

So far we have used only datasets that fit in memory, but Deep Learning systems are
often trained on very large datasets that will not fit in RAM. Ingesting a large dataset
and preprocessing it efficiently can be tricky to implement with other Deep Learning
libraries, but TensorFlow makes it easy thanks to the Data API: you just create a data‐
set object, and tell it where to get the data and how to transform it. TensorFlow takes
care of all the implementation details, such as multithreading, queuing, batching, and
prefetching. Moreover, the Data API works seamlessly with tf.keras!

Off the shelf, the Data API can read from text files (such as CSV files), binary files
with fixed-size records, and binary files that use TensorFlow’s TFRecord format,
which supports records of varying sizes. TFRecord is a flexible and efficient binary
format based on Protocol Buffers (an open source binary format). The Data API also
has support for reading from SQL databases. Moreover, many open source extensions
are available to read from all sorts of data sources, such as Google’s BigQuery service.

Reading huge datasets efficiently is not the only difficulty: the data also needs to be
preprocessed, usually normalized. Moreover, it is not always composed strictly of
convenient numerical fields: there may be text features, categorical features, and so
on. These need to be encoded, for example using one-hot encoding, bag-of-words
encoding, or embeddings (as we will see, an embedding is a trainable dense vector that
represents a category or token). One option to handle all this preprocessing is to
write your own custom preprocessing layers. Another is to use the standard prepro‐
cessing layers provided by Keras.
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In this chapter, we will cover the Data API, the TFRecord format, and how to create
custom preprocessing layers and use the standard Keras ones. We will also take a
quick look at a few related projects from TensorFlow’s ecosystem:

TF Transform (tf.Transform)
Makes it possible to write a single preprocessing function that can be run in
batch mode on your full training set, before training (to speed it up), and then
exported to a TF Function and incorporated into your trained model so that once
it is deployed in production it can take care of preprocessing new instances on
the fly.

TF Datasets (TFDS)
Provides a convenient function to download many common datasets of all kinds,
including large ones like ImageNet, as well as convenient dataset objects to
manipulate them using the Data API.

So let’s get started!

The Data API
The whole Data API revolves around the concept of a dataset: as you might suspect,
this represents a sequence of data items. Usually you will use datasets that gradually
read data from disk, but for simplicity let’s create a dataset entirely in RAM using
tf.data.Dataset.from_tensor_slices():

>>> X = tf.range(10)  # any data tensor
>>> dataset = tf.data.Dataset.from_tensor_slices(X)
>>> dataset
<TensorSliceDataset shapes: (), types: tf.int32>

The from_tensor_slices() function takes a tensor and creates a tf.data.Dataset
whose elements are all the slices of X (along the first dimension), so this dataset con‐
tains 10 items: tensors 0, 1, 2, …, 9. In this case we would have obtained the same
dataset if we had used tf.data.Dataset.range(10).

You can simply iterate over a dataset’s items like this:

>>> for item in dataset:
...     print(item)
...
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
[...]
tf.Tensor(9, shape=(), dtype=int32)
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Chaining Transformations
Once you have a dataset, you can apply all sorts of transformations to it by calling its
transformation methods. Each method returns a new dataset, so you can chain trans‐
formations like this (this chain is illustrated in Figure 1-1):

>>> dataset = dataset.repeat(3).batch(7)
>>> for item in dataset:
...     print(item)
...
tf.Tensor([0 1 2 3 4 5 6], shape=(7,), dtype=int32)
tf.Tensor([7 8 9 0 1 2 3], shape=(7,), dtype=int32)
tf.Tensor([4 5 6 7 8 9 0], shape=(7,), dtype=int32)
tf.Tensor([1 2 3 4 5 6 7], shape=(7,), dtype=int32)
tf.Tensor([8 9], shape=(2,), dtype=int32)

Figure 1-1. Chaining dataset transformations

In this example, we first call the repeat() method on the original dataset, and it
returns a new dataset that will repeat the items of the original dataset three times. Of
course, this will not copy all the data in memory three times! (If you call this method
with no arguments, the new dataset will repeat the source dataset forever, so the code
that iterates over the dataset will have to decide when to stop.) Then we call the
batch() method on this new dataset, and again this creates a new dataset. This one
will group the items of the previous dataset in batches of seven items. Finally, we iter‐
ate over the items of this final dataset. As you can see, the batch() method had to
output a final batch of size two instead of seven, but you can call it with drop_remain
der=True if you want it to drop this final batch so that all batches have the exact same
size.
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The dataset methods do not modify datasets, they create new ones,
so make sure to keep a reference to these new datasets (e.g., with
dataset = ...), or else nothing will happen.

You can also transform the items by calling the map() method. For example, this cre‐
ates a new dataset with all items doubled:

>>> dataset = dataset.map(lambda x: x * 2) # Items: [0,2,4,6,8,10,12]

This function is the one you will call to apply any preprocessing you want to your
data. Sometimes this will include computations that can be quite intensive, such as
reshaping or rotating an image, so you will usually want to spawn multiple threads to
speed things up: it’s as simple as setting the num_parallel_calls argument. Note that
the function you pass to the map() method must be convertible to a TF Function
(see ???).

While the map() method applies a transformation to each item, the apply() method
applies a transformation to the dataset as a whole. For example, the following code
applies the unbatch() function to the dataset (this function is currently experimental,
but it will most likely move to the core API in a future release). Each item in the new
dataset will be a single-integer tensor instead of a batch of seven integers:

>>> dataset = dataset.apply(tf.data.experimental.unbatch()) # Items: 0,2,4,...

It is also possible to simply filter the dataset using the filter() method:

>>> dataset = dataset.filter(lambda x: x < 10) # Items: 0 2 4 6 8 0 2 4 6...

You will often want to look at just a few items from a dataset. You can use the take()
method for that:

>>> for item in dataset.take(3):
...     print(item)
...
tf.Tensor(0, shape=(), dtype=int64)
tf.Tensor(2, shape=(), dtype=int64)
tf.Tensor(4, shape=(), dtype=int64)

Shuffling the Data
As you know, Gradient Descent works best when the instances in the training set are
independent and identically distributed (see ???). A simple way to ensure this is to
shuffle the instances, using the shuffle() method. It will create a new dataset that
will start by filling up a buffer with the first items of the source dataset. Then, when‐
ever it is asked for an item, it will pull one out randomly from the buffer and replace
it with a fresh one from the source dataset, until it has iterated entirely through the
source dataset. At this point it continues to pull out items randomly from the buffer
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1 Imagine a sorted deck of cards on your left: suppose you just take the top three cards and shuffle them, then
pick one randomly and put it to your right, keeping the other two in your hands. Take another card on your
left, shuffle the three cards in your hands and pick one of them randomly, and put it on your right. When you
are done going through all the cards like this, you will have a deck of cards on your right: do you think it will
be perfectly shuffled?

until it is empty. You must specify the buffer size, and it is important to make it large
enough, or else shuffling will not be very effective.1 Just don’t exceed the amount of
RAM you have, and even if you have plenty of it, there’s no need to go beyond the
dataset’s size. You can provide a random seed if you want the same random order
every time you run your program. For example, the following code creates and dis‐
plays a dataset containing the integers 0 to 9, repeated 3 times, shuffled using a buffer
of size 5 and a random seed of 42, and batched with a batch size of 7:

>>> dataset = tf.data.Dataset.range(10).repeat(3) # 0 to 9, three times
>>> dataset = dataset.shuffle(buffer_size=5, seed=42).batch(7)
>>> for item in dataset:
...     print(item)
...
tf.Tensor([0 2 3 6 7 9 4], shape=(7,), dtype=int64)
tf.Tensor([5 0 1 1 8 6 5], shape=(7,), dtype=int64)
tf.Tensor([4 8 7 1 2 3 0], shape=(7,), dtype=int64)
tf.Tensor([5 4 2 7 8 9 9], shape=(7,), dtype=int64)
tf.Tensor([3 6], shape=(2,), dtype=int64)

If you call repeat() on a shuffled dataset, by default it will generate
a new order at every iteration. This is generally a good idea, but if
you prefer to reuse the same order at each iteration (e.g., for tests
or debugging), you can set reshuffle_each_iteration=False.

For a large dataset that does not fit in memory, this simple shuffling-buffer approach
may not be sufficient, since the buffer will be small compared to the dataset. One sol‐
ution is to shuffle the source data itself (for example, on Linux you can shuffle text
files using the shuf command). This will definitely improve shuffling a lot! Even if
the source data is shuffled, you will usually want to shuffle it some more, or else the
same order will be repeated at each epoch, and the model may end up being biased
(e.g., due to some spurious patterns present by chance in the source data’s order). To
shuffle the instances some more, a common approach is to split the source data into
multiple files, then read them in a random order during training. However, instances
located in the same file will still end up close to each other. To avoid this you can pick
multiple files randomly and read them simultaneously, interleaving their records.
Then on top of that you can add a shuffling buffer using the shuffle() method. If all
this sounds like a lot of work, don’t worry: the Data API makes all this possible in just
a few lines of code. Let’s see how to do this.
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Interleaving lines from multiple files
First, let’s suppose that you’ve loaded the California housing dataset, shuffled it
(unless it was already shuffled), and split it into a training set, a validation set, and a
test set. Then you split each set into many CSV files that each look like this (each row
contains eight input features plus the target median house value):

MedInc,HouseAge,AveRooms,AveBedrms,Popul,AveOccup,Lat,Long,MedianHouseValue
3.5214,15.0,3.0499,1.1065,1447.0,1.6059,37.63,-122.43,1.442
5.3275,5.0,6.4900,0.9910,3464.0,3.4433,33.69,-117.39,1.687
3.1,29.0,7.5423,1.5915,1328.0,2.2508,38.44,-122.98,1.621
[...]

Let’s also suppose train_filepaths contains the list of training file paths (and you
also have valid_filepaths and test_filepaths):

>>> train_filepaths
['datasets/housing/my_train_00.csv', 'datasets/housing/my_train_01.csv',...]

Alternatively, you could use file patterns; for example, train_filepaths = "data
sets/housing/my_train_*.csv". Now let’s create a dataset containing only these file
paths:

filepath_dataset = tf.data.Dataset.list_files(train_filepaths, seed=42)

By default, the list_files() function returns a dataset that shuffles the file paths. In
general this is a good thing, but you can set shuffle=False if you do not want that
for some reason.

Next, you can call the interleave() method to read from five files at a time and
interleave their lines (skipping the first line of each file, which is the header row,
using the skip() method):

n_readers = 5
dataset = filepath_dataset.interleave(
    lambda filepath: tf.data.TextLineDataset(filepath).skip(1),
    cycle_length=n_readers)

The interleave() method will create a dataset that will pull five file paths from the
filepath_dataset, and for each one it will call the function you gave it (a lambda in
this example) to create a new dataset (in this case a TextLineDataset). To be clear, at
this stage there will be seven datasets in all: the filepath dataset, the interleave dataset,
and the five TextLineDatasets created internally by the interleave dataset. When we
iterate over the interleave dataset, it will cycle through these five TextLineDatasets,
reading one line at a time from each until all datasets are out of items. Then it will get
the next five file paths from the filepath_dataset and interleave them the same way,
and so on until it runs out of file paths.

6 | Chapter 1: Loading and Preprocessing Data with TensorFlow



For interleaving to work best, it is preferable to have files of identi‐
cal length; otherwise the ends of the longest files will not be inter‐
leaved.

By default, interleave() does not use parallelism; it just reads one line at a time
from each file, sequentially. If you want it to actually read files in parallel, you can set
the num_parallel_calls argument to the number of threads you want (note that the
map() method also has this argument). You can even set it to tf.data.experimen
tal.AUTOTUNE to make TensorFlow choose the right number of threads dynamically
based on the available CPU (however, this is an experimental feature for now). Let’s
look at what the dataset contains now:

>>> for line in dataset.take(5):
...     print(line.numpy())
...
b'4.2083,44.0,5.3232,0.9171,846.0,2.3370,37.47,-122.2,2.782'
b'4.1812,52.0,5.7013,0.9965,692.0,2.4027,33.73,-118.31,3.215'
b'3.6875,44.0,4.5244,0.9930,457.0,3.1958,34.04,-118.15,1.625'
b'3.3456,37.0,4.5140,0.9084,458.0,3.2253,36.67,-121.7,2.526'
b'3.5214,15.0,3.0499,1.1065,1447.0,1.6059,37.63,-122.43,1.442'

These are the first rows (ignoring the header row) of five CSV files, chosen randomly.
Looks good! But as you can see, these are just byte strings; we need to parse them and
scale the data.

Preprocessing the Data
Let’s implement a small function that will perform this preprocessing:

X_mean, X_std = [...] # mean and scale of each feature in the training set
n_inputs = 8

def preprocess(line):
  defs = [0.] * n_inputs + [tf.constant([], dtype=tf.float32)]
  fields = tf.io.decode_csv(line, record_defaults=defs)
  x = tf.stack(fields[:-1])
  y = tf.stack(fields[-1:])
  return (x - X_mean) / X_std, y

Let’s walk through this code:

• First, the code assumes that we have precomputed the mean and standard devia‐
tion of each feature in the training set. X_mean and X_std are just 1D tensors (or
NumPy arrays) containing eight floats, one per input feature.

• The preprocess() function takes one CSV line and starts by parsing it. For this
it uses the tf.io.decode_csv() function, which takes two arguments: the first is
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the line to parse, and the second is an array containing the default value for each
column in the CSV file. This array tells TensorFlow not only the default value for
each column, but also the number of columns and their types. In this example,
we tell it that all feature columns are floats and that missing values should default
to 0, but we provide an empty array of type tf.float32 as the default value for
the last column (the target): the array tells TensorFlow that this column contains
floats, but that there is no default value, so it will raise an exception if it encoun‐
ters a missing value.

• The decode_csv() function returns a list of scalar tensors (one per column), but
we need to return 1D tensor arrays. So we call tf.stack() on all tensors except
for the last one (the target): this will stack these tensors into a 1D array. We then
do the same for the target value (this makes it a 1D tensor array with a single
value, rather than a scalar tensor).

• Finally, we scale the input features by subtracting the feature means and then
dividing by the feature standard deviations, and we return a tuple containing the
scaled features and the target.

Let’s test this preprocessing function:

>>> preprocess(b'4.2083,44.0,5.3232,0.9171,846.0,2.3370,37.47,-122.2,2.782')
(<tf.Tensor: id=6227, shape=(8,), dtype=float32, numpy=
 array([ 0.16579159,  1.216324  , -0.05204564, -0.39215982, -0.5277444 ,
        -0.2633488 ,  0.8543046 , -1.3072058 ], dtype=float32)>,
 <tf.Tensor: [...], numpy=array([2.782], dtype=float32)>)

Looks good! We can now apply the function to the dataset.

Putting Everything Together
To make the code reusable, let’s put together everything we have discussed so far into
a small helper function: it will create and return a dataset that will efficiently load Cal‐
ifornia housing data from multiple CSV files, preprocess it, shuffle it, optionally
repeat it, and batch it (see Figure 1-2):

def csv_reader_dataset(filepaths, repeat=1, n_readers=5,
                       n_read_threads=None, shuffle_buffer_size=10000,
                       n_parse_threads=5, batch_size=32):
    dataset = tf.data.Dataset.list_files(filepaths)
    dataset = dataset.interleave(
        lambda filepath: tf.data.TextLineDataset(filepath).skip(1),
        cycle_length=n_readers, num_parallel_calls=n_read_threads)
    dataset = dataset.map(preprocess, num_parallel_calls=n_parse_threads)
    dataset = dataset.shuffle(shuffle_buffer_size).repeat(repeat)
    return dataset.batch(batch_size).prefetch(1)

Everything should make sense in this code, except the very last line (prefetch(1)),
which is important for performance.

8 | Chapter 1: Loading and Preprocessing Data with TensorFlow



2 In general, just prefetching one batch is fine, but in some cases you may need to prefetch a few more. Alterna‐
tively, you can let TensorFlow decide automatically by passing tf.data.experimental.AUTOTUNE (this is an
experimental feature for now).

3 But check out the tf.data.experimental.prefetch_to_device() function, which can prefetch data directly
to the GPU.

Figure 1-2. Loading and preprocessing data from multiple CSV files

Prefetching
By calling prefetch(1) at the end, we are creating a dataset that will do its best to
always be one batch ahead.2 In other words, while our training algorithm is working
on one batch, the dataset will already be working in parallel on getting the next batch
ready (e.g., reading the data from disk and preprocessing it). This can improve per‐
formance dramatically, as is illustrated in Figure 1-3. If we also ensure that loading
and preprocessing are multithreaded (by setting num_parallel_calls when calling
interleave() and map()), we can exploit multiple cores on the CPU and hopefully
make preparing one batch of data shorter than running a training step on the GPU:
this way the GPU will be almost 100% utilized (except for the data transfer time from
the CPU to the GPU3), and training will run much faster.
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Figure 1-3. With prefetching, the CPU and the GPU work in parallel: as the GPU works
on one batch, the CPU works on the next

If you plan to purchase a GPU card, its processing power and its
memory size are of course very important (in particular, a large
amount of RAM is crucial for computer vision). Just as important
to get good performance is its memory bandwidth; this is the num‐
ber of gigabytes of data it can get into or out of its RAM per
second.

If the dataset is small enough to fit in memory, you can significantly speed up train‐
ing by using the dataset’s cache() method to cache its content to RAM. You should
generally do this after loading and preprocessing the data, but before shuffling,
repeating, batching, and prefetching. This way, each instance will only be read and
preprocessed once (instead of once per epoch), but the data will still be shuffled dif‐
ferently at each epoch, and the next batch will still be prepared in advance.

You now know how to build efficient input pipelines to load and preprocess data
from multiple text files. We have discussed the most common dataset methods, but
there are a few more you may want to look at: concatenate(), zip(), window(),
reduce(), shard(), flat_map(), and padded_batch(). There are also a couple more
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4 Support for datasets is specific to tf.keras; this will not work in other implementations of the Keras API.

5 The fit() method will take care of repeating the training dataset. Alternatively, you could call repeat() on
the training dataset so that it repeats forever and specify the steps_per_epoch argument when calling the
fit() method. This may be useful in some rare cases, for example if you want to use a shuffle buffer that
crosses over epochs.

class methods: from_generator() and from_tensors(), which create a new dataset
from a Python generator or a list of tensors, respectively. Please check the API docu‐
mentation for more details. Also note that there are experimental features available in
tf.data.experimental, many of which will likely make it to the core API in future
releases (e.g., check out the CsvDataset class, as well as the make_csv_dataset()
method, which takes care of inferring the type of each column).

Using the Dataset with tf.keras
Now we can use the csv_reader_dataset() function to create a dataset for the train‐
ing set. Note that we do not need to repeat it, as this will be taken care of by tf.keras.
We also create datasets for the validation set and the test set:

train_set = csv_reader_dataset(train_filepaths)
valid_set = csv_reader_dataset(valid_filepaths)
test_set = csv_reader_dataset(test_filepaths)

And now we can simply build and train a Keras model using these datasets.4 All we
need to do is pass the training and validation datasets to the fit() method, instead of
X_train, y_train, X_valid, and y_valid:5

model = keras.models.Sequential([...])
model.compile([...])
model.fit(train_set, epochs=10, validation_data=valid_set)

Similarly, we can pass a dataset to the evaluate() and predict() methods:

model.evaluate(test_set)
new_set = test_set.take(3).map(lambda X, y: X) # pretend we have 3 new instances
model.predict(new_set) # a dataset containing new instances

Unlike the other sets, the new_set will usually not contain labels (if it does, Keras will
ignore them). Note that in all these cases, you can still use NumPy arrays instead of
datasets if you want (but of course they need to have been loaded and preprocessed
first).

If you want to build your own custom training loop, you can just iterate over the
training set, very naturally:

for X_batch, y_batch in train_set:
    [...] # perform one Gradient Descent step
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In fact, it is even possible to create a TF Function that performs the whole training
loop:

@tf.function
def train(model, optimizer, loss_fn, n_epochs, [...]):
    train_set = csv_reader_dataset(train_filepaths, repeat=n_epochs, [...])
    for X_batch, y_batch in train_set:
        with tf.GradientTape() as tape:
            y_pred = model(X_batch)
            main_loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
            loss = tf.add_n([main_loss] + model.losses)
        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

Congratulations, you now know how to build powerful input pipelines using the Data
API! However, so far we have used CSV files, which are common, simple, and conve‐
nient but not really efficient, and do not support large or complex data structures
(such as images or audio) very well. So let’s see how to use TFRecords instead.

If you are happy with CSV files (or whatever other format you are
using), you do not have to use TFRecords. As the saying goes, if it
ain’t broke, don’t fix it! TFRecords are useful when the bottleneck
during training is loading and parsing the data.

The TFRecord Format
The TFRecord format is TensorFlow’s preferred format for storing large amounts of
data and reading it efficiently. It is a very simple binary format that just contains a
sequence of binary records of varying sizes (each record is comprised of a length, a
CRC checksum to check that the length was not corrupted, then the actual data, and
finally a CRC checksum for the data). You can easily create a TFRecord file using the
tf.io.TFRecordWriter class:

with tf.io.TFRecordWriter("my_data.tfrecord") as f:
    f.write(b"This is the first record")
    f.write(b"And this is the second record")

And you can then use a tf.data.TFRecordDataset to read one or more TFRecord
files:

filepaths = ["my_data.tfrecord"]
dataset = tf.data.TFRecordDataset(filepaths)
for item in dataset:
    print(item)

This will output:

tf.Tensor(b'This is the first record', shape=(), dtype=string)
tf.Tensor(b'And this is the second record', shape=(), dtype=string)
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6 Since protobuf objects are meant to be serialized and transmitted, they are called messages.

By default, a TFRecordDataset will read files one by one, but you
can make it read multiple files in parallel and interleave their
records by setting num_parallel_reads. Alternatively, you could
obtain the same result by using list_files() and interleave()
as we did earlier to read multiple CSV files.

Compressed TFRecord Files
It can sometimes be useful to compress your TFRecord files, especially if they need to
be loaded via a network connection. You can create a compressed TFRecord file by
setting the options argument:

options = tf.io.TFRecordOptions(compression_type="GZIP")
with tf.io.TFRecordWriter("my_compressed.tfrecord", options) as f:
  [...]

When reading a compressed TFRecord file, you need to specify the compression type:

dataset = tf.data.TFRecordDataset(["my_compressed.tfrecord"],
                                  compression_type="GZIP")

A Brief Introduction to Protocol Buffers
Even though each record can use any binary format you want, TFRecord files usually
contain serialized protocol buffers (also called protobufs). This is a portable, extensi‐
ble, and efficient binary format developed at Google back in 2001 and made open
source in 2008; protobufs are now widely used, in particular in gRPC, Google’s
remote procedure call system. They are defined using a simple language that looks
like this:

syntax = "proto3";
message Person {
  string name = 1;
  int32 id = 2;
  repeated string email = 3;
}

This definition says we are using version 3 of the protobuf format, and it specifies
that each Person object6 may (optionally) have a name of type string, an id of type
int32, and zero or more email fields, each of type string. The numbers 1, 2, and 3
are the field identifiers: they will be used in each record’s binary representation. Once
you have a definition in a .proto file, you can compile it. This requires protoc, the
protobuf compiler, to generate access classes in Python (or some other language).
Note that the protobuf definitions we will use have already been compiled for you,
and their Python classes are part of TensorFlow, so you will not need to use protoc.
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7 This chapter contains the bare minimum you need to know about protobufs to use TFRecords. To learn more
about protobufs, please visit https://homl.info/protobuf.

All you need to know is how to use protobuf access classes in Python. To illustrate the
basics, let’s look at a simple example that uses the access classes generated for the
Person protobuf (the code is explained in the comments):

>>> from person_pb2 import Person  # import the generated access class
>>> person = Person(name="Al", id=123, email=["a@b.com"])  # create a Person
>>> print(person)  # display the Person
name: "Al"
id: 123
email: "a@b.com"
>>> person.name  # read a field
"Al"
>>> person.name = "Alice"  # modify a field
>>> person.email[0]  # repeated fields can be accessed like arrays
"a@b.com"
>>> person.email.append("c@d.com")  # add an email address
>>> s = person.SerializeToString()  # serialize the object to a byte string
>>> s
b'\n\x05Alice\x10{\x1a\x07a@b.com\x1a\x07c@d.com'
>>> person2 = Person()  # create a new Person
>>> person2.ParseFromString(s)  # parse the byte string (27 bytes long)
27
>>> person == person2  # now they are equal
True

In short, we import the Person class generated by protoc, we create an instance and
play with it, visualizing it and reading and writing some fields, then we serialize it
using the SerializeToString() method. This is the binary data that is ready to be
saved or transmitted over the network. When reading or receiving this binary data,
we can parse it using the ParseFromString() method, and we get a copy of the object
that was serialized.7

We could save the serialized Person object to a TFRecord file, then we could load and
parse it: everything would work fine. However, SerializeToString() and ParseFrom
String() are not TensorFlow operations (and neither are the other operations in this
code), so they cannot be included in a TensorFlow Function (except by wrapping
them in a tf.py_function() operation, which would make the code slower and less
portable). Fortunately, TensorFlow does include special protobuf definitions for
which it provides parsing operations.

TensorFlow Protobufs
The main protobuf typically used in a TFRecord file is the Example protobuf, which
represents one instance in a dataset. It contains a list of named features, where each
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8 Why was Example even defined, since it contains no more than a Features object? Well, TensorFlow’s devel‐
opers may one day decide to add more fields to it. As long as the new Example definition still contains the
features field, with the same ID, it will be backward compatible. This extensibility is one of the great features
of protobufs.

feature can either be a list of byte strings, a list of floats, or a list of integers. Here is
the protobuf definition:

syntax = "proto3";
message BytesList { repeated bytes value = 1; }
message FloatList { repeated float value = 1 [packed = true]; }
message Int64List { repeated int64 value = 1 [packed = true]; }
message Feature {
    oneof kind {
        BytesList bytes_list = 1;
        FloatList float_list = 2;
        Int64List int64_list = 3;
    }
};
message Features { map<string, Feature> feature = 1; };
message Example { Features features = 1; };

The definitions of BytesList, FloatList, and Int64List are straightforward
enough. Note that [packed = true] is used for repeated numerical fields, for a more
efficient encoding. A Feature contains either a BytesList, a FloatList, or an
Int64List. A Features (with an s) contains a dictionary that maps a feature name to
the corresponding feature value. And finally, an Example contains only a Features
object.8 Here is how you could create a tf.train.Example representing the same per‐
son as earlier and write it to a TFRecord file:

from tensorflow.train import BytesList, FloatList, Int64List
from tensorflow.train import Feature, Features, Example

person_example = Example(
    features=Features(
        feature={
            "name": Feature(bytes_list=BytesList(value=[b"Alice"])),
            "id": Feature(int64_list=Int64List(value=[123])),
            "emails": Feature(bytes_list=BytesList(value=[b"a@b.com",
                                                          b"c@d.com"]))
        }))

The code is a bit verbose and repetitive, but it’s rather straightforward (and you could
easily wrap it inside a small helper function). Now that we have an Example protobuf,
we can serialize it by calling its SerializeToString() method, then write the result‐
ing data to a TFRecord file:

with tf.io.TFRecordWriter("my_contacts.tfrecord") as f:
    f.write(person_example.SerializeToString())
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Normally you would write much more than one Example! Typically, you would create
a conversion script that reads from your current format (say, CSV files), creates an
Example protobuf for each instance, serializes them, and saves them to several TFRe‐
cord files, ideally shuffling them in the process. This requires a bit of work, so once
again make sure it is really necessary (perhaps your pipeline works fine with CSV
files).

Now that we have a nice TFRecord file containing a serialized Example, let’s try to
load it.

Loading and Parsing Examples
To load the serialized Example protobufs, we will use a tf.data.TFRecordDataset
once again, and we will parse each Example using tf.io.parse_single_example().
This is a TensorFlow operation, so it can be included in a TF Function. It requires at
least two arguments: a string scalar tensor containing the serialized data, and a
description of each feature. The description is a dictionary that maps each feature
name to either a tf.io.FixedLenFeature descriptor indicating the feature’s shape,
type, and default value, or a tf.io.VarLenFeature descriptor indicating only the type
(if the length of the feature’s list may vary, such as for the "emails" feature).

The following code defines a description dictionary, then it iterates over the TFRecord
Dataset and parses the serialized Example protobuf this dataset contains:

feature_description = {
    "name": tf.io.FixedLenFeature([], tf.string, default_value=""),
    "id": tf.io.FixedLenFeature([], tf.int64, default_value=0),
    "emails": tf.io.VarLenFeature(tf.string),
}

for serialized_example in tf.data.TFRecordDataset(["my_contacts.tfrecord"]):
    parsed_example = tf.io.parse_single_example(serialized_example,
                                                feature_description)

The fixed-length features are parsed as regular tensors, but the variable-length fea‐
tures are parsed as sparse tensors. You can convert a sparse tensor to a dense tensor
using tf.sparse.to_dense(), but in this case it is simpler to just access its values:

>>> tf.sparse.to_dense(parsed_example["emails"], default_value=b"")
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>
>>> parsed_example["emails"].values
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>

A BytesList can contain any binary data you want, including any serialized object.
For example, you can use tf.io.encode_jpeg() to encode an image using the JPEG
format and put this binary data in a BytesList. Later, when your code reads the
TFRecord, it will start by parsing the Example, then it will need to call
tf.io.decode_jpeg() to parse the data and get the original image (or you can use
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tf.io.decode_image(), which can decode any BMP, GIF, JPEG, or PNG image). You
can also store any tensor you want in a BytesList by serializing the tensor using
tf.io.serialize_tensor() then putting the resulting byte string in a BytesList
feature. Later, when you parse the TFRecord, you can parse this data using
tf.io.parse_tensor().

Instead of parsing examples one by one using tf.io.parse_single_example(), you
may want to parse them batch by batch using tf.io.parse_example():

dataset = tf.data.TFRecordDataset(["my_contacts.tfrecord"]).batch(10)
for serialized_examples in dataset:
    parsed_examples = tf.io.parse_example(serialized_examples,
                                          feature_description)

As you can see, the Example protobuf will probably be sufficient for most use cases.
However, it may be a bit cumbersome to use when you are dealing with lists of lists.
For example, suppose you want to classify text documents. Each document may be
represented as a list of sentences, where each sentence is represented as a list of
words. And perhaps each document also has a list of comments, where each com‐
ment is represented as a list of words. There may be some contextual data too, such as
the document’s author, title, and publication date. TensorFlow’s SequenceExample
protobuf is designed for such use cases.

Handling Lists of Lists Using the SequenceExample Protobuf
Here is the definition of the SequenceExample protobuf:

message FeatureList { repeated Feature feature = 1; };
message FeatureLists { map<string, FeatureList> feature_list = 1; };
message SequenceExample {
    Features context = 1;
    FeatureLists feature_lists = 2;
};

A SequenceExample contains a Features object for the contextual data and a Fea
tureLists object that contains one or more named FeatureList objects (e.g., a Fea
tureList named "content" and another named "comments"). Each FeatureList
contains a list of Feature objects, each of which may be a list of byte strings, a list of
64-bit integers, or a list of floats (in this example, each Feature would represent a
sentence or a comment, perhaps in the form of a list of word identifiers). Building a
SequenceExample, serializing it, and parsing it is similar to building, serializing, and
parsing an Example, but you must use tf.io.parse_single_sequence_example() to
parse a single SequenceExample or tf.io.parse_sequence_example() to parse a
batch. Both functions return a tuple containing the context features (as a dictionary)
and the feature lists (also as a dictionary). If the feature lists contain sequences of
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varying sizes (as in the preceding example), you may want to convert them to ragged
tensors, using tf.RaggedTensor.from_sparse() (see the notebook for the full code):

parsed_context, parsed_feature_lists = tf.io.parse_single_sequence_example(
    serialized_sequence_example, context_feature_descriptions,
    sequence_feature_descriptions)
parsed_content = tf.RaggedTensor.from_sparse(parsed_feature_lists["content"])

Now that you know how to efficiently store, load, and parse data, the next step is to
prepare it so that it can be fed to a neural network.

Preprocessing the Input Features
Preparing your data for a neural network requires converting all features into numer‐
ical features, generally normalizing them, and more. In particular, if your data con‐
tains categorical features or text features, they need to be converted to numbers. This
can be done ahead of time when preparing your data files, using any tool you like
(e.g., NumPy, pandas, or Scikit-Learn). Alternatively, you can preprocess your data on
the fly when loading it with the Data API (e.g., using the dataset’s map() method, as
we saw earlier), or you can include a preprocessing layer directly in your model. Let’s
look at this last option now.

For example, here is how you can implement a standardization layer using a Lambda
layer. For each feature, it subtracts the mean and divides by its standard deviation
(plus a tiny smoothing term to avoid division by zero):

means = np.mean(X_train, axis=0, keepdims=True)
stds = np.std(X_train, axis=0, keepdims=True)
eps = keras.backend.epsilon()
model = keras.models.Sequential([
    keras.layers.Lambda(lambda inputs: (inputs - means) / (stds + eps)),
    [...] # other layers
])

That’s not too hard! However, you may prefer to use a nice self-contained custom
layer (much like Scikit-Learn’s StandardScaler), rather than having global variables
like means and stds dangling around:

class Standardization(keras.layers.Layer):
    def adapt(self, data_sample):
        self.means_ = np.mean(data_sample, axis=0, keepdims=True)
        self.stds_ = np.std(data_sample, axis=0, keepdims=True)
    def call(self, inputs):
        return (inputs - self.means_) / (self.stds_ + keras.backend.epsilon())

Before you can use this standardization layer, you will need to adapt it to your dataset
by calling the adapt() method and passing it a data sample. This will allow it to use
the appropriate mean and standard deviation for each feature:
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std_layer = Standardization()
std_layer.adapt(data_sample)

This sample must be large enough to be representative of your dataset, but it does not
have to be the full training set: in general, a few hundred randomly selected instances
will suffice (however, this depends on your task). Next, you can use this preprocess‐
ing layer like a normal layer:

model = keras.Sequential()
model.add(std_layer)
[...] # create the rest of the model
model.compile([...])
model.fit([...])

If you are thinking that Keras should contain a standardization layer like this one,
here’s some good news for you: by the time you read this, the keras.layers.Normal
ization layer will probably be available. It will work very much like our custom
Standardization layer: first, create the layer, then adapt it to your dataset by passing
a data sample to the adapt() method, and finally use the layer normally.

Now let’s look at categorical features. We will start by encoding them as one-hot
vectors.

Encoding Categorical Features Using One-Hot Vectors
Consider the ocean_proximity feature in the California housing dataset we explored
earlier in this book: it is a categorical feature with five possible values: "<1H OCEAN",
"INLAND", "NEAR OCEAN", "NEAR BAY", and "ISLAND". We need to encode this feature
before we feed it to a neural network. Since there are very few categories, we can use
one-hot encoding. For this, we first need to map each category to its index (0 to 4),
which can be done using a lookup table:

vocab = ["<1H OCEAN", "INLAND", "NEAR OCEAN", "NEAR BAY", "ISLAND"]
indices = tf.range(len(vocab), dtype=tf.int64)
table_init = tf.lookup.KeyValueTensorInitializer(vocab, indices)
num_oov_buckets = 2
table = tf.lookup.StaticVocabularyTable(table_init, num_oov_buckets)

Let’s go through this code:

• We first define the vocabulary: this is the list of all possible categories.
• Then we create a tensor with the corresponding indices (0 to 4).
• Next, we create an initializer for the lookup table, passing it the list of categories

and their corresponding indices. In this example, we already have this data, so we
use a KeyValueTensorInitializer; but if the categories were listed in a text file
(with one category per line), we would use a TextFileInitializer instead.
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• In the last two lines we create the lookup table, giving it the initializer and speci‐
fying the number of out-of-vocabulary (oov) buckets. If we look up a category
that does not exist in the vocabulary, the lookup table will compute a hash of this
category and use it to assign the unknown category to one of the oov buckets.
Their indices start after the known categories, so in this example the indices of
the two oov buckets are 5 and 6.

Why use oov buckets? Well, if the number of categories is large (e.g., zip codes, cities,
words, products, or users) and the dataset is large as well, or it keeps changing, then
getting the full list of categories may not be convenient. One solution is to define the
vocabulary based on a data sample (rather than the whole training set) and add some
oov buckets for the other categories that were not in the data sample. The more
unknown categories you expect to find during training, the more oov buckets you
should use. Indeed, if there are not enough oov buckets, there will be collisions: dif‐
ferent categories will end up in the same bucket, so the neural network will not be
able to distinguish them (at least not based on this feature).

Now let’s use the lookup table to encode a small batch of categorical features to one-
hot vectors:

>>> categories = tf.constant(["NEAR BAY", "DESERT", "INLAND", "INLAND"])
>>> cat_indices = table.lookup(categories)
>>> cat_indices
<tf.Tensor: id=514, shape=(4,), dtype=int64, numpy=array([3, 5, 1, 1])>
>>> cat_one_hot = tf.one_hot(cat_indices, depth=len(vocab) + num_oov_buckets)
>>> cat_one_hot
<tf.Tensor: id=524, shape=(4, 7), dtype=float32, numpy=
array([[0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0.]], dtype=float32)>

As you can see, "NEAR BAY" was mapped to index 3, the unknown category "DESERT"
was mapped to one of the two oov buckets (at index 5), and "INLAND" was mapped to
index 1, twice. Then we used tf.one_hot() to one-hot encode these indices. Notice
that we have to tell this function the total number of indices, which is equal to the
vocabulary size plus the number of oov buckets. Now you know how to encode cate‐
gorical features to one-hot vectors using TensorFlow!

Just like earlier, it wouldn’t be too difficult to bundle all of this logic into a nice self-
contained class. Its adapt() method would take a data sample and extract all the dis‐
tinct categories it contains. It would create a lookup table to map each category to its
index (including unknown categories using oov buckets). Then its call() method
would use the lookup table to map the input categories to their indices. Well, here’s
more good news: by the time you read this, Keras will probably include a layer called
keras.layers.TextVectorization, which will be capable of doing exactly that: its
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adapt() method will extract the vocabulary from a data sample, and its call()
method will convert each category to its index in the vocabulary. You could add this
layer at the beginning of your model, followed by a Lambda layer that would apply the
tf.one_hot() function, if you want to convert these indices to one-hot vectors.

This may not be the best solution, though. The size of each one-hot vector is the
vocabulary length plus the number of oov buckets. This is fine when there are just a
few possible categories, but if the vocabulary is large, it is much more efficient to
encode them using embeddings instead.

As a rule of thumb, if the number of categories is lower than 10,
then one-hot encoding is generally the way to go (but your mileage
may vary!). If the number of categories is greater than 50 (which is
often the case when you use hash buckets), then embeddings are
usually preferable. In between 10 and 50 categories, you may want
to experiment with both options and see which one works best for
your use case.

Encoding Categorical Features Using Embeddings
An embedding is a trainable dense vector that represents a category. By default,
embeddings are initialized randomly, so for example the "NEAR BAY" category could
be represented initially by a random vector such as [0.131, 0.890], while the "NEAR
OCEAN" category might be represented by another random vector such as [0.631,
0.791]. In this example, we use 2D embeddings, but the number of dimensions is a
hyperparameter you can tweak. Since these embeddings are trainable, they will grad‐
ually improve during training; and as they represent fairly similar categories, Gradi‐
ent Descent will certainly end up pushing them closer together, while it will tend to
move them away from the "INLAND" category’s embedding (see Figure 1-4). Indeed,
the better the representation, the easier it will be for the neural network to make
accurate predictions, so training tends to make embeddings useful representations of
the categories. This is called representation learning (we will see other types of repre‐
sentation learning in a later chapter).
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9 Tomas Mikolov et al., “Distributed Representations of Words and Phrases and Their Compositionality,” Pro‐
ceedings of the 26th International Conference on Neural Information Processing Systems 2 (2013): 3111–3119.

Figure 1-4. Embeddings will gradually improve during training

Word Embeddings
Not only will embeddings generally be useful representations for the task at hand, but
quite often these same embeddings can be reused successfully for other tasks. The
most common example of this is word embeddings (i.e., embeddings of individual
words): when you are working on a natural language processing task, you are often
better off reusing pretrained word embeddings than training your own.

The idea of using vectors to represent words dates back to the 1960s, and many
sophisticated techniques have been used to generate useful vectors, including using
neural networks. But things really took off in 2013, when Tomáš Mikolov and other
Google researchers published a paper9 describing an efficient technique to learn word
embeddings using neural networks, significantly outperforming previous attempts.
This allowed them to learn embeddings on a very large corpus of text: they trained a
neural network to predict the words near any given word, and obtained astounding
word embeddings. For example, synonyms had very close embeddings, and semanti‐
cally related words such as France, Spain, and Italy ended up clustered together.

It’s not just about proximity, though: word embeddings were also organized along
meaningful axes in the embedding space. Here is a famous example: if you compute
King – Man + Woman (adding and subtracting the embedding vectors of these
words), then the result will be very close to the embedding of the word Queen (see
Figure 1-5). In other words, the word embeddings encode the concept of gender!
Similarly, you can compute Madrid – Spain + France, and the result is close to Paris,
which seems to show that the notion of capital city was also encoded in the
embeddings.
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10 Malvina Nissim et al., “Fair Is Better Than Sensational: Man Is to Doctor as Woman Is to Doctor,” arXiv pre‐
print arXiv:1905.09866 (2019).

Figure 1-5. Word embeddings of similar words tend to be close, and some axes seem to
encode meaningful concepts

Unfortunately, word embeddings sometimes capture our worst biases. For example,
although they correctly learn that Man is to King as Woman is to Queen, they also
seem to learn that Man is to Doctor as Woman is to Nurse: quite a sexist bias! To be
fair, this particular example is probably exaggerated, as was pointed out in a 2019
paper10 by Malvina Nissim et al. Nevertheless, ensuring fairness in Deep Learning
algorithms is an important and active research topic.

Let’s look at how we could implement embeddings manually, to understand how they
work (then we will use a simple Keras layer instead). First, we need to create an
embedding matrix containing each category’s embedding, initialized randomly; it will
have one row per category and per oov bucket, and one column per embedding
dimension:

embedding_dim = 2
embed_init = tf.random.uniform([len(vocab) + num_oov_buckets, embedding_dim])
embedding_matrix = tf.Variable(embed_init)

In this example we are using 2D embeddings, but as a rule of thumb embeddings typ‐
ically have 10 to 300 dimensions, depending on the task and the vocabulary size (you
will have to tune this hyperparameter).

This embedding matrix is a random 6 × 2 matrix, stored in a variable (so it can be
tweaked by Gradient Descent during training):
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>>> embedding_matrix
<tf.Variable 'Variable:0' shape=(6, 2) dtype=float32, numpy=
array([[0.6645621 , 0.44100678],
       [0.3528825 , 0.46448255],
       [0.03366041, 0.68467236],
       [0.74011743, 0.8724445 ],
       [0.22632635, 0.22319686],
       [0.3103881 , 0.7223358 ]], dtype=float32)>

Now let’s encode the same batch of categorical features as earlier, but this time using
these embeddings:

>>> categories = tf.constant(["NEAR BAY", "DESERT", "INLAND", "INLAND"])
>>> cat_indices = table.lookup(categories)
>>> cat_indices
<tf.Tensor: id=741, shape=(4,), dtype=int64, numpy=array([3, 5, 1, 1])>
>>> tf.nn.embedding_lookup(embedding_matrix, cat_indices)
<tf.Tensor: id=864, shape=(4, 2), dtype=float32, numpy=
array([[0.74011743, 0.8724445 ],
       [0.3103881 , 0.7223358 ],
       [0.3528825 , 0.46448255],
       [0.3528825 , 0.46448255]], dtype=float32)>

The tf.nn.embedding_lookup() function looks up the rows in the embedding
matrix, at the given indices—that’s all it does. For example, the lookup table says that
the "INLAND" category is at index 1, so the tf.nn.embedding_lookup() function
returns the embedding at row 1 in the embedding matrix (twice): [0.3528825,
0.46448255].

Keras provides a keras.layers.Embedding layer that handles the embedding matrix
(trainable, by default); when the layer is created it initializes the embedding matrix
randomly, and then when it is called with some category indices it returns the rows at
those indices in the embedding matrix:

>>> embedding = keras.layers.Embedding(input_dim=len(vocab) + num_oov_buckets,
...                                    output_dim=embedding_dim)
...
>>> embedding(cat_indices)
<tf.Tensor: id=814, shape=(4, 2), dtype=float32, numpy=
array([[ 0.02401174,  0.03724445],
       [-0.01896119,  0.02223358],
       [-0.01471175, -0.00355174],
       [-0.01471175, -0.00355174]], dtype=float32)>

Putting everything together, we can now create a Keras model that can process cate‐
gorical features (along with regular numerical features) and learn an embedding for
each category (as well as for each oov bucket):

regular_inputs = keras.layers.Input(shape=[8])
categories = keras.layers.Input(shape=[], dtype=tf.string)
cat_indices = keras.layers.Lambda(lambda cats: table.lookup(cats))(categories)
cat_embed = keras.layers.Embedding(input_dim=6, output_dim=2)(cat_indices)
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encoded_inputs = keras.layers.concatenate([regular_inputs, cat_embed])
outputs = keras.layers.Dense(1)(encoded_inputs)
model = keras.models.Model(inputs=[regular_inputs, categories],
                           outputs=[outputs])

This model takes two inputs: a regular input containing eight numerical features per
instance, plus a categorical input (containing one categorical feature per instance). It
uses a Lambda layer to look up each category’s index, then it looks up the embeddings
for these indices. Next, it concatenates the embeddings and the regular inputs in
order to give the encoded inputs, which are ready to be fed to a neural network. We
could add any kind of neural network at this point, but we just add a dense output
layer, and we create the Keras model.

When the keras.layers.TextVectorization layer is available, you can call its
adapt() method to make it extract the vocabulary from a data sample (it will take
care of creating the lookup table for you). Then you can add it to your model, and it
will perform the index lookup (replacing the Lambda layer in the previous code
example).

One-hot encoding followed by a Dense layer (with no activation
function and no biases) is equivalent to an Embedding layer. How‐
ever, the Embedding layer uses way fewer computations (the perfor‐
mance difference becomes clear when the size of the embedding
matrix grows). The Dense layer’s weight matrix plays the role of the
embedding matrix. For example, using one-hot vectors of size 20
and a Dense layer with 10 units is equivalent to using an Embedding
layer with input_dim=20 and output_dim=10. As a result, it would
be wasteful to use more embedding dimensions than the number
of units in the layer that follows the Embedding layer.

Now let’s look a bit more closely at the Keras preprocessing layers.

Keras Preprocessing Layers
The TensorFlow team is working on providing a set of standard Keras preprocessing
layers. They will probably be available by the time you read this; however, the API
may change slightly by then, so please refer to the notebook for this chapter if any‐
thing behaves unexpectedly. This new API will likely supersede the existing Feature
Columns API, which is harder to use and less intuitive (if you want to learn more
about the Feature Columns API anyway, please check out the notebook for this chap‐
ter).

We already discussed two of these layers: the keras.layers.Normalization layer that
will perform feature standardization (it will be equivalent to the Standardization
layer we defined earlier), and the TextVectorization layer that will be capable of
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encoding each word in the inputs into its index in the vocabulary. In both cases, you
create the layer, you call its adapt() method with a data sample, and then you use the
layer normally in your model. The other preprocessing layers will follow the same
pattern.

The API will also include a keras.layers.Discretization layer that will chop con‐
tinuous data into different bins and encode each bin as a one-hot vector. For example,
you could use it to discretize prices into three categories, (low, medium, high), which
would be encoded as [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively. Of course this loses a
lot of information, but in some cases it can help the model detect patterns that would
otherwise not be obvious when just looking at the continuous values.

The Discretization layer will not be differentiable, and it should
only be used at the start of your model. Indeed, the model’s prepro‐
cessing layers will be frozen during training, so their parameters
will not be affected by Gradient Descent, and thus they do not need
to be differentiable. This also means that you should not use an
Embedding layer directly in a custom preprocessing layer, if you
want it to be trainable: instead, it should be added separately to
your model, as in the previous code example.

It will also be possible to chain multiple preprocessing layers using the Preproces
singStage class. For example, the following code will create a preprocessing pipeline
that will first normalize the inputs, then discretize them (this may remind you of
Scikit-Learn pipelines). After you adapt this pipeline to a data sample, you can use it
like a regular layer in your models (but again, only at the start of the model, since it
contains a nondifferentiable preprocessing layer):

normalization = keras.layers.Normalization()
discretization = keras.layers.Discretization([...])
pipeline = keras.layers.PreprocessingStage([normalization, discretization])
pipeline.adapt(data_sample)

The TextVectorization layer will also have an option to output word-count vectors
instead of word indices. For example, if the vocabulary contains three words, say
["and", "basketball", "more"], then the text "more and more" will be mapped to
the vector [1, 0, 2]: the word "and" appears once, the word "basketball" does not
appear at all, and the word "more" appears twice. This text representation is called a
bag of words, since it completely loses the order of the words. Common words like
"and" will have a large value in most texts, even though they are usually the least
interesting (e.g., in the text "more and more basketball" the word "basketball" is
clearly the most important, precisely because it is not a very frequent word). So, the
word counts should be normalized in a way that reduces the importance of frequent
words. A common way to do this is to divide each word count by the log of the total
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number of training instances in which the word appears. This technique is called
Term-Frequency × Inverse-Document-Frequency (TF-IDF). For example, let’s imagine
that the words "and", "basketball", and "more" appear respectively in 200, 10, and
100 text instances in the training set: in this case, the final vector will be [1/
log(200), 0/log(10), 2/log(100)], which is approximately equal to [0.19, 0.,
0.43]. The TextVectorization layer will (likely) have an option to perform TF-IDF.

If the standard preprocessing layers are insufficient for your task,
you will still have the option to create your own custom prepro‐
cessing layer, much like we did earlier with the Standardization
class. Create a subclass of the keras.layers.PreprocessingLayer
class with an adapt() method, which should take a data_sample
argument and optionally an extra reset_state argument: if True,
then the adapt() method should reset any existing state before
computing the new state; if False, it should try to update the exist‐
ing state.

As you can see, these Keras preprocessing layers will make preprocessing much eas‐
ier! Now, whether you choose to write your own preprocessing layers or use Keras’s
(or even use the Feature Columns API), all the preprocessing will be done on the fly.
During training, however, it may be preferable to perform preprocessing ahead of
time. Let’s see why we’d want to do that and how we’d go about it.

TF Transform
If preprocessing is computationally expensive, then handling it before training rather
than on the fly may give you a significant speedup: the data will be preprocessed just
once per instance before training, rather than once per instance and per epoch during
training. As mentioned earlier, if the dataset is small enough to fit in RAM, you can
use its cache() method. But if it is too large, then tools like Apache Beam or Spark
will help. They let you run efficient data processing pipelines over large amounts of
data, even distributed across multiple servers, so you can use them to preprocess all
the training data before training.

This works great and indeed can speed up training, but there is one problem: once
your model is trained, suppose you want to deploy it to a mobile app. In that case you
will need to write some code in your app to take care of preprocessing the data before
it is fed to the model. And suppose you also want to deploy the model to Tensor‐
Flow.js so that it runs in a web browser? Once again, you will need to write some pre‐
processing code. This can become a maintenance nightmare: whenever you want to
change the preprocessing logic, you will need to update your Apache Beam code,
your mobile app code, and your JavaScript code. This is not only time-consuming,
but also error-prone: you may end up with subtle differences between the preprocess‐
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ing operations performed before training and the ones performed in your app or in
the browser. This training/serving skew will lead to bugs or degraded performance.

One improvement would be to take the trained model (trained on data that was pre‐
processed by your Apache Beam or Spark code) and, before deploying it to your app
or the browser, add extra preprocessing layers to take care of preprocessing on the fly.
That’s definitely better, since now you just have two versions of your preprocessing
code: the Apache Beam or Spark code, and the preprocessing layers’ code.

But what if you could define your preprocessing operations just once? This is what
TF Transform was designed for. It is part of TensorFlow Extended (TFX), an end-to-
end platform for productionizing TensorFlow models. First, to use a TFX component
such as TF Transform, you must install it; it does not come bundled with TensorFlow.
You then define your preprocessing function just once (in Python), by using TF
Transform functions for scaling, bucketizing, and more. You can also use any Tensor‐
Flow operation you need. Here is what this preprocessing function might look like if
we just had two features:

import tensorflow_transform as tft

def preprocess(inputs):  # inputs = a batch of input features
    median_age = inputs["housing_median_age"]
    ocean_proximity = inputs["ocean_proximity"]
    standardized_age = tft.scale_to_z_score(median_age)
    ocean_proximity_id = tft.compute_and_apply_vocabulary(ocean_proximity)
    return {
        "standardized_median_age": standardized_age,
        "ocean_proximity_id": ocean_proximity_id
    }

Next, TF Transform lets you apply this preprocess() function to the whole training
set using Apache Beam (it provides an AnalyzeAndTransformDataset class that you
can use for this purpose in your Apache Beam pipeline). In the process, it will also
compute all the necessary statistics over the whole training set: in this example, the
mean and standard deviation of the housing_median_age feature, and the vocabulary
for the ocean_proximity feature. The components that compute these statistics are
called analyzers.

Importantly, TF Transform will also generate an equivalent TensorFlow Function that
you can plug into the model you deploy. This TF Function includes some constants
that correspond to all the all the necessary statistics computed by Apache Beam (the
mean, standard deviation, and vocabulary).

With the Data API, TFRecords, the Keras preprocessing layers, and TF Transform,
you can build highly scalable input pipelines for training and benefit from fast and
portable data preprocessing in production.
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But what if you just wanted to use a standard dataset? Well in that case, things are
much simpler: just use TFDS!

The TensorFlow Datasets (TFDS) Project
The TensorFlow Datasets project makes it very easy to download common datasets,
from small ones like MNIST or Fashion MNIST to huge datasets like ImageNet (you
will need quite a bit of disk space!). The list includes image datasets, text datasets
(including translation datasets), and audio and video datasets. You can visit https://
homl.info/tfds to view the full list, along with a description of each dataset.

TFDS is not bundled with TensorFlow, so you need to install the tensorflow-
datasets library (e.g., using pip). Then call the tfds.load() function, and it will
download the data you want (unless it was already downloaded earlier) and return
the data as a dictionary of datasets (typically one for training and one for testing, but
this depends on the dataset you choose). For example, let’s download MNIST:

import tensorflow_datasets as tfds

dataset = tfds.load(name="mnist")
mnist_train, mnist_test = dataset["train"], dataset["test"]

You can then apply any transformation you want (typically shuffling, batching, and
prefetching), and you’re ready to train your model. Here is a simple example:

mnist_train = mnist_train.shuffle(10000).batch(32).prefetch(1)
for item in mnist_train:
    images = item["image"]
    labels = item["label"]
    [...]

The load() function shuffles each data shard it downloads (only
for the training set). This may not be sufficient, so it’s best to shuf‐
fle the training data some more.

Note that each item in the dataset is a dictionary containing both the features and the
labels. But Keras expects each item to be a tuple containing two elements (again, the
features and the labels). You could transform the dataset using the map() method, like
this:

mnist_train = mnist_train.shuffle(10000).batch(32)
mnist_train = mnist_train.map(lambda items: (items["image"], items["label"]))
mnist_train = mnist_train.prefetch(1)

The TensorFlow Datasets (TFDS) Project | 29

https://tensorflow.org/datasets
https://homl.info/tfds
https://homl.info/tfds


But it’s simpler to ask the load() function to do this for you by setting as_super
vised=True (obviously this works only for labeled datasets). You can also specify the
batch size if you want. Then you can pass the dataset directly to your tf.keras model:

dataset = tfds.load(name="mnist", batch_size=32, as_supervised=True)
mnist_train = dataset["train"].prefetch(1)
model = keras.models.Sequential([...])
model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd")
model.fit(mnist_train, epochs=5)

This was quite a technical chapter, and you may feel that it is a bit far from the
abstract beauty of neural networks, but the fact is Deep Learning often involves large
amounts of data, and knowing how to load, parse, and preprocess it efficiently is a
crucial skill to have. In the next chapter, we will look at convolutional neural net‐
works, which are among the most successful neural net architectures for image pro‐
cessing and many other applications.

Exercises
1. Why would you want to use the Data API?
2. What are the benefits of splitting a large dataset into multiple files?
3. During training, how can you tell that your input pipeline is the bottleneck?

What can you do to fix it?
4. Can you save any binary data to a TFRecord file, or only serialized protocol

buffers?
5. Why would you go through the hassle of converting all your data to the Example

protobuf format? Why not use your own protobuf definition?
6. When using TFRecords, when would you want to activate compression? Why

not do it systematically?
7. Data can be preprocessed directly when writing the data files, or within the

tf.data pipeline, or in preprocessing layers within your model, or using TF Trans‐
form. Can you list a few pros and cons of each option?

8. Name a few common techniques you can use to encode categorical features.
What about text?

9. Load the Fashion MNIST dataset (introduced earlier in this book); split it into a
training set, a validation set, and a test set; shuffle the training set; and save each
dataset to multiple TFRecord files. Each record should be a serialized Example
protobuf with two features: the serialized image (use tf.io.serialize_tensor()
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11 For large images, you could use tf.io.encode_jpeg() instead. This would save a lot of space, but it would
lose a bit of image quality.

 to serialize each image), and the label.11 Then use tf.data to create an efficient
dataset for each set. Finally, use a Keras model to train these datasets, including a
preprocessing layer to standardize each input feature. Try to make the input
pipeline as efficient as possible, using TensorBoard to visualize profiling data.

10. In this exercise you will download a dataset, split it, create a tf.data.Dataset to
load it and preprocess it efficiently, then build and train a binary classification
model containing an Embedding layer:
a. Download the Large Movie Review Dataset, which contains 50,000 movies

reviews from the Internet Movie Database. The data is organized in two direc‐
tories, train and test, each containing a pos subdirectory with 12,500 positive
reviews and a neg subdirectory with 12,500 negative reviews. Each review is
stored in a separate text file. There are other files and folders (including pre‐
processed bag-of-words), but we will ignore them in this exercise.

b. Split the test set into a validation set (15,000) and a test set (10,000).
c. Use tf.data to create an efficient dataset for each set.
d. Create a binary classification model, using a TextVectorization layer to pre‐

process each review. If the TextVectorization layer is not yet available (or if
you like a challenge), try to create your own custom preprocessing layer: you
can use the functions in the tf.strings package, for example lower() to
make everything lowercase, regex_replace() to replace punctuation with
spaces, and split() to split words on spaces. You should use a lookup table to
output word indices, which must be prepared in the adapt() method.

e. Add an Embedding layer and compute the mean embedding for each review,
multiplied by the square root of the number of words. This rescaled mean
embedding can then be passed to the rest of your model.

f. Train the model and see what accuracy you get. Try to optimize your pipelines
to make training as fast as possible.

g. Use TFDS to load the same dataset more easily: tfds.load("imdb_reviews").
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Colophon
The animal on the cover of Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow is the fire salamander (Salamandra salamandra), an amphibian found
across most of Europe. Its black, glossy skin features large yellow spots on the head
and back, signaling the presence of alkaloid toxins. This is a possible source of this
amphibian’s common name: contact with these toxins (which they can also spray
short distances) causes convulsions and hyperventilation. Either the painful poisons
or the moistness of the salamander’s skin (or both) led to a misguided belief that these
creatures not only could survive being placed in fire but could extinguish it as well.

Fire salamanders live in shaded forests, hiding in moist crevices and under logs near
the pools or other freshwater bodies that facilitate their breeding. Though they spend
most of their lives on land, they give birth to their young in water. They subsist
mostly on a diet of insects, spiders, slugs, and worms. Fire salamanders can grow up
to a foot in length, and in captivity may live as long as 50 years.

The fire salamander’s numbers have been reduced by destruction of their forest habi‐
tat and capture for the pet trade, but the greatest threat they face is the susceptibility
of their moisture-permeable skin to pollutants and microbes. Since 2014, they have
become extinct in parts of the Netherlands and Belgium due to an introduced fungus.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. The cover illustration is by Karen Montgomery, based on an engraving
from Wood’s Illustrated Natural History. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
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