
redhat.com

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

BACKGROUND

 Mindset

 Proper layering

 Start scripts

Revolve around the restart

Empower orchestration

 APPLICATION REQUIREMENTS

 Architecture

Security

Performance

TECHNICAL CHECKLISTS

Best practices

Architecture

Security

Performance

 CONCLUSION

 1 “Containers for Grownups: Migrating Traditional & Existing Applications.” http://schd.ws/hosted_files/
lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20
Applications.pdf. Accessed 24 Jul. 2017.

 2 “Containers for Grownups: Migrating Traditional & Existing Applications.” http://schd.ws/hosted_files/
lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20
Applications.pdf. Accessed 24 Jul. 2017.

BACKGROUND

When thinking about migrating applications into containers, there are three main high-level

strategies: lift and shift, augment, and rewrite.1

No matter which method you choose, it is important to recognize that most software was

designed and written before modern, image-based containers were invented.2 Even if you

choose the “lift and shift” method, where you might run a monolithic application inside a single

container, it is likely that your application will need to be modified. To successfully move to con-

tainers, you will need a solid migration strategy that takes into account the needs of your appli-

cations and the nature of Linux® containers.

This document will outline specific, technical recommendations and guidelines for migrating

software into containers, ranging from image build procedures to how they should run in pro-

duction. The application requirements will dictate how the application should be migrated.

MINDSET

Using containers is as much of a business advantage as a technical one. When building and using

containers, layering is crucial. You need to look at your application and think about each of the

pieces and how they work together — similar to the way you can break up a program into a series

of classes and functions. Containers are composed of packages and scripts that combine with

other containers to build your application. So approach containers with the mindset that your

application is made up of smaller units, and the packaging of those units into something easily

consumable will make your containerized application easier to understand, deploy, and maintain.

PROPER LAYERING

The purpose of layering is to provide a thin level of abstraction above the previous layer to build

something more complex. Layers are logical units where the contents are the same type of

object or perform a similar task.

BEST PRACTICES FOR MIGRATING TO
CONTAINERIZED APPLICATIONS

E-BOOK

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf
http://schd.ws/hosted_files/lcccna2016/91/Containers%20for%20Grownups_%20Migrating%20Traditional%20%26%20Existing%20Applications.pdf

2redhat.com E-BOOK Best practices for migrating to containerized applications

The right number of layers will make your container easy to consume. Too many layers will be too

complex and too difficult to consume. The proper number of layers for an application should reflect

the complexity of your application — the more complex the application, the more layers. For example,

if a Hello World container prints to standard output (stdout) “Hello World,” it requires no configura-

tion, process management, or dependencies, so it needs a single layer. But, if we expand the Hello

World application to say “hello” to the user, we will need a second layer to gather input.

START SCRIPTS

Start scripts are very effective in providing a thin layer of abstraction above the service layer that

runs when a container starts. Start scripts deliver additional muscle on top of the base layer using a

very simple application programming interface (API) for the operator to plug into. The most common

tasks of start scripts are setting permissions, moving config files, changing ownership of files, clean-

ing directories, and starting the service.

REVOLVE AROUND THE RESTART

Every life-cycle action for an application will use a restart because it is a cheap and effective way

to signal to the process that an operation is occurring. And life-cycle operations require a restart in

order change how the process is running.

As an example, think about performing a reconfigure operation for MariaDB. Consider a JSON file,

a simple remote procedure call (RPC), that maps config file locations and start information. This

JSON file is interpreted by set_configs.py, which copies the config files to their locations when the

container starts. The user reconfigures MariaDB by changing a configuration setting on the host and

restarting the container.

EMPOWER ORCHESTRATION

Every layer of your application is not meant to be in the container, so do not add too many layers.

If you do, you will quickly overlap with existing tools, other layers, and over complicate the container.

We do not want to add additional work by building tools into our containers that can only deploy and

manage our application. Instead, we want to make it easy for orchestration tools to manage our well-

packaged containers.

http://redhat.com

3redhat.com E-BOOK Best practices for migrating to containerized applications

APPLICATION REQUIREMENTS

Applications have specific requirements from an architectural, security, and performance perspec-

tive. Some of these requirements will have an impact on the level of effort required to migrate the

application into a container or break it apart into multiple containers.3

 3 “Container Tidbits: When Should I Break My Application into Multiple” 16 Mar. 2016, http://rhelblog.redhat.
com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/. Accessed 22
Mar. 2017.

ARCHITECTURE

From an architectural perspective, moving applications into containers is not unlike a Unix to Linux

migration, or an operating system upgrade. Often, an application will have been running for years.

The documentation will often be nonexistent or out of date. As with most migrations, the technical

person performing it will have to do the work necessary to understand how the application works

structurally. They will have to reverse engineer how it was set up. At a minimum, they must be able

to answer questions like:

1. Where are the binaries for this application? Are they installed through an installer that puts them

in a single place, or are they spread throughout the file system? Is there a single binary that is

easy to start, or does it have a simple systemd unit file that can be used?

2. Where does the data for this application reside? Is it read-only or read-write? Can it safely be

written to by two concurrent processes?

3. Where does all of the configuration data reside? Is it in a single directory, single file, or multiple

places throughout the file system?

4. What kind of secret data does this application have? Can the location of secrets be configured

in the application? Can they be moved into separate directories, or can they be accessed using

some kind of key through an identity or certificate server?

5. What kind of network access does this application need? Is it simple HTTP? Is it name server,

which will require user datagram protocol (UDP)? Or, is it a really complex application that needs

point-to-point encryption between containers using something like internet protocol security

(IPsec)?

6. Is the installer a shell script that can be reverse engineered for more information about applica-

tion setup? Are the binaries installed through RPMs or some other kind of package manager?

Figure 1. Application requirements

Architectural Security Performance

http://redhat.com
http://rhelblog.redhat.com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/
http://rhelblog.redhat.com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/

4redhat.com E-BOOK Best practices for migrating to containerized applications

 4 “Architecting Containers Part 4: Workload Characteristics and” 21 Apr. 2016, http://rhelblog.redhat.com/2016/04/21/
architecting-containers-part-4-workload-characteristics-and-candidates-for-containerization/. Accessed 24 Jul.
2017.

5 “Why containers are really just fancy files and fancy processes.” 6 Mar. 2017, http://sdtimes.com/guest-view-
containers-really-just-fancy-files-fancy-processes/. Accessed 22 Mar. 2017.

7. Does the application’s licensing allow you to easily distribute the application inside of a container

image? Sometimes licensing is very restrictive; other times you may have a site license.

8. Does the application restart easily? Apache can restart thousands of times without failing, but a

database may corrupt the tables. Could this make it harder to orchestrate and recover?

Answering these questions determines if your application is even a good fit for container migra-

tion — if the difficulty level is too high, it will not provide a return on investment.4

TABLE 1. TYPICAL WORKLOADS SEEN IN THE DATACENTER

EASY MODERATE DIFFUCULT

Code
Completely isolated

(single process)

Somewhat isolated

(multiple processes)

Self-modifying

(e.g. actor model)

Configuration One file Several files Anywhere in file system

Data Saved in single space Saved in several places Anywhere in file system

Secrets Static files Network
Dynamic generation of

certifcations

Network HTTP, HTTPs TCP, UDP IPSEC, highly isolated

Installation Packages, source
Installer and understood

configuration
Installers (install.sh)

Licensing Open source Proprietary Restrictive and proprietary

SECURITY

In many ways, security decisions for containerized applications are no different from regular applica-

tions that run in processes.5 You have to decide what level of isolation is enough for the given appli-

cation. When evaluating a workload for migration, and deciding whether containers offer enough

isolation, it is important to review how much isolation the workload has where it is currently running.

Going from left to right in Figure 2, each technology decision offers increasing isolation. For some

applications, regular Linux processes offer enough isolation. It is common to run MySQL and a web

server on the same Linux operating system instance. At the other end of the spectrum, there are

times when two copies of an application need to live in two different datacenters, which are affected

by different weather and earthquake patterns — this is common for disaster recovery.

As an example, high-performance computing (HPC) workloads are commonly run today in large

clusters with only regular Linux process isolation. This is not perfect — researchers in a large cluster

could attempt to hack each other’s processes, but this is commonly determined to be an acceptable

level of risk.

http://redhat.com
http://rhelblog.redhat.com/2016/04/21/architecting-containers-part-4-workload-characteristics-and-candidates-for-containerization/
http://rhelblog.redhat.com/2016/04/21/architecting-containers-part-4-workload-characteristics-and-candidates-for-containerization/
http://sdtimes.com/guest-view-containers-really-just-fancy-files-fancy-processes/
http://sdtimes.com/guest-view-containers-really-just-fancy-files-fancy-processes/

5redhat.com E-BOOK Best practices for migrating to containerized applications

 6 “When Containers and Virtualization Do - and Don’t - Work Together” https://summits.brighttalk.com/webinar/
when-containers-and-virtualization-do-and-dont-work-together/. Accessed 22 Mar. 2017.

As another example, even with virtual machines, it is common to have external-facing services, such

as domain name server (DNS), HTTP, or virtual private network (VPN) services running in an exter-

nal network in a completely different virtualization cluster from internal-facing services, such as

Oracle databases or SAP instances. This configuration would be the equivalent of rack-level isolation.

Very few security experts would be comfortable running these two types of workloads in the same

virtualization cluster, and the same is true with container platforms — typically these types of services

would be run in different clusters.

So, when you wonder if containers offer enough isolation, think about it in the context of the work-

load requirements.

Figure 2. The tenancy scale

Process Container Virtual server Physical server Rack Datacenter

PERFORMANCE

Workloads must also be analyzed for performance. Containers and virtualization are additive tech-

nologies that can be combined with bare-metal hardware to provide features and capabilities. Table

2 offers a quick guide to help determine important capabilities that should be considered when

migrating applications into containers.

Containers are Linux processes that use technologies, such as control groups (cgroups), Security-

Enhanced Linux (SELinux), and namespaces to provide a higher level of isolation to applications.

This allows them to run at native or near native speed. There is no layer of abstraction like virtualiza-

tion, so all of the containerized applications in a cluster must be based on the same hardware archi-

tecture and operating system.

Using the same example, in an HPC environment, containers may be added to bare metal to provide

a similar level of performance, while increasing the level of isolation. On the other hand, if the work-

load is a corporate application that requires components that live in Windows and Linux, a combi-

nation of containers and virtualization may be a better choice. Running containers inside of virtual

machines offers the combination of hardware freedom, better isolation, and increased manageabil-

ity using container images.6

http://redhat.com
https://summits.brighttalk.com/webinar/when-containers-and-virtualization-do-and-dont-work-together/
https://summits.brighttalk.com/webinar/when-containers-and-virtualization-do-and-dont-work-together/

6redhat.com E-BOOK Best practices for migrating to containerized applications

Use Table 2 to better understand the trade-offs of combining different technologies:

TABLE 2. WORKLOAD PLATFORM COMPARISON

BARE METAL +CONTAINERS +VIRTUALIZATION

CPU intensive Fast Fast Fast

Memory intensive Fast Fast Fast

Disk I/O latency Fast Fast Medium

Disk I/O throughput Fast Fast Fast

Network latency Fast Fast Medium

Network throughput Fast Fast Fast

Deployment speed Slow Fast Medium

Uptime (live migration) No No Yes

Alternative OS Yes Some Yes

TECHNICAL CHECKLISTS

Best practices

• Layer your application.

• The number of layers should reflect the complexity of your application.

• Containers are a slightly higher level of abstraction than an RPM.

• Avoid solving every problem inside the container.

• Use the start script layer to provide a simple extraction from the process runtime.

• Build clear and concise operations into the container to be controlled by outside tools.

• Identify and separate code, configuration, and data.

• Code should live in the image layers.

• Configuration, data, and secrets should come from the environment.

• Containers are meant to be restarted.

• Do not recreate processes.

• Never build off the latest tag — it prevents builds from being reproducible over time.

• Use liveliness and readiness checks.

http://redhat.com

7redhat.com E-BOOK Best practices for migrating to containerized applications

Architecture

Consider this checklist when creating containerized application images.7 It is important to know the

following information:

1. Identify the location of all binaries necessary for the application to run in a container.

a. Use layers — think about core builds and application runtime layers.8,9

b. Identify dependencies and determine if previous layers should contain the dependencies, espe-

cially if they can be shared or used by other applications.

c. Identify how the binaries will be started: script, systemd, etc.

2. Identify files and directories that contain configuration for the application. These will need to be

bind-mounted into the application at runtime. Configuration should come from the environment

(dev/QA/production) and should not be embedded inside of the container image.

3. Identify the files and directories that will contain data for the application. These will need to be

bind-mounted into the application at runtime. Application data should come from the environ-

ment — dev/QA/production — and should not be embedded inside the container image.

4. Determine what network protocols the application will need. This will determine if these services10

are served internally to the cluster or external to customer.

5. Can the installer script be reverse engineered to better understand how it works?

a. Determine configuration changes it makes — try to determine if scripting or configuration man-

agement could be used to replace the installer script. Could the configuration be passed to the

container image at runtime to set the parameters dynamically?

b. Determine where data is stored — try to determine if the data has schema set up during install

and if this could be scripted at application runtime.

6. Determine if the service can be restarted easily. If the service is sensitive to restarts, use liveli-

ness and readiness checks11 to determine if operator intervention is necessary. It is critical to

automate as much as possible in a container orchestration environment.

7. Determine where logging and output should go. Typically, RPM-installed applications will put logs

in /var/log or other known locations. In a containerized environment, this could dump a lot of

data into the read-write layer.12

 7 “GitHub - opencontainers/image-spec: OCI Image Format.” https://github.com/opencontainers/image-spec. Accessed
22 Mar. 2017.

 8 “Architecting Containers Part 5 - Red Hat Enterprise Linux Blog.” 18 May. 2016, http://rhelblog.redhat.com/2016/05/18/
architecting-containers-part-5-building-a-secure-and-manageable-container-software-supply-chain/. Accessed 22
Mar. 2017.

 9 “GitHub - fatherlinux/container-supply-chain: Demo showing how to” https://github.com/fatherlinux/container-
supply-chain. Accessed 22 Mar. 2017.

 10 “Services - Kubernetes.” http://kubernetes.io/docs/user-guide/services/. Accessed 22 Mar. 2017.

 11 “Configuring Liveness and Readiness Probes - Kubernetes.” http://kubernetes.io/docs/tasks/configure-pod-
container/configure-liveness-readiness-probes/. Accessed 22 Mar. 2017.

 12 “GitHub - fatherlinux/container-internals-lab: Container internals lab for” https://github.com/fatherlinux/container-
internals-lab. Accessed 17 Jul. 2017.

http://redhat.com
https://github.com/opencontainers/image-spec
http://rhelblog.redhat.com/2016/05/18/architecting-containers-part-5-building-a-secure-and-manageable-container-software-supply-chain/
http://rhelblog.redhat.com/2016/05/18/architecting-containers-part-5-building-a-secure-and-manageable-container-software-supply-chain/
https://github.com/fatherlinux/container-supply-chain
https://github.com/fatherlinux/container-supply-chain
http://kubernetes.io/docs/user-guide/services/
http://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
http://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://github.com/fatherlinux/container-internals-lab
https://github.com/fatherlinux/container-internals-lab

8redhat.com E-BOOK Best practices for migrating to containerized applications

8. Determine if scaling individual processes is necessary. Break the application up into multiple con-

tainers if necessary.13

Security

Consider this checklist when creating containerized application images.14 It is important to know the

following information:

1. Always use policies, where possible. Use security context constraints and service accounts15 to set

these policies. Red Hat has found that profile-based controls generally work better and are typi-

cally more widely adopted and maintained than custom rules for each application.

2. Identify files that contain secrets16 for the application. This includes things like certificates

and passwords. These should never be embedded in a container image because anyone who

downloads the image will have access to them. They should be protected and provided by the

container environment.

3. Avoid running containers on low ports that require privilege. Use the built-in security context con-

straints17 that block this.

4. Avoid running containers as root.18 Even with the use of kernel user namespaces, there is the

risk of escalation out of the container, which could compromise the underlying container host.

Use the built-in security context constraints that block this.

5. Where possible, run containers with a read-only root file system. Use security context constraints

to enforce this.

a. For web content, run the service with a read-only volume mount as well.19

6. Determine the level of isolation needed. Use the principles of least privilege20 and defense in

depth.21 In a Red Hat® OpenShift Container Platform environment, configure the following tech-

nologies with security context constraints and service accounts.

13 “Container Tidbits: When Should I Break My Application into Multiple” 16 Mar. 2016, http://rhelblog.redhat.
com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/. Accessed 24 Jul.
2017.

 14 “GitHub - opencontainers/image-spec: OCI Image Format.” https://github.com/opencontainers/image-spec. Accessed
22 Mar. 2017.

 15 “Understanding Service Accounts and SCCs – OpenShift Blog.” 15 Apr. 2016, https://blog.openshift.com/
understanding-service-accounts-sccs/. Accessed 24 Jul. 2017.

 16 “Secrets - Kubernetes.” http://kubernetes.io/docs/user-guide/secrets/. Accessed 22 Mar. 2017.

 17 “Authorization - Additional Concepts | Architecture | OpenShift” https://docs.openshift.com/container-
platform/3.5/architecture/additional_concepts/authorization.html. Accessed 21 Jul. 2017.

 18 “Can I haz non-privileged containers? by mhausenblas.” http://canihaznonprivilegedcontainers.info/. Accessed 24 Jul.
2017.

 19 “Volumes | Kubernetes.” https://kubernetes.io/docs/concepts/storage/volumes/. Accessed 24 Jul. 2017.

 20 “What is principle of least privilege (POLP)? - Definition from WhatIs.com.” http://searchsecurity.techtarget.com/
definition/principle-of-least-privilege-POLP. Accessed 21 Jul. 2017.

 21 “GitHub - fatherlinux/container-defense-in-depth.” https://github.com/fatherlinux/container-defense-in-depth.
Accessed 21 Jul. 2017.

http://redhat.com
http://rhelblog.redhat.com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/
http://rhelblog.redhat.com/2016/03/16/container-tidbits-when-should-i-break-my-application-into-multiple-containers/
https://github.com/opencontainers/image-spec
https://blog.openshift.com/understanding-service-accounts-sccs/
https://blog.openshift.com/understanding-service-accounts-sccs/
http://kubernetes.io/docs/user-guide/secrets/
https://docs.openshift.com/container-platform/3.5/architecture/additional_concepts/authorization.html
https://docs.openshift.com/container-platform/3.5/architecture/additional_concepts/authorization.html
http://canihaznonprivilegedcontainers.info/
https://kubernetes.io/docs/concepts/storage/volumes/
http://searchsecurity.techtarget.com/definition/principle-of-least-privilege-POLP
http://searchsecurity.techtarget.com/definition/principle-of-least-privilege-POLP
https://github.com/fatherlinux/container-defense-in-depth

9redhat.com E-BOOK Best practices for migrating to containerized applications

a. SELinux — Red Hat Enterprise Linux systems come with a configurable profile that works out

of the box.22 Dynamic contexts are generated for each container using secure virtualization

(sVirt).23

b. Secure computing (seccomp)24 — Containers are run without a default seccomp profile. Users

must determine and configure a profile for themselves.

c. Linux capabilities:25

i. The default security context constraint in OpenShift is restricted, which drops the following

capabilities: KILL, MKNOD, SYS_CHROOT, SETUID, SETGID.

ii. Administrators may want to create custom constraints, which limit the following capabili-

ties, especially for processes that will be granted root privilege (useful for administrators):

AUDIT_CONTROL, BLOCK_SUSPEND, DAC_READ_SEARCH, IPC_LOCK, IPC_OWNER, LEASE,

LINUX_IMMUTABLE, MAC_OVERRIDE, and MAC_ADMIN.

iii. Administrators may want to create custom constraints, which grant the following capabili-

ties, especially for processes which will be granted root privilege (useful for administrative

tasks): NET_ADMIN, NET_BROADCAST, SYS_ADMIN, SYS_BOOT, SYS_MODULE, SYS_NICE,

SYS_PTRACE, SYS_PACCT, SYS_RAWIO, SYS_RESOURCE, SYS_TIME, SYS_TTY_CONFIG,

SYSLOG, and WAKE_ALARM.

d. Security context constraints are provided by Red Hat OpenShift Container Platform and provide

good default rules.

Performance

Consider this checklist when creating containerized application images.26 It is important to know the

following information:

1. Determine if applications access or create temporary files. By default, these file systems are

mounted-read-only. These can be mounted as volumes,27 but be careful with read-write access

from multiple processes.

 22 “Chapter 6. Docker SELinux Security Policy - Red Hat Customer Portal.” https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy.
Accessed 21 Jul. 2017.

 23 “Securing Docker Containers with sVirt and Trusted Sources - Crunch” 21 May, 2015, http://crunchtools.com/
securing-docker-svirt/. Accessed 24 Jul. 2017.

 24 “Authorization - Additional Concepts | Architecture | OpenShift Origin” https://docs.openshift.org/latest/
architecture/additional_concepts/authorization.html. Accessed 24 Jul. 2017.

 25 “Capabilities(7) - Linux manual page - man7.org.” http://man7.org/linux/man-pages/man7/capabilities.7.html.
Accessed 24 Jul. 2017.

 26 “GitHub - opencontainers/image-spec: OCI Image Format.” https://github.com/opencontainers/image-spec. Accessed
22 Mar. 2017.

 27 “Volumes | Kubernetes.” https://kubernetes.io/docs/concepts/storage/volumes/. Accessed 24 Jul. 2017.

http://redhat.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
http://crunchtools.com/securing-docker-svirt/
http://crunchtools.com/securing-docker-svirt/
https://docs.openshift.org/latest/architecture/additional_concepts/authorization.html
https://docs.openshift.org/latest/architecture/additional_concepts/authorization.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://github.com/opencontainers/image-spec
https://kubernetes.io/docs/concepts/storage/volumes/

10redhat.com E-BOOK Best practices for migrating to containerized applications

a. /sys

b. /proc:

i. A pseudo file system that provides an interface to kernel data structures.

ii. Mostly read-only, but some files allow kernel variables to be changed.

iii. Entries in /proc/[pid]ns represent the kernel namespaces instantiated for the containerized

process id.28

iv. Examples include /proc/asound, /proc/bus, /proc/fs, /proc/irq, /proc/sys, and /proc/

sysrq-trigger.

c. /dev:

i. Inside a container, the application can access limited device files, such as /dev/null and /

dev/zero. Containerized applications cannot access host device files, such as /dev/sdX and /

dev/ttySX, without using privileged mode.

d. /run:

i. After docker v1.10, user can pass — tmpfs option for docker run, then the /run is mounted as

tmpfs inside a container.

ii. On Red Hat systems, /run/secrets is always mounted as tmpfs to provide a place to inject

subscription information.

iii. On the Linux host, /run is mounted as tmpfs to save the process’ temporary data (e.g. pid of

daemon). This will be removed after a server reboot. Inside a container, only /run/secrets is

mounted as tmpfs — /run itself is included in / (root) file system. Therefore, files under /run

are not removed even if the container is restarted.

2. Determine if the application requires changes to kernel parameters (/proc/sys) or access to

special hardware.

a. By default, kernel tuning variables under /proc/sys are read-only for a containerized process.

b. Running these types of applications may require configuring certain nodes with the correct

kernel parameters or hardware and using node selectors to schedule the application on nodes

with special configuration or resources.29 Examples include /proc/sys/fs/mqueue, /proc/sys/

kernel/{msgmax, msgmnb, msgmni, sem, shmall, shmmax, shmmni, and shm_rmid_forced}.

c. If the application needs to change kernel parameters itself (for example, via sysctl), it should be

run in an isolated cluster with privileged containers.

 28 “namespaces(7) - Linux manual page - man7.org.” http://man7.org/linux/man-pages/man7/namespaces.7.html.
Accessed 24 Jul. 2017.

 29 “Simple use of selectors to get pods to land on the desired nodes” 12 Aug. 2016, https://blog.openshift.com/use-of-
selectors-to-get-pods-on-desired-nodes/. Accessed 24 Jul. 2017.

http://redhat.com
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://blog.openshift.com/use-of-selectors-to-get-pods-on-desired-nodes/
https://blog.openshift.com/use-of-selectors-to-get-pods-on-desired-nodes/

Copyright © 2017 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus
Torvalds in the U.S. and other countries.

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA

00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200

apac@redhat.com

LATIN AMERICA
+54 11 4329 7300

info-latam@redhat.com

ABOUT RED HAT

Red Hat is the world’s leading
provider of open source

software solutions, using a
community-powered approach

to provide reliable and high-
performing cloud, Linux,

middleware, storage, and
virtualization technologies.
Red Hat also offers award-
winning support, training,

and consulting services. As
a connective hub in a global

network of enterprises,
partners, and open source

communities, Red Hat helps
create relevant, innovative
technologies that liberate
resources for growth and

prepare customers for the
future of IT.

redhat.com
#9195_01017

3. Date, time, and locale:

a. Determine if the application needs a different locale setting (for example, JST). Set this in

the image at build time — rebuild image.30

b. Determine if the application needs to change date.31

4. Determine if the application expects to use a fixed IP address.

a. Avoid static IP configuration where possible.

b. IP address of container network interface cannot be changed.

c. Use hostnames where possible because the service network in Kubernetes will take care

of networking.

d. If the application has parameters or a configuration that includes an IP address, intercept

the ENTRYPOINT to dynamically change the configuration file on start. Use tools like SED or

Ansible® to do this.

5. Determine if the application requires the use of multiple network interfaces.

a. Multiple virtual network interface controllers (NICs) are currently not supported with

Kubernetes. Network redundant functions like bonding cannot be used inside containers;

this should be done at the host level. Pods should be designed to fail and restart on a node

with a working network. Configure the proper liveliness and readiness checks.

b. Multiple network interfaces can be achieved with some third-party tools.32

CONCLUSION

Successfully migrating an existing application into a container, or containers, requires that

you understand the application and develop a comprehensive plan. Almost any application

can be containerized, but it is important to understand the amount of effort that will be

required and ensure that the transition to containers preserves performance and maintains or

improves security.

 30 “Changing The Time Zone In Linux (Command Line) – Linux Academy” 30 Jul. 2012, https://linuxacademy.com/
blog/linux/changing-the-time-zone-in-linux-command-line/. Accessed 24 Jul. 2017.

 31 “java - Is it possible change date in docker container? - Stack Overflow.” 10 Apr. 2015, http://stackoverflow.com/
questions/29556879/is-it-possible-change-date-in-docker-container. Accessed 22 Mar. 2017.

 32 “Support multiple pod IP addresses · Issue #27398 · kubernetes” 14 Jun. 2016, https://github.com/kubernetes/
kubernetes/issues/27398. Accessed 24 Jul. 2017.

E-BOOK Best practices for migrating to containerized applications

http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://redhat.com
https://linuxacademy.com/blog/linux/changing-the-time-zone-in-linux-command-line/
https://linuxacademy.com/blog/linux/changing-the-time-zone-in-linux-command-line/
http://stackoverflow.com/questions/29556879/is-it-possible-change-date-in-docker-container
http://stackoverflow.com/questions/29556879/is-it-possible-change-date-in-docker-container
https://github.com/kubernetes/kubernetes/issues/27398
https://github.com/kubernetes/kubernetes/issues/27398

