
de.redhat.com

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

ZUSAMMENFASSUNG

Bei einer Microservices-Architektur handelt es sich um einen neuen Architekturstil zur
Erstellung lose gekoppelter, aber autonomer Services. Neue Technologietrends – etwa
DevOps, Platform-as-a-Service (PaaS), Container sowie Continuous Integration und
Continuous Delivery (CI/CD) – ermöglichen Unternehmen die Entwicklung und das
Management dieser modularen Systeme in einem noch nie dagewesenen Ausmaß, das
frühere Ansätze wie SOA (serviceorientierte Architektur) in den Schatten stellt. Doch der
Erfolg von Unternehmen, die ein Refactoring monolithischer Anwendungen in Microservices
vornehmen, variiert sehr stark. Grundvoraussetzung für eine effektive Nutzung von
Microservices ist ein solides Verständnis dessen, wie und aus welchem Grund Unternehmen

Microservices zur Erstellung von Anwendungen einsetzen sollten.

VERBESSERUNG DER SERVICEORIENTIERTEN ARCHITEKTUR

Eine serviceorientierte Architektur (SOA) wird üblicherweise als eine Sammlung von
Anwendungskomponenten definiert, die miteinander kommunizieren, um über ein Netzwerk
Dienste für andere Komponenten bereitzustellen. Das Ziel einer SOA bestand darin, ohne
komplexe zentralisierte Komponenten robuste verteilte Anwendungen zu entwickeln.

Außerdem war eine SOA eng mit den Organisationsstrukturen verknüpft und wurde zur
Unterstützung neuer interner Strukturen verwendet. Aus diesem Grund hing ihr Erfolg stark
von den neu strukturierten organisatorischen Kapazitäten und dem Aufbau der Teams ab,
die die Architektur entwarfen. Anstatt lose gekoppelte, aber autonome Systeme zu schaffen,
führte eine SOA zu hochgradig fragilen Systemen, die auf eine komplexe Infrastruktur
angewiesen waren. Darüber hinaus gingen frühe SOA-Implementierungen mit einem
Vendor Lock-in einher, da die proprietäre Middleware oftmals auf eine zentralisierte Logik,
Persistenz, Governance und Verwaltung ausgerichtet war.

Die Versprechen einer SOA werden zunehmend von Microservices-Architekturen erfüllt –
und zwar in jeder Phase der Anwendungserstellung, angefangen bei der Entwicklung über
die Bereitstellung bis hin zum Betrieb. Eine Microservices-Architektur ist darauf ausgerichtet,
die Technologie zu vereinfachen, um mit optimierten Komponenten komplexe Systeme zu
schaffen. Eine zentralisierte Logik- und Integrationsinfrastruktur, die auf schwergewichtigen,
nicht standardisierten Plattformen basiert, wird durch eine Kommunikation über einfache,
standardisierte Verbindungen ersetzt, die auf asynchronen HTTP- oder Messaging-
Protokollen beruhen. SOAP, XML und andere schwergewichtige Protokolle und Datenformate
werden durch das schlanke JSON über eine HTTP-basierte REST-Schnittstelle ersetzt.
Jeder Microservice verfügt über seinen eigenen Datenspeicher; zentralisierte Governance
und Persistenz sind nicht erforderlich.

Microservices verwenden Methoden und Praktiken aus den Bereichen Continuous Integration
(CI) und Continuous Delivery (CD) sowie einige wichtige Komponenten, die bei einer SOA
weniger üblich waren. Hierzu zählen:

•	Mehrsprachige Programmierung und Persistenz

•	Container oder unveränderliche virtuelle Maschinen (VM)

•	Elastische, programmierbare Infrastructure-as-a-Service (IaaS) und Platform-as-a-Service

(PaaS)

VORTEILE

•	Einfachere Entwicklung

und Wartung

•	Schnellere, unabhängige

Bereitstellung

•	Unabhängige

Skalierbarkeit von

Anwendungskomponenten

•	Keine langfristige

technologische Bindung

GESTALTUNG EINER ERFOLGREICHEN
MICROSERVICES-ARCHITEKTUR

WHITEPAPER

2de.redhat.com WHITEPAPER  Gestaltung einer erfolgreichen Microservices-Architektur

INNOVATIVE LÖSUNG FÜR EINE FLEXIBLE, REAKTIONSSCHNELLE IT

SCHNELLERE BEREITSTELLUNG

Microservices haben einen kleineren Umfang, da der Fokus auf Domain-Grenzen und einer
einheitlichen Domain-Modellierung liegt, und erfordern weniger Code. Einsatzstrategien
wie fokussierte, eigenständige Archive – oftmals verpackt als Linux-Container – und CI/
CD führen zu einer schnelleren, zuverlässigeren Bereitstellung. Dies hat zur Folge, dass
der Softwareentwicklungszyklus im Allgemeinen beschleunigt wird. Neue Features und
Fehlerbehebungen sowie umfassend getestete Sicherheitspatches werden zügiger bereitgestellt.

MODULARE STEUERUNG

Bei der Nutzung von Microservices kann jeder Dienst individuell skaliert werden, um an
zeitlich begrenzte oder saisonbedingte Traffic-Steigerungen angepasst zu werden, eine
Batch-Verarbeitung durchzuführen oder andere betriebliche Anforderungen zu erfüllen.
Eine bessere Fehlerisolation sorgt dafür, dass sich Serviceprobleme wie Speicherlecks oder
offene Datenbankverbindungen jeweils nur auf den betreffenden Dienst auswirken. Die
Skalierbarkeit von Microservices ergänzt die Flexibilität von Cloud Services und ermöglicht es,
den Service zu verbessern und ohne Dienstunterbrechungen mehr Kunden simultan zu bedienen.

MEHR AUSWAHL

Der Markt für Microservices wird von Open Source Technologielösungen und Organisations-
praktiken bestimmt. Folglich reduzieren Microservices den Vendor Lock-in und verhindern eine
langfristige technologische Bindung. Somit können Sie die Tools, die Sie zum Erreichen Ihrer
IT- und Geschäftsziele benötigen, selbst auswählen.

SCHAFFUNG EINER SOLIDEN GRUNDLAGE FÜR MICROSERVICES

Für einen erfolgreichen Einsatz von Microservices müssen Unternehmen zunächst eine solide
Grundlage für ihre monolithische Architektur schaffen. Um die Vorteile von Microservices voll
ausschöpfen zu können, müssen Modularität, Domain-Grenzen und die Grundlagen der Theorie
verteilter Systeme berücksichtigt werden.

Darüber hinaus profitieren komplexere Systeme am meisten von Microservices. Auch wenn
jeder Service vollkommen unabhängig ist, müssen bestimmte betriebliche Anforderungen erfüllt
werden. Dazu gehören:

•	DevOps

•	PaaS

•	Container oder unveränderliche VM

•	Replikation, Registrierung und Erkennung von Services

•	Proaktives Monitoring und Warnmeldungen

Da die Erfüllung dieser Anforderungen eine erhebliche Investition ohne unmittelbare Rendite
bedeuten kann, stellen Microservices möglicherweise nicht für jedes Team oder Projekt eine
kosteneffiziente Lösung dar. Durch einen „Monolith first“-Ansatz ist sichergestellt, dass die
Anwendungsentwicklung auf soliden Designprinzipien beruht und Domain-Grenzen richtig
definiert werden. Auf dieser Grundlage können Sie schrittweise auf eine Microservices-
Architektur umstellen, wenn dies aus Gründen der Skalierbarkeit erforderlich ist. Eine einfache
Warenkorb-Anwendung sollte zum Beispiel folgende Merkmale aufweisen:

•	Separation of Concerns

•	Starke Kohäsion und geringe Verknüpfung durch gut definierte Programmierschnittstellen
(APIs)

•	Separate Schnittstellen, APIs und Implementierungen gemäß dem Gesetz von Demeter, auch
bekannt als Law of Demeter (LoD).

•	Domain-driven Design zur Gruppierung verwandter Objekte

SIND SIE BEREIT FÜR
MICROSERVICES?

Folgende Bedingungen müssen

erfüllt sein:

•	Wurde eine gut strukturierte

monolithische Anwendung

entwickelt?

•	Wurde ermittelt, welche

Bedürfnisse durch

Microservices erfüllt

werden?

•	Wurden die Teams

im Hinblick auf die

Microservices neu

ausgerichtet?

•	Werden im DevOps- und

CI/CD-Bereich Best

Practices umgesetzt?

•	Wurden geschäftliche

Grenzen innerhalb der

Anwendung ermittelt?

•	Wurden Tools und Prozesse

für Orchestrierung

und Management

von Microservices

implementiert?

3de.redhat.com WHITEPAPER  Gestaltung einer erfolgreichen Microservices-Architektur

Nachdem eine zu skalierende monolithische Anwendung den Prinzipien der Softwarearchitektur
entsprechend entwickelt wurde, kann ein Refactoring in Microservices erfolgen. Die effektivste
Refactoring-Methode besteht aus folgenden Schritten:

1.	Ermitteln Sie die geschäftlichen Grenzen und semantischen Unterschiede in der
Anwendungsdomain und zerlegen Sie jede Domain in ihre eigenen Microservices.

2.	Suchen Sie die Komponente, die am öftesten auf Anfrage geändert wird – z. B. Updates von
Business-Rules im Zusammenhang mit Preisberechnungen oder regulatorischen Änderungen –
oder für die zur Schließung von Sicherheitslücken oft Patches bereitgestellt werden.

3.	Nachdem die grundlegenden domainbasierten Microservices definiert wurden, sind die APIs
anzupassen, die für die Interaktion von Services verwendet werden. Zur Gestaltung dieser
APIs können Sie Aggregat-, Proxy-, Chain-, Event- oder andere Designmuster verwenden.

AUFEINANDER ABGESTIMMTE, KOMPETENTE TEAMS

Der Erfolg einer Microservices-Architektur hängt nicht von der Technologie, sondern von der

Organisationsstruktur eines Unternehmens ab. Voraussetzung sind flexible und autonome Teams

mit einer flachen Organisationsstruktur und funktionsübergreifenden Kompetenzen.

Um ein effektives, kompetentes Team zu schaffen, muss eine Neuausrichtung der Mitarbeiter

auf die Funktionalität anstatt auf die Architektur vorgenommen werden. Ein Beispiel sind hier die

kleinen beweglichen Teams von Amazon mit 8 bis 10 Mitarbeitern (auch bekannt als „Two-Pizza-

Teams“), die für die Entwicklung und Wartung des Service zuständig sind. Das Gesetz von Conway

besagt, dass Unternehmen nur solche Designs erzeugen können, die ihre Organisationsstruktur

abbilden. Sind Teams in verschiedene Aufgabenbereiche unterteilt, etwa Entwicklung, Betrieb,

Qualitätssicherung und Sicherheit, kommt es zu einer beschränkten Flexibilität und zu

Verzögerungen.

Durch die Einführung von DevOps und die Festlegung von Kommunikationsstrategien vor

der Umstellung auf Microservices können diese Probleme vermieden oder abgeschwächt

werden. Zudem lässt sich so verhindern, dass eine misslungene SOA anstelle einer effektiven

Microservices-Architektur geschaffen wird.

EFFEKTIVE MANAGEMENTTOOLS

Neben einer gut entworfenen Software und einem effektiven, organisierten Team erfordert eine

hochgradig skalierbare Architektur Tools, die Sie beim Management zusätzlicher Services und

Anwendungskomponenten unterstützen. Hierzu gehört u. a. Folgendes:

•	Tools für die Registrierung und Erkennung von Services, z. B. Kubernetes

•	Verpackungsstandards für die Containerisierung von Anwendungen (z. B. Docker) und

Orchestrierungstools für die Container-Replikation in großem Maßstab (z. B. Kubernetes).

Diese beiden bewährten Open Source-Technologien sind in OpenShift by Red Hat enthalten.

•	Entwicklungstools für CI-Umgebungen, z. B. Jenkins oder Shippable für Docker und Kubernetes

•	Tools zum Auflösen von Abhängigkeiten, z. B. Nexus

•	Failover- und Resilienz-Tools, z. B. Bibliotheken wie Hystrix und Ribbon

•	Tools für Service Monitoring, Warnmeldungen und Ereignisse, z. B. der ELK-Stack

(ElasticSearch, LogStash und Kibana)

Der Erfolg einer
Microservices-

Architektur hängt nicht
von der Technologie,

sondern von der
Organisationsstruktur

eines Unternehmens ab.
Voraussetzung

sind flexible und
autonome Teams
mit einer flachen

Organisationsstruktur
und funktions-

übergreifenden
Kompetenzen.

de.redhat.com
INC0336100_0216

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

DATENMANAGEMENT

Ein weiterer wichtiger Aspekt, der bei der Umstellung auf Microservices zu berücksichtigen

ist, ist das Datenmanagement. Anders als bei einer SOA findet bei Microservices keine

gemeinsame Nutzung von Daten statt. Vielmehr verfügt jeder Microservice über einen

separaten physischen Datenspeicher und eine mehrsprachige Persistenz, die es ermöglicht,

für jeden Microservice verschiedene Datenbank-Engines auszuführen. Auf diese Weise ist es

möglich, für jeden Service einen individuellen Datenspeicher auszuwählen, statt alle Daten

in einem unternehmensweiten relationalen Datenbankmanagementsystem (RDBMS) zu

speichern.

Die Unterhaltung mehrerer Versionen einer Unternehmensdatenbank kann jedoch

Lizenzkosten und Komplexität in die Höhe treiben. Außerdem müssen die Datenspeicher

oft aus Konsistenzgründen aufeinander abgestimmt werden. Generische ETL- (Extract,

Transform, Load) oder Datenvirtualisierungstools können die Datennormalisierung

unterstützen. Das Event Sourcing wiederum ist ein verbreitetes Designmuster für die

Anpassung von Datenspeichern an nachträgliche Änderungen.

FAZIT

Eine Microservices-Architektur kann Unternehmen viele Vorteile bieten - von der

unabhängigen Skalierbarkeit der einzelnen Anwendungskomponenten bis hin zur schnelleren,

einfacheren Softwareentwicklung und -wartung. Doch Microservices sind nicht unbedingt

für jedes Team oder Projekt von Nutzen und können eine erhebliche Investition ohne

unmittelbare Rendite bedeuten. Die Umstellung auf Microservices sollte schrittweise

vollzogen werden. Anstelle einer vollständigen Umstellung kann auch ein Refactoring

für Teile bestehender Anwendungen von Vorteil sein. Für den erfolgreichen Einsatz von

Microservices müssen Unternehmen zuerst eine gut durchdachte Anwendung erstellen,

die vorhandenen Plattformstandards entspricht. Danach sollten sie ein Refactoring der

Anwendung in eine Reihe von Microservices im Hinblick auf Geschäftsanforderungen

durchführen. Mit den richtigen Mitarbeitern, Prozessen und Tools können Microservices die

Entwicklung und Bereitstellung beschleunigen, die Wartung vereinfachen, die Skalierbarkeit

verbessern und eine langfristige technologische Bindung verhindern.

Copyright © 2016 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, das „Shadowman“-Logo und JBoss sind in den USA und
anderen Ländern eingetragene Marken von Red Hat, Inc. Linux® ist eine in den USA und anderen Ländern eingetragene Marke von
Linus Torvalds.

ÜBER RED HAT

Red Hat, der weltweit führende Anbieter von Open Source-Lösungen, folgt einem Community-
basierten Ansatz um verlässliche und leistungsstrake Technologien in den Bereichen Cloud, Linux,
Middleware, Storage und Virtualisierung bereitzustellen. Darüber hinaus bietet Red Hat einen vielfach
ausgezeichnete Support-, Training- und Consulting-Services. Red Hat ist ein S&P 500-Unternehmen
mit über 70 Niederlassungen weltweit, das seine Kunden und Partner mithilfe hochwertiger Services
und Technolgien dabei unterstützt, Ihr Geschäft voranzutreiben.

VAE
8000-4449549

EUROPA, NAHOST UND
AFRIKA (EMEA)
00800 7334 2835
de.redhat.com
europe@redhat.com

TÜRKEI
00800-448820640

ISRAEL
1-809 449548

WHITEPAPER  Gestaltung einer erfolgreichen Microservices-Architektur

