VORTEILE

e Einfachere Entwicklung
und Wartung

e Schnellere, unabhangige
Bereitstellung

* Unabhdngige
Skalierbarkeit von
Anwendungskomponenten

* Keine langfristige
technologische Bindung

facebook.com/redhatinc
@redhatnews
linkedin.com/company/red-hat

de.redhat.com

Q redhat

GESTALTUNG EINER ERFOLGREICHEN
MICROSERVICES-ARCHITEKTUR

ZUSAMMENFASSUNG

Bei einer Microservices-Architektur handelt es sich um einen neuen Architekturstil zur
Erstellung lose gekoppelter, aber autonomer Services. Neue Technologietrends - etwa
DevOps, Platform-as-a-Service (PaaS), Container sowie Continuous Integration und
Continuous Delivery (CI/CD) - ermdglichen Unternehmen die Entwicklung und das
Management dieser modularen Systeme in einem noch nie dagewesenen Ausmap, das
friihere Ansatze wie SOA (serviceorientierte Architektur) in den Schatten stellt. Doch der
Erfolg von Unternehmen, die ein Refactoring monolithischer Anwendungen in Microservices
vornehmen, variiert sehr stark. Grundvoraussetzung fir eine effektive Nutzung von
Microservices ist ein solides Verstandnis dessen, wie und aus welchem Grund Unternehmen
Microservices zur Erstellung von Anwendungen einsetzen sollten.

VERBESSERUNG DER SERVICEORIENTIERTEN ARCHITEKTUR

Eine serviceorientierte Architektur (SOA) wird lblicherweise als eine Sammlung von
Anwendungskomponenten definiert, die miteinander kommunizieren, um ber ein Netzwerk
Dienste flir andere Komponenten bereitzustellen. Das Ziel einer SOA bestand darin, ohne
komplexe zentralisierte Komponenten robuste verteilte Anwendungen zu entwickeln.

AupBerdem war eine SOA eng mit den Organisationsstrukturen verknipft und wurde zur
Unterstitzung neuer interner Strukturen verwendet. Aus diesem Grund hing ihr Erfolg stark
von den neu strukturierten organisatorischen Kapazitdaten und dem Aufbau der Teams ab,
die die Architektur entwarfen. Anstatt lose gekoppelte, aber autonome Systeme zu schaffen,
flhrte eine SOA zu hochgradig fragilen Systemen, die auf eine komplexe Infrastruktur
angewiesen waren. Darlber hinaus gingen friihe SOA-Implementierungen mit einem

Vendor Lock-in einher, da die proprietdre Middleware oftmals auf eine zentralisierte Logik,
Persistenz, Governance und Verwaltung ausgerichtet war.

Die Versprechen einer SOA werden zunehmend von Microservices-Architekturen erfillt -
und zwar in jeder Phase der Anwendungserstellung, angefangen bei der Entwicklung tber
die Bereitstellung bis hin zum Betrieb. Eine Microservices-Architektur ist darauf ausgerichtet,
die Technologie zu vereinfachen, um mit optimierten Komponenten komplexe Systeme zu
schaffen. Eine zentralisierte Logik- und Integrationsinfrastruktur, die auf schwergewichtigen,
nicht standardisierten Plattformen basiert, wird durch eine Kommunikation Uber einfache,
standardisierte Verbindungen ersetzt, die auf asynchronen HTTP- oder Messaging-
Protokollen beruhen. SOAP, XML und andere schwergewichtige Protokolle und Datenformate
werden durch das schlanke JSON (ber eine HTTP-basierte REST-Schnittstelle ersetzt.

Jeder Microservice verfligt Gber seinen eigenen Datenspeicher; zentralisierte Governance
und Persistenz sind nicht erforderlich.

Microservices verwenden Methoden und Praktiken aus den Bereichen Continuous Integration
(CI) und Continuous Delivery (CD) sowie einige wichtige Komponenten, die bei einer SOA
weniger Ublich waren. Hierzu zahlen:

* Mehrsprachige Programmierung und Persistenz
e Container oder unveranderliche virtuelle Maschinen (VM)

e Elastische, programmierbare Infrastructure-as-a-Service (laaS) und Platform-as-a-Service
(Paas)



SIND SIE BEREIT FUR
MICROSERVICES?

Folgende Bedingungen miissen

erfillt sein:

e Wurde eine gut strukturierte

monolithische Anwendung
entwickelt?

Wurde ermittelt, welche
Bedirfnisse durch
Microservices erflllt
werden?

Wurden die Teams
im Hinblick auf die
Microservices neu
ausgerichtet?

Werden im DevOps- und
Cl/CD-Bereich Best
Practices umgesetzt?

Wurden geschéftliche
Grenzen innerhalb der
Anwendung ermittelt?

Wurden Tools und Prozesse
fur Orchestrierung

und Management

von Microservices
implementiert?

de.redhat.com

Q redhat

INNOVATIVE LOSUNG FUR EINE FLEXIBLE, REAKTIONSSCHNELLE IT
SCHNELLERE BEREITSTELLUNG

Microservices haben einen kleineren Umfang, da der Fokus auf Domain-Grenzen und einer
einheitlichen Domain-Modellierung liegt, und erfordern weniger Code. Einsatzstrategien

wie fokussierte, eigenstandige Archive - oftmals verpackt als Linux-Container - und Cl/

CD fuhren zu einer schnelleren, zuverldssigeren Bereitstellung. Dies hat zur Folge, dass

der Softwareentwicklungszyklus im Allgemeinen beschleunigt wird. Neue Features und
Fehlerbehebungen sowie umfassend getestete Sicherheitspatches werden zligiger bereitgestellt.

MODULARE STEUERUNG

Bei der Nutzung von Microservices kann jeder Dienst individuell skaliert werden, um an

zeitlich begrenzte oder saisonbedingte Traffic-Steigerungen angepasst zu werden, eine
Batch-Verarbeitung durchzufiihren oder andere betriebliche Anforderungen zu erfillen.

Eine bessere Fehlerisolation sorgt dafiir, dass sich Serviceprobleme wie Speicherlecks oder
offene Datenbankverbindungen jeweils nur auf den betreffenden Dienst auswirken. Die
Skalierbarkeit von Microservices erganzt die Flexibilitdt von Cloud Services und ermdglicht es,
den Service zu verbessern und ohne Dienstunterbrechungen mehr Kunden simultan zu bedienen.

MEHR AUSWAHL

Der Markt fir Microservices wird von Open Source Technologielésungen und Organisations-
praktiken bestimmt. Folglich reduzieren Microservices den Vendor Lock-in und verhindern eine
langfristige technologische Bindung. Somit kdnnen Sie die Tools, die Sie zum Erreichen lhrer
IT- und Geschéftsziele bendtigen, selbst auswahlen.

SCHAFFUNG EINER SOLIDEN GRUNDLAGE FUR MICROSERVICES

Fir einen erfolgreichen Einsatz von Microservices missen Unternehmen zundchst eine solide
Grundlage fir ihre monolithische Architektur schaffen. Um die Vorteile von Microservices voll
ausschopfen zu kdnnen, missen Modularitdt, Domain-Grenzen und die Grundlagen der Theorie
verteilter Systeme berilcksichtigt werden.

Dariber hinaus profitieren komplexere Systeme am meisten von Microservices. Auch wenn
jeder Service vollkommen unabhdngig ist, missen bestimmte betriebliche Anforderungen erfillt
werden. Dazu gehdren:

* DevOps

* PaaS

» Container oder unverdanderliche VM

* Replikation, Registrierung und Erkennung von Services
e Proaktives Monitoring und Warnmeldungen

Da die Erfillung dieser Anforderungen eine erhebliche Investition ohne unmittelbare Rendite
bedeuten kann, stellen Microservices moglicherweise nicht fir jedes Team oder Projekt eine
kosteneffiziente Losung dar. Durch einen ,,Monolith first”-Ansatz ist sichergestellt, dass die
Anwendungsentwicklung auf soliden Designprinzipien beruht und Domain-Grenzen richtig
definiert werden. Auf dieser Grundlage kénnen Sie schrittweise auf eine Microservices-
Architektur umstellen, wenn dies aus Griinden der Skalierbarkeit erforderlich ist. Eine einfache
Warenkorb-Anwendung sollte zum Beispiel folgende Merkmale aufweisen:

e Separation of Concerns

e Starke Kohdsion und geringe Verknipfung durch gut definierte Programmierschnittstellen
(APIs)

* Separate Schnittstellen, APIs und Implementierungen gemdap dem Gesetz von Demeter, auch
bekannt als Law of Demeter (LoD).

* Domain-driven Design zur Gruppierung verwandter Objekte

WHITEPAPER Gestaltung einer erfolgreichen Microservices-Architektur 2



Der Erfolg einer
Microservices-
Architektur hangt nicht
von der Technologie,
sondern von der
Organisationsstruktur
eines Unternehmens ab.
Voraussetzung

sind flexible und
autonome Teams

mit einer flachen
Organisationsstruktur
und funktions-
Ubergreifenden
Kompetenzen.

de.redhat.com

Q redhat

Nachdem eine zu skalierende monolithische Anwendung den Prinzipien der Softwarearchitektur
entsprechend entwickelt wurde, kann ein Refactoring in Microservices erfolgen. Die effektivste
Refactoring-Methode besteht aus folgenden Schritten:

1. Ermitteln Sie die geschaftlichen Grenzen und semantischen Unterschiede in der
Anwendungsdomain und zerlegen Sie jede Domain in ihre eigenen Microservices.

2. Suchen Sie die Komponente, die am Oftesten auf Anfrage gedandert wird - z. B. Updates von
Business-Rules im Zusammenhang mit Preisberechnungen oder regulatorischen Anderungen -
oder fir die zur Schliefung von Sicherheitslicken oft Patches bereitgestellt werden.

3. Nachdem die grundlegenden domainbasierten Microservices definiert wurden, sind die APIs
anzupassen, die fur die Interaktion von Services verwendet werden. Zur Gestaltung dieser
APIs kbénnen Sie Aggregat-, Proxy-, Chain-, Event- oder andere Designmuster verwenden.

AUFEINANDER ABGESTIMMTE, KOMPETENTE TEAMS

Der Erfolg einer Microservices-Architektur hangt nicht von der Technologie, sondern von der
Organisationsstruktur eines Unternehmens ab. Voraussetzung sind flexible und autonome Teams
mit einer flachen Organisationsstruktur und funktionstibergreifenden Kompetenzen.

Um ein effektives, kompetentes Team zu schaffen, muss eine Neuausrichtung der Mitarbeiter

auf die Funktionalitat anstatt auf die Architektur vorgenommen werden. Ein Beispiel sind hier die
kleinen beweglichen Teams von Amazon mit 8 bis 10 Mitarbeitern (auch bekannt als ,,Two-Pizza-
Teams"), die fur die Entwicklung und Wartung des Service zustandig sind. Das Gesetz von Conway
besagt, dass Unternehmen nur solche Designs erzeugen kdnnen, die ihre Organisationsstruktur
abbilden. Sind Teams in verschiedene Aufgabenbereiche unterteilt, etwa Entwicklung, Betrieb,
Qualitatssicherung und Sicherheit, kommt es zu einer beschrankten Flexibilitdt und zu
Verzégerungen.

Durch die Einfihrung von DevOps und die Festlegung von Kommunikationsstrategien vor
der Umstellung auf Microservices kénnen diese Probleme vermieden oder abgeschwacht
werden. Zudem ldsst sich so verhindern, dass eine misslungene SOA anstelle einer effektiven
Microservices-Architektur geschaffen wird.

EFFEKTIVE MANAGEMENTTOOLS

Neben einer gut entworfenen Software und einem effektiven, organisierten Team erfordert eine
hochgradig skalierbare Architektur Tools, die Sie beim Management zusatzlicher Services und
Anwendungskomponenten unterstitzen. Hierzu gehért u. a. Folgendes:

e Tools fur die Registrierung und Erkennung von Services, z. B. Kubernetes

* Verpackungsstandards fir die Containerisierung von Anwendungen (z. B. Docker) und
Orchestrierungstools fir die Container-Replikation in grofem Mafstab (z. B. Kubernetes).
Diese beiden bewdhrten Open Source-Technologien sind in OpenShift by Red Hat enthalten.

* Entwicklungstools fir Cl-Umgebungen, z. B. Jenkins oder Shippable fir Docker und Kubernetes
* Tools zum Auflésen von Abhangigkeiten, z. B. Nexus
¢ Failover- und Resilienz-Tools, z. B. Bibliotheken wie Hystrix und Ribbon

e Tools fur Service Monitoring, Warnmeldungen und Ereignisse, z. B. der ELK-Stack
(ElasticSearch, LogStash und Kibana)

WHITEPAPER Gestaltung einer erfolgreichen Microservices-Architektur 3



facebook.com/redhatinc
@redhatnews
linkedin.com/company/red-hat

de.redhat.com
INC0336100_0216

Q redhat

WHITEPAPER Gestaltung einer erfolgreichen Microservices-Architektur

DATENMANAGEMENT

Ein weiterer wichtiger Aspekt, der bei der Umstellung auf Microservices zu beriicksichtigen
ist, ist das Datenmanagement. Anders als bei einer SOA findet bei Microservices keine
gemeinsame Nutzung von Daten statt. Vielmehr verfligt jeder Microservice Uber einen
separaten physischen Datenspeicher und eine mehrsprachige Persistenz, die es ermdglicht,
fir jeden Microservice verschiedene Datenbank-Engines auszufihren. Auf diese Weise ist es
moglich, fir jeden Service einen individuellen Datenspeicher auszuwdhlen, statt alle Daten
in einem unternehmensweiten relationalen Datenbankmanagementsystem (RDBMS) zu
speichern.

Die Unterhaltung mehrerer Versionen einer Unternehmensdatenbank kann jedoch
Lizenzkosten und Komplexitat in die Hohe treiben. Auferdem missen die Datenspeicher
oft aus Konsistenzgriinden aufeinander abgestimmt werden. Generische ETL- (Extract,
Transform, Load) oder Datenvirtualisierungstools konnen die Datennormalisierung
unterstitzen. Das Event Sourcing wiederum ist ein verbreitetes Designmuster fir die
Anpassung von Datenspeichern an nachtrégliche Anderungen.

FAZIT

Eine Microservices-Architektur kann Unternehmen viele Vorteile bieten - von der
unabhdngigen Skalierbarkeit der einzelnen Anwendungskomponenten bis hin zur schnelleren,
einfacheren Softwareentwicklung und -wartung. Doch Microservices sind nicht unbedingt
fir jedes Team oder Projekt von Nutzen und kdnnen eine erhebliche Investition ohne
unmittelbare Rendite bedeuten. Die Umstellung auf Microservices sollte schrittweise
vollzogen werden. Anstelle einer vollstandigen Umstellung kann auch ein Refactoring

fir Teile bestehender Anwendungen von Vorteil sein. Fir den erfolgreichen Einsatz von
Microservices missen Unternehmen zuerst eine gut durchdachte Anwendung erstellen,

die vorhandenen Plattformstandards entspricht. Danach sollten sie ein Refactoring der
Anwendung in eine Reihe von Microservices im Hinblick auf Geschaftsanforderungen
durchfiihren. Mit den richtigen Mitarbeitern, Prozessen und Tools kénnen Microservices die
Entwicklung und Bereitstellung beschleunigen, die Wartung vereinfachen, die Skalierbarkeit
verbessern und eine langfristige technologische Bindung verhindern.

UBER RED HAT

Red Hat, der weltweit flihrende Anbieter von Open Source-Lésungen, folgt einem Community-
basierten Ansatz um verldssliche und leistungsstrake Technologien in den Bereichen Cloud, Linux,
Middleware, Storage und Virtualisierung bereitzustellen. Dartiber hinaus bietet Red Hat einen vielfach
ausgezeichnete Support-, Training- und Consulting-Services. Red Hat ist ein S&P 500-Unternehmen
mit Uber 70 Niederlassungen weltweit, das seine Kunden und Partner mithilfe hochwertiger Services
und Technolgien dabei unterstiitzt, Ihr Geschaft voranzutreiben.

EUROPA, NAHOST UND TURKEI ISRAEL VAE

AFRIKA (EMEA) 00800-448820640 1-809 449548 8000-4449549
00800 7334 2835

de.redhat.com

europe@redhat.com

Copyright © 2016 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, das ,,Shadowman*-Logo und JBoss sind in den USA und
anderen Landern eingetragene Marken von Red Hat, Inc. Linux® ist eine in den USA und anderen Landern eingetragene Marke von
Linus Torvalds.



