

Reference Architecture:
Red Hat OpenShift Container
Platform on Lenovo
ThinkSystem Servers

Provides overview of
application containers using
Lenovo ThinkSystem Servers

Describes container
orchestration technologies
including Docker and
Kubernetes

Describes DevOps and
Continuous Integration and
Continuous Delivery

Srihari Angaluri

Xiaotong Jiang

Mike Perks

Billzheng Sun

Last update: 01 October 2018
Version 1.0

Provides implementation
example for OpenShift
Container Platform

https://lenovopress.com/updatecheck/LP0968/51268231b4527b5496498d6dba6d3773

 ii Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Table of Contents

1 Introduction ... 1

2 Business problem and business value ... 2

 Business problem .. 2

 Business value ... 3

3 Requirements .. 6

 Functional requirements .. 6

 Non-functional requirements .. 7

4 Architectural overview ... 8

5 Component model .. 9

 OpenShift infrastructure components ... 9

 OpenShift architecture ... 11

6 Operational model .. 13

 Hardware components ... 13

 Deployment models ... 16

 Compute servers .. 17

 Persistent storage for containerized workloads .. 17

 Networking ... 19

 Systems management ... 22

 Deployment example ... 23

7 Appendix A: Lenovo bill of materials .. 34

 Server BOM ... 34

 Networking BOM .. 37

Resources ... 38

1 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

1 Introduction
The target audience for this Reference Architecture (RA) is system administrators or system architects. Some
experience with Docker and OpenShift technologies may be helpful, but it is not required.

Emerging software applications are making use of containerization to enable rapid prototyping, testing, as well
deployment to the cloud. The micro-service revolution introduced container-based virtualization, which offers
many benefits when compared to traditional virtualization technologies. Containers provide a more portable
and faster way to deploy services on cloud infrastructures compared to virtualization.

While containers themselves provide many benefits, they are not easily manageable in large environments.
Hence, many container orchestration tools have increased in momentum and gained popularity. Each
orchestration tool is different, hence they should be chosen individually for specific purposes. The Red Hat
OpenShift® Container Platform uses Kubernetes which is an orchestration framework based on container-
deployment practices. Kubernetes has gained popularity in the cloud community due to its maturity, scalability,
performance, and many built-in tools that enable production-level container workload orchestration.

Red Hat OpenShift Container Platform by Red Hat is built around a core of application containers powered by
Docker, with orchestration and management provided by Kubernetes, on a foundation of Red Hat® Enterprise
Linux. It provides many enterprise-ready features like enhanced security, multitenancy, simplified application
deployment, and continuous integration/continuous deployment tools. With Lenovo™ servers and
technologies, provisioning and managing the Red Hat OpenShift Container Platform infrastructure becomes
effortless and produces a resilient solution.

This RA describes the system architecture for the Red Hat OpenShift Container Platform based on Lenovo
ThinkSystem servers and Lenovo network switches. It provides detail of the hardware requirements to support
various OpenShift node roles and the corresponding configuration of the systems. It also describes the
network architecture and details for the switch configurations. The hardware bill of materials is provided for all
required components to build the OpenShift cluster. An example deployment is used to show how to prepare,
provision, deploy, and manage the Red Hat OpenShift Container Platform on Lenovo ThinkSystem servers
and Lenovo network switches.

2 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

2 Business problem and business value
 Business problem

Businesses today want to deliver new features and updates to their products for their internal users as well as
external stakeholders quickly and with high quality. Every industry today is seeing a transformation, which is
predominantly driven by advances in technology. In order to stay competitive and relevant in their respective
industry and marketplace, every business needs to take advantage of new technologies quickly and adopt
them to their products and solutions. Today, much of the technology advancement and innovation is driven
through a combination of software and hardware. More importantly, emerging technologies such as artificial
intelligence (AI) and machine learning (ML) are fuelled by rapid advancements in software. In addition, many
of the IT infrastructure and data center advancements are driven through software defined technologies such
as software defined storage (SDS) and software defined networking (SDN). Hence software is a key driver in
pushing forward various technologies in all industries.

Container technology has picked up momentum in the software development area and enabled developers to
take advantage of several benefits from packaging their applications as containers:

• Containers are light-weight application run-time environments compared to virtual machines and are

therefore less resource intensive and highly efficient.

• Containers enable developers to package their applications as well as all the library dependencies to

properly run them so that a container image provides a completely self-sufficient environment to

execute the application code. This also means that multiple application instances requiring different

versions of the same libraries can be packaged into different containers and run side-by-side on the

same operating system instance without any interference.

• Containers are portable across different platforms (as long as the underlying operating systems are

compatible). Docker is a well-known open source project that provides the run-time abstraction and

facilities to build and run containerized applications in a portable fashion.

• Containers are now the de facto standard of operation for some of the well-known public cloud

environments including Google, Amazon AWS, and Microsoft Azure. Hence, applications packaged

as containers can be executed on-prem or on public cloud without any modifications (other than

additional steps to security the software for use on the public cloud).

• There are many open source tools available now to help developers easily create, test, and deploy

containerized applications. In addition, all the well-known protocols for security, authentication,

/authorization, storage, etc., can be applied to containerized workloads without any modifications to

applications. In other words, you can take a legacy application written in a language such as Java and

package it, as is, into a container image and run it.

• Containers are now the way to implement a continuous integration/continuous delivery (CI/CD)

development pipeline and the DevOps paradigm of combining software development and

infrastructure operations.

3 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

 Business value
Software development life cycle (SDLC) practices have evolved to achieve high velocity and efficiency of
development. Organizations today implement Agile/Scrum as the primary methodology to create cohesive
development teams that work close to their customers, gather incremental product requirements, and deliver
new features in short development cycles.

2.2.1 DevOps Overview
DevOps is evolving as a standard practice in many organizations to bring together software development and
IT operations teams for the goal of eliminating process bottlenecks in development, quality assurance (QA),
and delivery cycles, and servicing their end customers efficiently. Implementing a proper DevOps process
requires careful planning and an assessment of the end-to-end pipeline from development to QA to delivery.
Automation is a key aspect of DevOps. Traditional software development processes were handled mostly
manually. When developers commit code to the source code repository, the test engineer or a build engineer
would then checkout the code and build the project, resolving any conflicts. After the QA iterations, the release
engineer would be responsible to take the release branch code and build the final shippable product. Along
this pipeline, many of the steps were handled manually by people, which introduced the delays in the release
cycles. Agile development now takes advantage of new automation tools that remove the manual steps.

Another core aspect of DevOps is providing the necessary freedom and resources to develop and test code
without having to rely on IT operations teams to re-provision or re-configure hardware every time. With the
advances in technologies including virtualization, containers, Cloud multi-tenancy, self-service, and so on, it is
now possible to detach applications and end-users from physical hardware and provide the necessary tools
for them to create the right virtual environment to run their applications without directly modifying the physical
hardware or interfering with other users’ applications. With cloud self-service, users can request and provision
the hardware to meet their application specific requirements. Cloud administrators create the proper policy
and authorization workflows such that the provisioning process does not require manual steps. DevOps
essentially combines the role of the software engineer with that of the IT operator so that the end-to-end
software pipeline can be implemented with automation.

2.2.2 Monolithic Vs Micro-services Architecture
Software architecture over the last two to three decades has evolved from a monolithic application that
essentially delivered all feature functions in a single package to service-oriented architectures where the
application is divided up into multiple tiers with each tier providing programming interfaces (APIs) for its clients
to access the features via service calls. Software principles such as modularity, coupling, code reuse, etc.,
have remained the core principles that people still use, however new programming languages, runtime
facilities, mobile versus cloud native techniques, etc., have evolved in the recent years to shift software from
the traditional architectures to more of a micro-service architecture.

Micro-services are software applications that are organized around smaller subsets of functionality of the
overall application such that they are much more manageable than a bulky piece of software developed by
10s of developers and coordinated in a complex dev/test process. Micro-services are software modules that
run as services with open APIs. They use open protocols, e.g. HTTP, and expose REST based APIs so that
the services can run anywhere - on-premises or on the public cloud, and still be locatable via well-defined

4 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

service end-points. Due to this design, micro-services provide a loosely-coupled architecture that can be
maintained by smaller development teams and can be independently updated.

Containers provide a natural mechanism to implement micro-services because they allow you to package the
application code and all its runtime library dependencies into a single image, which is portable across various
platforms. In addition, container orchestration platforms such as Kubernetes provide the mechanisms for
service location, routing, service replication, etc., which helps micro-services development and runtime.
Developers do not need to explicitly write additional code for these types of services because the platform
provides these facilities.

Figure 1. Moving from a monolithic to Micro-services architecture

2.2.3 Continuous Integration/Continuous Delivery (CI/CD)
As discussed in the previous section, successful DevOps practice requires a good amount of automation of
the development, test, QA, and delivery pipeline. This is where the CI/CD comes into play.

Continuous integration is the process by which new code development through build, unit testing, QA, and
delivery is automated end-to-end using build tools and process workflows. CI enables rapid integration of
code being developed by multiple engineers concurrently and committed into a source code repository. CI
enables rapid build and test of code so that software bugs and quality issues are identified quickly. Once the
code passes the test plan and QA it can then be pushed to the release branches for release integration.

Continuous Delivery (CD) enables automation around delivering code to production systems after performing
the necessary functional, quality, security, and performance tests. Continuous delivery enables bringing new
features in the software to the end users faster without going through the manual release test and promotion
steps.

More information on CI/CD with OpenShift is available in the following online book:
assets.openshift.com/hubfs/pdfs/DevOps_with_OpenShift.pdf

Figure 2 shows a high-level view of DevOps pipeline.

https://assets.openshift.com/hubfs/pdfs/DevOps_with_OpenShift.pdf

5 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 2. DevOps pipeline from a high-level

As described previously, source code from multiple concurrent developers is integrated, tested, and deployed
to production through automation tools. The OpenShift Container Platform provides the mechanisms to
implement the CI/CD pipelines with tools such as CloudBees Jenkins. See the following post on how to do
this: blog.openshift.com/cicd-with-openshift/.

https://blog.openshift.com/cicd-with-openshift/

6 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

3 Requirements
The functional and non-functional requirements for this reference architecture are desribed below.

 Functional requirements
Table 1 lists the functional requirements.

Table 1. Functional Requirements

Requirement Description

Container
orchestration
services

Red Hat OpenShift Container Platform is designed to run workload container
images at scale using the Kubernetes container orchestrator, Docker container
runtime, and container runtime interface (CRI-O).

User self-service OpenShift supports a Web based UI console that allows users to login and manage
their containerized workloads.

Policy management OpenShift allows administrators to configure role-based authorization to manage
the system resources such as compute, networking, and storage, and application
workloads.

Cloud integration OpenShift supports an integrated container registry, the Quay container registry, or
public registries which allow users to pull down container images from other places.
In addition, building container images on OpenShift platform allows portability to
other clouds such as Google container engine.

Network and
Storage
virtualization

Through built-in OpenShift networking and storage services for Kubernetes, users
can access these abstracted resources through their container applications. In
addition, OpenShift provides network infrastructure services through open protocols
such as VXLAN. A variety of storage facilities can be exposed to container
applications via the Kubernetes persistent volume plug-ins and stateful sets.

Command line tools OpenShift container platform provides CLI tools for almost all cluster operations and
for container image operations. In addition, administrators can use Kubernetes CLI
tools to directly access its services.

CI/CD tools A variety of open source and commercial tools are available such as Jenkins build
server and integration with GitHub source code repository to implement CI/CD
pipelines.

Open source tools Red Hat container registry and other open container registries such as dockerhub
are available to OpenShift users to access open source tools such as nginx, apache
httpd, mysql, postgres, cassandra, etc.

Automation tools Many tools are available for automation including Ansible, Chef, Puppet, etc.

7 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

 Non-functional requirements
Table 2 lists the non-functional requirements that are needed for typical OpenShift deployments

Table 2. Non-functional Requirements

Requirement Description

Scalability The OpenShift Container Platform is designed for scale. The platform allows for
hundreds of containerized workloads to be scheduled and run without any
performance bottlenecks. The physical resources such as compute nodes and
storage can be scaled as the workload and user base grows.

Load balancing OpenShift master nodes provide the core API and management services for the
Kubernetes cluster. For production environments, you can implement load-balancing
and heartbeat monitoring for the core services via HAproxy and Keepalived. In
addition, Kubernetes handles load-balancing of the workload containers through
built-in scheduler features, network routing, replication services, etc.

Fault tolerance Fault tolerance can be provided to critical container workloads such as databases via
Kubernetes built-in mechanisms. In addition, data and configuration settings for
container images can be persisted across instances via persistent volume claims
and stateful sets.

Physical footprint OpenShift container platform can be implemented with as little as a single node
where all services are consolidated and scaled through multiple physical nodes to
distribute services and containers. Hence, the architecture is quite flexible and allows
to start small and then scale out.

Ease of installation Ansible playbooks are available to automate the OpenShift Container Platform
deployment.

Ease of
management/opera
tions

Administrator tools and OpenShift Web console allow day 2 management operations
to be performed. In addition, the Lenovo XClarity Administrator tool enables
hardware monitoring and management.

Flexibility OpenShift container platform can be deployed both in a development/test setting and
production setting. Various options are available for third party network and storage
implementation for OpenShift.

Security Red Hat OpenShift Container Platform has built-in enterprise grade security, all the
way from the operating system layer up to the container registries. Both built-in
authentication/authorization facilities and external authentication/authorization
integration with tools such as OpenLDAP are supported.

High performance OpenShift and Kubernetes have achieved wide industry adoption due to the
robustness of the platform and high-performance. Enterprises can implement very
large-scale OpenShift environments to support hundreds of users and thousands of
container workloads with no performance bottlenecks.

8 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

4 Architectural overview
The OpenShift Container Platform is a complete container application platform that provides all aspects of the
application development process in one consistent solution across multiple infrastructure footprints. OpenShift
integrates all of the architecture, processes, platforms, and services needed to help development and
operations teams traverse traditional siloed structures and produce applications that help businesses
succeed.

Figure 3 below shows the high level architecture of the Red Hat OpenShift Container Platform and the core
building blocks. OpenShift is a platform designed to orchestrate containerized workloads across a cluster of
nodes. The system uses the Kubernetes as the core container orchestration engine, which manages the
Docker container images and their lifecycle.

Figure 3. Red Hat OpenShift Container Platform Architecture

The physical configuration of the OpenShift platform is based on the Kubernetes cluster architecture. The
master node is the primary node on which the Kubernetes scheduler, along with the distributed cluster data
store (etcd), the REST API services, and other associated management services run. In a product
environment, you need to ensure high availability of the master services through replicating the services to
multiple physical servers and implementing monitoring and load-balancing services such as Keepalived and
HAproxy. The infrastructure nodes can be used in a product setting to implement such services.

Application nodes (or just shown as Node in the diagram) run the users containerized applications on top of
the Docker container environment.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/architecture-index

9 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

5 Component model
As shown in Figure 4, this chapter describes the components and logical architecture of the Red Hat
OpenShift solution.

Figure 4. Red Hat OpenShift Container Platform logical architecture

All the OpenShift nodes are connected via the internal network, where they can communicate with each other.
Furthermore, Open vSwitch creates its own network for OpenShift pod-to-pod communication. Because of the
multi-tenant plugin, Open vSwitch pods can communicate to each other only if they share the same project
namespace. There is a virtual IP address managed by Keepalived on two infrastructure hosts for external
access to the OpenShift web console and applications. Lastly, there is a Red Hat OpenShift Container
Storage server that shares disk space with Docker Registry for Docker image storage. This storage is backed
up by Red Hat OpenShift Container Storage, so Docker Registry storage can be easily switched in case of a
node failure.

 OpenShift infrastructure components
Figure 5 shows the four types of OpenShift nodes: bastion, master, infrastructure, and application.

10 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 5. OpenShift Nodes

5.1.1 Bastion node
This is a dedicated node that serves as the main deployment and management server for the OpenShift
cluster. This is used as the logon node for the cluster administrators to perform the system deployment and
management operations, such as running the Ansible OpenShift deployment playbooks. In addition, this node
is also used for hardware management via tools such as xCAT and Lenovo XClarity Administrator. The
Bastion node runs RHEL 7.4 Server with the Linux KVM packages installed.

5.1.2 Master node
The OpenShift Container Platform master is a server that performs control functions for the whole cluster
environment. It is responsible for the creation, scheduling, and management of all objects specific to
OpenShift. It includes API, controller manager, and scheduler capabilities in one OpenShift binary. It is also a
common practice to install an etcd key-value store on OpenShift masters to achieve a low-latency link
between etcd and OpenShift masters. It is recommended that you run both OpenShift masters and etcd in
highly available environments. This can be achieved by running multiple OpenShift masters in conjunction
with an external active-passive load balancer and the clustering functions of etcd. The OpenShift master node
runs either RHEL Atomic Host or RHEL 7.4 Server.

5.1.3 Infrastructure node
The OpenShift infrastructure node runs infrastructure-specific services such as the Docker Registry and the
HAProxy router. The Docker Registry stores application images in the form of containers. The HAProxy router
provides routing functions for OpenShift applications. It currently supports HTTP(S) traffic and TLS-enabled

https://xcat.org/
https://lenovopress.com/tips1200-lenovo-xclarity-administrator

11 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

traffic via Server Name Indication (SNI). Additional applications and services can be deployed on OpenShift
infrastructure nodes. The OpenShift infrastructure node runs RHEL Server 7.4.

5.1.4 Application node
The OpenShift application nodes run containerized applications created and deployed by developers. An
OpenShift application node contains the OpenShift node components combined into a single binary, which
can be used by OpenShift masters to schedule and control containers. An OpenShift application node runs
RHEL Atomic Host.

 OpenShift architecture
Kubernetes is an open source project developed by Google. The project gained popularity via its open and
flexible architecture for managing containerized workloads at large scale. It provides APIs that can be easily
integrated into other tools such as the Red Hat OpenShift Container platform. Kubernetes provides the
orchestration capabilities for containers, including scheduling the container images to nodes in a cluster,
managing the container life cycle, availability, replication, persistent and non-persistent storage for containers,
policy, multi-tenancy, network virtualization, routing, hierarchical clusters via federation APIs, and so forth.

A detailed software description of the Kubernetes components is described on this website:
docs.openshift.com/enterprise/3.0/architecture/infrastructure_components/kubernetes_infrastructure.html.

Figure 6 shows the OpenShift high-level architecture and components.

Figure 6. OpenShift component architecture

https://docs.openshift.com/enterprise/3.0/architecture/infrastructure_components/kubernetes_infrastructure.html

12 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

The master nodes, as described previously, are responsible for core services such as API interface,
authentication/authorization, container scheduling, controller management, and configuration database. The
master manages the state of the cluster and the lifecycle of the user container images. For redundancy and
high availability, you can have multiple master nodes with frontend load-balancers such as HAproxy. The
command line interface to the master nodes is implemented via the “oc” command.

The (worker) nodes are where users’ container images are executed. In OpenShift terminology the worker
nodes run “pods”, each of which manages one or more running containers. Each node implements a
“kubelet”, which is the node level controller that manages the pods and interacts with the OpenShift master.

In addition to the core OpenShift services, the Red Hat OpenShift platform also includes other features such
as the Web based user self-service console, monitoring, an integrated container registry, storage
management, authentication/authorization, automation via built-in Ansible playbooks, and other administrative
tools for managing the container platform.

13 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

6 Operational model
This chapter describes the options for mapping the logical components of Red Hat OpenShift onto Lenovo
ThinkSystem servers, storage, and Lenovo network switches.

 Hardware components
The following section describes the hardware components that can be used in an OpenShift implementation.

6.1.1 Lenovo ThinkSystem D2 Chassis and SD530 Dense Server
The Lenovo ThinkSystem SD530 dense offering fits four hot-pluggable SD530 servers into a ThinkSystem D2
Enclosure. The enclosures each take up only 2U (0.5U per server).

• Each SD530 server supports two processors from the Intel Xeon processor Scalable family, up to 16

DIMMs, 6 drive bays, and two PCIe slots.

• Each SD530 server supports up to six 2.5-inch hot-swap drives. Two drive bays can be configured to
support NVMe drives to maximize I/O performance in terms of throughput, bandwidth, and latency.

• The server has two optional 10Gb Ethernet ports, either 10GBASE-T or SFP+, routed from the
embedded X722 controller to the optional 8-port EIOM module at the rear of the enclosure.

• The server includes an XClarity Controller (XCC) to monitor server availability.

• Lenovo XClarity Administrator offers comprehensive hardware management tools that help to
increase uptime, reduce costs and improve productivity through advanced server management
capabilities.

• New UEFI-based Lenovo XClarity Provisioning Manager, accessible from F1 during boot, provides
system inventory information, graphical UEFI Setup, platform update function, RAID Setup wizard,
operating system installation function, and diagnostic functions.

For more detailed product guide on the ThinkSystem D2 chassis and SD530 server, see: Lenovo
ThinkSystem SD530 Server Product Guide.

Figure 7. Lenovo ThinkSystem D2 enclosure and SD530 server nodes

https://lenovopress.com/lp0635-thinksystem-sd530-server
https://lenovopress.com/lp0635-thinksystem-sd530-server

14 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

6.1.2 Lenovo ThinkSystem SR630 1U Server
Lenovo ThinkSystem SR630 is a 2-socket 1U rack server for enterprises that need industry-leading reliability,
management, and security, as well as maximizing performance and flexibility for future growth. The SR630
server is designed to handle a wide range of workloads, such as databases, virtualization and cloud
computing, virtual desktop infrastructure (VDI), infrastructure security, systems management, enterprise
applications, collaboration/email, streaming media, web, and HPC.

• ThinkSystem SR630 supports two Intel Xeon Processor Scalable Family processors with up to 28-

core processors, up to 38.5 MB of last level cache (LLC), up to 2666 MHz memory speeds, and up to

10.4 GT/s Ultra Path Interconnect (UPI) links.

• Offers flexible and scalable internal storage in a 1U rack form factor with up to 12x 2.5-inch drives for

performance-optimized configurations or up to 4x 3.5-inch drives for capacity-optimized

configurations, providing a wide selection of SAS/SATA HDD/SSD and PCIe NVMe SSD types and

capacities.

• Provides I/O scalability with the LOM slot, PCIe 3.0 slot for an internal storage controller, and up to

three PCI Express (PCIe) 3.0 I/O expansion slots in a 1U rack form factor.

Figure 8. Lenovo ThinkSystem SR630 Server front and rear views

More detailed information, see: ThinkSystem SR630 Server Product Guide.

6.1.3 Lenovo ThinkSystem NE1032/NE1032T Rack Switch
The Lenovo ThinkSystem NE1032/NE1032T RackSwitch family is a 1U rack-mount 10 Gb Ethernet switch
that delivers lossless, low-latency performance with feature-rich design that supports virtualization, Converged
Enhanced Ethernet (CEE), high availability, and enterprise class Layer 2 and Layer 3 functionality. The hot-
swap redundant power supplies and fans (along with numerous high-availability features) help provide high
availability for business sensitive traffic. These switches deliver line-rate, high-bandwidth switching, filtering,
and traffic queuing without delaying data.

The NE1032 RackSwitch has 32x SFP+ ports that support 1 GbE and 10 GbE optical transceivers, active
optical cables (AOCs), and direct attach copper (DAC) cables.

https://lenovopress.com/lp0643-lenovo-thinksystem-sr630-server

15 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 9 Lenovo ThinkSystem NE1032 RackSwitch

For more information, see the ThinkSystem NE1032 Product Guide.

The NE1032T RackSwitch has 24x 1/10 Gb Ethernet (RJ-45) fixed ports and 8x SFP+ ports that support
1 GbE and 10 GbE optical transceivers, active optical cables (AOCs), and direct attach copper (DAC) cables.

Figure 10 Lenovo ThinkSystem NE1032T RackSwitch

For more information, see the ThinkSystem NE1032T Product Guide.

6.1.4 Lenovo ThinkSystem NE2572 RackSwitch
For scale-out OpenShift Container Platform implementations to support 1000s of container images with high-
performance requirements for network as well as storage, it is recommended to use 25Gbps Ethernet
networking as the fabric.

The Lenovo ThinkSystem NE2572 RackSwitch is designed for the data center and provides 10 Gb/25 Gb
Ethernet connectivity with 40 Gb/100 Gb Ethernet upstream links. It is ideal for big data, cloud, and enterprise
workload solutions. It is an enterprise class Layer 2 and Layer 3 full featured switch that delivers line-rate,
high-bandwidth switching, filtering, and traffic queuing without delaying data.

The NE2572 RackSwitch has 48x SFP28/SFP+ ports that support 10 GbE SFP+ and 25 GbE SFP28 optical
transceivers, active optical cables (AOCs), and direct attach copper (DAC) cables. The switch also offers 6x
QSFP28/QSFP+ ports that support 40 GbE QSFP+ and 100 GbE QSFP28 optical transceivers, active optical
cables (AOCs), and direct attach copper (DAC) cables. The QSFP28/QSFP+ ports can also be split out into
two 50 GbE (for 100 GbE QSFP28), or four 10 GbE (for 40 GbE QSFP+) or 25 GbE (for 100 GbE QSFP28)
connections by using breakout cables.

Figure 11. Lenovo ThinkSystem NE2572 Rack Switch

For more information, see the Lenovo ThinkSystem NE2572 Switch Product Guide.

https://lenovopress.com/lp0605-lenovo-thinksystem-ne1032-rackswitch#models
https://lenovopress.com/lp0606-lenovo-thinksystem-ne1032t-rackswitch
https://lenovopress.com/lp0608-lenovo-thinksystem-ne2572-rackswitch

16 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

6.1.5 Lenovo RackSwitch G8052
The Lenovo System Networking RackSwitch G8052 (as shown in Figure 12) is an Ethernet switch that is
designed for the data center and provides a virtualized, cooler, and simpler network solution. The Lenovo
RackSwitch G8052 offers up to 48 1 GbE ports and up to 4 10 GbE ports in a 1U footprint. The G8052 switch
is always available for business-sensitive traffic by using redundant power supplies, fans, and numerous high-
availability features. For more information, see this website: lenovopress.com/tips1270.

Figure 12: Lenovo RackSwitch G8052

 Deployment models
The OpenShift Container Platform can be implemented in development/test, staging, and production settings.
Each node role has its own dedicated servers for performance and availability. However, in a non-production
environment, a minimal environment can be provided to test applications before moving them to a staging or
production environment.

For a test/development environment, you can use minishift or ‘oc cluster up’ to deploy all on one server, or
implement OpenShift with five servers for a more formal platform as shown in table below:

Node type Quantity Node role

Deployment 1 Deployment of the environment, Ansible playbooks, hardware
management, etc.

Master 1 OpenShift API master, Kubernetes scheduler, etcd, other core
services

Compute 3 Runs the application containers

For a production OpenShift deployment, all of the core services such as the API servers, Kubernetes
scheduler, etcd, etc., need to be highly available. The table below shows the recommended configuration for a
production deployment.

Node type Quantity Node role

Bastion 1 Deployment of the environment, Ansible playbooks, hardware
management, etc.

Infrastructure 2 OpenShift HAProxy, container registry, routing, etcd, logging, metrics.

Master 3 OpenShift API master, Kubernetes scheduler

Compute 3+ Runs the application containers

Compute with Red Hat
OpenShift Container
Storage

 3+ Compute nodes that run Gluster FS container to provide
hyperconverged compute and storage

http://lenovopress.com/tips1270

17 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

There are performance and availability implications of running the Red Hat OpenShift Container Storage
alongside the workload containers in a hyperconverged environment. For production environments, it is
recommended to separate hyper-converged compute servers from storage-only servers, or to ensure that the
servers have sufficient CPU, memory, and storage resources to avoid any performance bottlenecks.

 Compute servers
The OpenShift Container Platform can be implemented on a small footprint of x86 servers clustered together
and scaled as the user workloads grow.

The right choice of servers and the corresponding hardware configuration for CPUs, memory, and networking
will depend upon various factors, including but not limited to:

• Number of concurrent OpenShift users to be supported

• Type and mix of application workloads, which will drive the system resource requirements

• System growth projection

• Development or production use

• Fault-tolerance and availability requirements for applications

• Application performance expectations

• Implementation of hybrid-cloud model, which drives the requirements for on-premises infrastructure

For more guidance on sizing and other considerations is available for OpenShift clusters in OpenShift
documentation: access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-
single/scaling_and_performance_guide/#scaling-performance-cluster-limits

Lenovo does not recommend server configuration specifics for CPU, memory, storage, etc. because it is
heavily dependent on the sizing considerations previously listed. The user is requested to perform a proper
sizing assessment for their particular needs and choose the hardware configurations to meet those
requirements.

 Persistent storage for containerized workloads
There are two types of storage consumed by containerized applications – ephemeral (non-persistent) and
persistent. As the names suggest, non-persistent storage is created and destroyed along with the container
and is only used by applications during their lifetime as a container. Hence, non-persistent storage is used for
temporary data. When implementing the OpenShift Container Platform, local disk space on the application
nodes can be configured and used for the non-persistent storage volumes.

Persistent storage, on the other hand, is used for data that needs to be persisted across container
instantiations. An example is a 2 or 3-tier application that has separate containers for the web and business
logic tier and the database tier. The web and business logic tier can be scaled out using multiple containers
for high availability. The database that is used in the database tier requires persistent storage that is not
destroyed.

OpenShift uses a persistent volume framework that operates on two concepts – persistent storage and
persistent volume claim. Persistent storage is the physical storage volumes that are created and managed by
the OpenShift cluster administrator. When an application container requires persistent storage, it would create
a persistent volume claim (PVC). The PVC is a unique pointer/handle to a persistent volume on the physical

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits

18 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

storage, except that PVC is not bound to a physical volume. When a container makes a PVC request,
OpenShift would allocate the physical disk and binds it to the PVC. When the container image is destroyed,
the volume bound to the PVC is not destroyed unless you explicitly destroy that volume. In addition, during
the lifecycle of the container if it relocates to another physical server in the cluster, the PVC binding will still be
maintained. After the container image is destroyed, the PVC is released, but the persisted storage volume is
not deleted. The specific persistent storage policy for the volume will determine when the volume gets
deleted.

For more detailed conceptual information on persistent volumes see: access.redhat.com/documentation/en-
us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-storage

A variety of persistent storage options are available for OpenShift, choices including NFS, OpenStack Cinder,
Ceph RBD, iSCSI, fiber channel SAN, hyperconverged storage using Red Hat OpenShift Container Storage,
AWS elastic block storage (EBS), and others. For a complete list of these choices and the corresponding
requirements, see the link below: access.redhat.com/documentation/en-
us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-persistent-storage

6.4.1 Red Hat OpenShift Container Storage
Red Hat OpenShift Container Storage is used as the persistent storage backend in this Reference
Architecture as it simplifies the overall OpenShift architecture and consolidates the compute and storage
components in the same x86 servers.

Red Hat OpenShift Container Storage is based on Gluster which is an open source distributed, scalable, and
high-performance file based storage system. It is used widely for many types of applications. Red Hat
OpenShift Container Storage provides volume plug-ins into OpenShift to support the persistent storage for
containers.

Red Hat OpenShift Container Storage can be implemented for the OpenShift platform in two ways –
converged mode or standalone independent mode.

In the converged mode, it is integrated with the OpenShift nodes such that the storage services are running
next to the other node services. In other words, storage is embedded with the same nodes that are running
the application workload containers. The advantage with this architecture is that the persistent storage for
containers comes from the same cluster storage where the containers are running. This is a hyperconverged
(HCI) architecture for implementing OpenShift.

In the independent mode, it runs on its own standalone cluster and the OpenShift nodes access the storage
via the persistent volume mapping. In this mode, storage is separate to the compute nodes. The storage can
be scaled independently of the compute nodes by adding more servers later to the storage cluster.

For more information on Red Hat OpenShift Container Storage, see: access.redhat.com/documentation/en-
us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-
storage-persistent-storage-glusterfs

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs

19 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 13 gives a high-level overview of storage clusters in an OpenShift implementation.

Figure 13. Gluster Storage for OpenShift

 Networking
For OpenShift Container Platform deployment, 10Gbps networking is recommended as the choice for all
cluster-wide communication for the core OpenShift services, virtual network implementation for container
workloads, storage services access with Gluster FS, as well as all east-west traffic across the container
workloads. In addition, the north-south traffic between the OpenShift environment and uplink into the
customer (or campus) network can be implemented over the 10Gbps network.

There are three logical networks defined in this RA:

• External: The external network is used for the public API, the OpenShift web interface, and exposed
applications (services and routes).

• Internal: This is the primary, non-routable network used for cluster management and inter-node
communication. The same network acts as the layer for server provisioning using PXE and HTTP.
Domain Name Servers (DNS) and Dynamic Host Configuration Protocol (DHCP) services also reside
on this network to provide the functionality necessary for the deployment process and the cluster to
work. Communication with the Internet is provided by NAT configured on the bastion node.

• Out-of-band/IPMI: This is a secured and isolated network used for switch and server hardware
management, such as access to the IMM module and SoL (Serial-over-LAN).

20 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 14 shows the Red Hat OpenShift servers and the recommended network architecture.

Figure 14. OpenShift Network Connectivity

All OpenShift nodes are connected via the internal network, where they can communicate with each other.
Furthermore, Open vSwitch creates its own network for OpenShift pod-to-pod communication. Because of the
multi-tenant plugin, Open vSwitch pods can communicate to each other only if they share the same project
namespace. There is a virtual IP address managed by Keepalived on two infrastructure hosts for external
access to the OpenShift web console and applications.

6.5.1 Hardware management network
For out-of-band management of the servers and initial cluster deployment over the network from the bastion
node, use the 1Gbps management fabric via the Lenovo RackSwitch G8052. The Lenovo ThinkSystem rack
servers have a dedicated 1GbE network port for the XCC interface. The XCC enables remote-management
capabilities for the servers, access to the server’s remote console for troubleshooting, and running the IPMI
commands via the embedded baseboard management controller (BMC) module.

6.5.2 Network redundancy
The Lenovo OpenShift platform uses the 10 GbE network as the primary fabric for inter-node
communication. Two Lenovo ThinkSystem NE1032 RackSwitch switches are used to provide redundant data
layer communication and deliver maximum availability.

21 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 15 shows the redundant network architecture.

Figure 15. Redundant network architecture

Virtual Link Aggregation Group (VLAG) is a feature of the Lenovo CNOS operating system that allows a pair
of Lenovo switches to work as a single virtual switch. Each of the cluster nodes has a link to each VLAG peer
switch for redundancy. This provides improved high availability (HA) for the nodes using the link aggregation
control protocol (LACP) for aggregated bandwidth capacity. Connection to the uplink core network is
facilitated by the VLAG peers, which present a logical switch to the uplink network, enabling connectivity with
all links active and without a hard requirement for spanning-tree protocol (STP). The link between the two
VLAG peers is an inter-switch link (ISL) and provides excellent support of east-west cluster traffic the nodes.
The VLAG presents a flexible basis for interconnecting to the uplink/core network, ensures the active usage of
all available links, and provides high availability in case of a switch failure or a required maintenance outage.

22 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

 Systems management
In addition to in-band management via IPMI, the Lenovo XClarity Administrator software provides centralized
resource management that reduces complexity, speeds up response, and enhances the availability of
Lenovo® server systems and solutions.

The Lenovo XClarity Administrator provides agent-free hardware management for Lenovo’s ThinkSystem®
rack servers, System x® rack servers, and Flex System™ compute nodes and components, including the
Chassis Management Module (CMM) and Flex System I/O modules. Figure 16 shows the Lenovo XClarity
administrator interface, in which Flex System components and rack servers are managed and are seen on the
dashboard. Lenovo XClarity Administrator is a virtual appliance that is quickly imported into a virtualized
environment server configuration.

Figure 16. Lenovo XClarity Administrator Dashboard

For more information, see: Lenovo XClarity Administrator Product Guide

https://lenovopress.com/tips1200-lenovo-xclarity-administrator

23 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

 Deployment example
This deployment example was fully tested and verified by Lenovo. All of the deployment files are available
from GitHub at the following location: github.com/lenovo/deployment-scripts-for-OpenShift-Platform.

The example uses 12 nodes as follows:

• 1 Bastion node
• 3 Master nodes
• 2 Infrastructure nodes
• 3 hyper-converged Application nodes with Red Hat OpenShift Container Storage to provide hyper-

converged compute
• 3 storage-only Application nodes with Red Hat OpenShift Container Storage to provide an additional

storage cluster (no compute)

This configuration represents a production grade OpenShift implementation that meets high-availability,
redundancy, and scale requirements for enterprises. Additional Application nodes can be added to increase
the available compute and storage capacity.

Table 3 provides a hardware configuration summary for this example deployment using the Lenovo
ThinkSystem SD530 server the each node. The detailed server BOMs can be found in ”Appendix A: Lenovo
bill of materials” on page 34.

Table 3. Node Hardware Configuration

OpenShift Node Role ThinkSystem SD530 server configuration

Bastion Node
Master Node
Infrastructure Node

2x Intel Xeon Gold 6126 12C 125W 2.6GHz Processor
384GB memory (12x 32 GB)
2x ThinkSystem M.2 5100 480GB SATA 6Gbps Non-Hot-Swap SSD
1x ThinkSystem M.2 with Mirroring Enablement Kit
1x ThinkSystem Intel X710-DA2 PCIe 10Gb 2-Port SFP+ Ethernet Adapter

Application node (with
Red Hat OpenShift
Container Storage)

2x Intel Xeon Gold 6126 12C 125W 2.6GHz Processor
384GB memory (12x 32 GB)
2x ThinkSystem 2.5" Intel S4610 960GB Mainstream SATA 6Gb
4x ThinkSystem 2.5" 2TB 7.2K SATA 6Gb Hot Swap 512e HDD
1x ThinkSystem 430-8i SAS/SATA 12Gb Dense HBA
1x ThinkSystem Intel X710-DA2 PCIe 10Gb 2-Port SFP+ Ethernet Adapter

The configuration for the Bastion, Master and Infrastructures nodes is the same. This allows the role for a
server to be easily changed. The configuration for all of the Application nodes is also the same, regardless of
whether a particular server is used for hyperconverged compute or storage only.

https://github.com/lenovo/deployment-scripts-for-OpenShift-Platform

24 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Figure 17 shows the rack-level diagram of the hardware including the data and management switches.

Figure 17. Rack level diagram of the OpenShift Container Platform implementation

6.7.1 Ansible inventory file
In order to install the OpenShift Container Platform cluster, an Ansible inventory file has to be created with the
environment’s description. The rest of this section explains the inventory file and provides the additional
variables that are used for the automatic prerequisites and a Keepalived deployment.

The Ansible section below specifies the types of nodes that are used in an OpenShift Container Platform
environment. Required groups are nodes, masters, and etcd. Optional groups are lb (for load balancing in
multi-master clusters), local (which specifies the Bastion node), glusterfs (configure persistent volumes for
application containers that require data persistence), glusterfs_registry (configure persistent volumes for
docker-registry and application containers that require data persistence).

[OSEv3:children]

masters

nodes

etcd

lb

25 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

local

glusterfs

glusterfs_registry

The Ansible section below describes global cluster parameters. Parameter openshift_master_cluster_method
specifies the load balancing method in a multi-master environment. With the native value, there will be a
separated HAProxy load balancer installed on the specified host and configured for the whole environment.
The hostname for users and cluster components to access the cluster load balancer from external and
internal networks is set in the openshift_master_cluster_hostname and
openshift_master_cluster_public_hostname parameters. The parameter
openshift_master_identity_providers configures the way for authentication of OpenShift users. In this
example, this parameter is based on htpasswd files stored in the OpenShift configuration directory. However,
many other authentication methods can be used such as LDAP, Keystone*, or GitHub* accounts.
os_sdn_network_plugin_name specifies the SDN Open vSwitch plugin used in environment. For this
example, redhat/openshift-ovs-multitenant provides isolation between OpenShift projects on the
network level. The last three sections specify the storage backend type and its size for Docker Registry. In this
solution, Docker Registry uses glusterfs server for Docker image storage.

[OSEv3:vars]

ansible_ssh_user=root

ansible_become=true

containerized=true

openshift_master_cluster_method=native

openshift_master_cluster_hostname=lb.ocp.example.local

openshift_master_cluster_public_hostname=openshift.ocp.example.com

openshift_master_default_subdomain=apps.ocp.example.com

openshift_master_cluster_ip=172.30.4.30

openshift_master_cluster_public_ip=10.240.202.188

openshift_master_portal_net=10.0.0.0/16

openshift_deployment_type=openshift-enterprise

openshift_release=v3.9

#openshift_image_tag=v3.9

os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true',

'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider', 'filename':

'/etc/origin/master/users.htpasswd'}]

openshift_master_htpasswd_users={'admin': '$apr1$/1qMilNR$sURQoJkUyivYdW121JWK51'}

rhel_subscription_user=xxx

rhel_subscription_pass=xxx

openshift_hosted_registry_storage_kind=glusterfs

openshift_hosted_registry_storage_volume_size=200Gi

openshift_storage_glusterfs_registry_storageclass=true

26 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

The Ansible section below describes which servers act as OpenShift masters. For this example, three
OpenShift masters are implemented for control plane HA purposes. OpenShift master components can be
installed with two methods: rpm-based or container-based. In this RA, all OpenShift components are
implemented as containers, which is determined by the containerized=True parameter.

[masters]

master1.ocp.example.local containerized=true openshift_schedulable=False

openshift_ip=172.30.4.9 openshift_hostname=master1.ocp.example.local

master2.ocp.example.local containerized=true openshift_schedulable=False

openshift_ip=172.30.4.10 openshift_hostname=master2.ocp.example.local

master3.ocp.example.local containerized=true openshift_schedulable=False

openshift_ip=172.30.4.11 openshift_hostname=master3.ocp.example.local

The Ansible section below describes which servers act as OpenShift nodes. For this example, seven
OpenShift nodes are implemented. Two of them perform infrastructure functions, which is determined by the
openshift_node_labels="{'region': 'infra'}" parameter. OpenShift node components are also installed on
OpenShift master servers. User application could be deployed on these servers when configuring parameter
openshift_schedulable=true. In this RA, all node components are implemented as containers, which is
determined by the containerized=true parameter.

[nodes]

master1.ocp.example.local openshift_schedulable=true containerized=true

openshift_public_ip=10.240.202.142 openshift_ip=172.30.4.9

openshift_hostname=master1.ocp.example.local ipmi=10.240.202.141 serial=J300A1KH

master2.ocp.example.local openshift_schedulable=true containerized=true

openshift_public_ip=10.240.202.144 openshift_ip=172.30.4.10

openshift_hostname=master2.ocp.example.local ipmi=10.240.202.143 serial=J300A1KP

master3.ocp.example.local openshift_schedulable=true containerized=true

openshift_public_ip=10.240.202.146 openshift_ip=172.30.4.11

openshift_hostname=master3.ocp.example.local ipmi=10.240.202.145 serial=J300A1KT

infra2.ocp.example.local openshift_node_labels="{'region': 'infra'}"

openshift_schedulable=true containerized=true openshift_public_ip=10.240.202.150

openshift_ip=172.30.4.8 openshift_hostname=infra2.ocp.example.local

ipmi=10.240.202.149 serial=J300A1KW

infra1.ocp.example.local openshift_node_labels="{'region': 'infra'}"

openshift_schedulable=true containerized=true openshift_public_ip=10.240.202.148

openshift_ip=172.30.4.7 openshift_hostname=infra1.ocp.example.local

ipmi=10.240.202.147 serial=J300A1KN

app1.ocp.example.local openshift_schedulable=true containerized=true

openshift_ip=172.30.4.2 openshift_hostname=app1.ocp.example.local

openshift_hostname_check=false ipmi=10.240.202.153 serial=J300A1KP

app0.ocp.example.local openshift_schedulable=true containerized=true

openshift_ip=172.30.4.1 openshift_hostname=app0.ocp.example.local ipmi=10.240.202.151

serial=J300A1KM

27 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

app2.ocp.example.local openshift_schedulable=true containerized=true

openshift_ip=172.30.4.3 openshift_hostname=app2.ocp.example.local ipmi=10.240.202.155

serial=J300A1KG

gluster3.ocp.example.local containerized=true openshift_schedulable=true

openshift_ip=172.30.4.6 openshift_hostname=gluster3.ocp.example.local

ipmi=10.240.202.173 serial=J300A1KV

gluster1.ocp.example.local containerized=true openshift_schedulable=true

openshift_ip=172.30.4.4 openshift_hostname=gluster1.ocp.example.local

ipmi=10.240.202.157 serial=J300A1KK

gluster2.ocp.example.local containerized=true openshift_schedulable=true

openshift_ip=172.30.4.5 openshift_hostname=gluster2.ocp.example.local

ipmi=10.240.202.159 serial=J300A1KR

The Ansible section below describes hosts that will run etcd instances. For this example, three etcd instances
are installed on three master servers to achieve low-latency traffic between them. When many etcd instances
are specified in an inventory file, they are automatically clustered in order to provide a highly available key-
value etcd store. An etcd cluster that consists of three etcd instances resists a failure of one etcd instance. It
is also recommended to have an odd number of etcd instances in a cluster.

[etcd]

master1.ocp.example.local containerized=true openshift_ip=172.30.4.9

openshift_hostname=master1.ocp.example.local

master2.ocp.example.local containerized=true openshift_ip=172.30.4.10

openshift_hostname=master2.ocp.example.local

master3.ocp.example.local containerized=true openshift_ip=172.30.4.11

openshift_hostname=master3.ocp.example.local

When openshift_master_cluster_method is set to native, then the Ansible section below specifies a host
on which HAProxy load balancer will be installed and configured. For this example, two HAProxy load
balancers are installed on two infrastructure servers. They use one common virtual IP address that is
managed by Keepalived software to achieve a highly available OpenShift Container Platform cluster.

[lb]

infra1.ocp.example.local openshift_hostname=infra1.ocp.example.local

openshift_ip=172.30.4.7 openshift_public_ip=10.240.202.148

infra2.ocp.example.local openshift_hostname=infra2.ocp.example.local

openshift_ip=172.30.4.8 openshift_public_ip=10.240.202.150

The Ansible section below describes which servers act as Red Hat OpenShift Container Storage nodes for
storage backend coexisted with openshift compute components. This provides storage available for RedHat
OpenShift users and can be used when storage for intense workloads is required.

[glusterfs]

app0.ocp.example.local glusterfs_ip=172.30.4.1 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

app1.ocp.example.local glusterfs_ip=172.30.4.2 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

28 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

app2.ocp.example.local glusterfs_ip=172.30.4.3 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

The Ansible section below describes which servers act as another set of Red Hat OpenShift Container
Storage nodes. For this example, three containerized Red Hat OpenShift Container Storage nodes are
implemented on dedicated hosts. Additionally, the file specifies which of their IP addresses and disks act as
GlusterFS volumes. This cluster is used as a default storage backend. It also provides a persistent volume for
the OpenShift private Docker registry.

[glusterfs_registry]

gluster1.ocp.example.local glusterfs_ip=172.30.4.4 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

gluster2.ocp.example.local glusterfs_ip=172.30.4.5 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

gluster3.ocp.example.local glusterfs_ip=172.30.4.6 glusterfs_devices="['/dev/sdb',

'/dev/sdc', '/dev/sdd', '/dev/sde', '/dev/sdf']"

6.7.2 Software
For this example, the following software is needed:

• OpenShift Container Platform, which adds developer- and operation-centric tools to enable rapid
application development, easy deployment, scaling, and long-term lifecycle maintenance for small

and large teams and applications
• Lenovo XClarity Administrator for management of the operating systems on bare-metal servers

In addition, the OpenShift Container Platform requires the following software packages:
• Docker to build, ship, and run containerized applications

• Kubernetes to orchestrate and manage containerized applications

• Etcd*, which is a key-value store for the OpenShift Container Platform cluster

• Open vSwitch* to provide software-defined networking (SDN)-specific functions in the OpenShift
Container Platform environment

• Ansible® for installation and management of the OpenShift Container Platform deployment

• HAProxy* for routing and load-balancing purposes

• Keepalived* for virtual IP management for HAProxy instances

• GlusterFS for storing application images and providing persistent volumes (PV) functionality

Table 4 lists the software versions used for this example deployment

Table 4. Software versions

Component Version

Red Hat Enterprise Linux 7.4
OpenShift Container Platform 3.9
Docker 1.13.1
Ansible 2.6.0
rhel7/etcd latest
openshift3/openvswitch v3.9.40

29 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Component Version

openshift3/ose-haproxy-router v3.9.40
openshift3/keepalived 1.0_ra
rhgs3/rhgs-gluster-block-prov-rhel7 latest

Each node is installed with RHEL 7.4 as the base operating system and the following resources:

• Minimum 40 GB hard disk space for the file system containing /var/.
• Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.
• Minimum 1 GB hard disk space for the file system containing the system’s temporary directory

6.7.3 Networking
The Lenovo ThinkSystem NE1032 RackSwitch with CNOS provides a simple, open, and programmable
network infrastructure. In particular CNOS allows Ansible modules and this deployment example makes use
of its management capabilities to implement automated network provisioning.

To obtain the submodule for the CNOS switch, execute the following git commands in the main directory of
the Lenovo example repository:

$ git submodule init

$ git submodule update

The next step is to add the switch information to the Ansible inventory file as follows (use your own IP
addresses).

[switches]

10.240.202.133 username=admin password=admin deviceType=NE1032

10.240.202.134 username=admin password=admin deviceType=NE1032

Then enable VLAG on the switches, if not configured already:

vlag tier-id 10

vlag isl port-aggregation 1

vlag hlthchk peer-ip neighbor-switch-ip vrf management

vlag enable

Then go to the subdirectory containing the switch configuration component and run the playbook shown with
the appropriate Python path:

$ cd src/cnos-configuration/roles/configure-networking

$ ansible-playbook configure-networking.yaml

After completing the playbook, the network interfaces on the two switches are configured correctly.

6.7.4 Automatic prerequisites installation
After the operating system has been installed and configured, the nodes need to be prepared for OpenShift
installation. Perform the following preliminary steps: prepare an openshift account and exchange SSH keys
across all nodes, attach software licenses, install and configure the DNS service, install additional packages,
and configure Docker Engine.

http://systemx.lenovofiles.com/help/index.jsp?topic=%2Fcom.lenovo.switchmgt.ansible.doc%2Fcnos_command.html

30 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

All the remaining tasks can be executed automatically using the Ansible playbooks available at
https://github.com/lenovo/deployment-scripts-for-OpenShift-Platform.

Based on information from the operating system deployment, prepare an Ansible inventory file and place it in
the location /etc/ansible/hosts on the Bastion node. The hosts file for this deployment example is named
hosts.example and is provided in the GitHub repository.

After that, clone the git repository onto the Bastion node:

$ git clone https://github.com/lenovo/deployment-scripts-for-OpenShift-Platform.git

$ cd deployment-scripts-for-OpenShift-Platform/src/prerequisites

In the inventory file, set up the following additional variables:
rhel_subscription_user: Name of the user who will be used for registration
rhel_subscription_pass: Password of the user who will be used for registration
ansible_ssh_user: Insert root or other user with root privileges
ansible_become: Set to True to run commands with sudo privileges
local_dns: Type a proper IP address for your bastion node that runs the DNS service

Finally start the Ansible playbook by entering the following command:

$ ansible-playbook nodes_setup.yaml -k

6.7.5 Automatic Keepalived deployment
The OpenShift Container Platform delivers two flavors of HAProxy load balancing software. The first flavor,
which is spawned as a daemon, distributes API calls between master servers. The second flavor, spawned as
a Docker container, provides the router mechanism for exposing applications inside a cluster.

To achieve high availability (HA), maximum fault tolerance, and performance, this deployment example
includes an additional package called Keepalived. It is open-source software distributed under the GPL
license and is recognized by Red Hat as their recommended solution. Please see the following web site for
more information: Red Hat Enterprise Linux documentation.

This example deployment uses both flavors of HAProxy instances, which are installed on both Infrastructure
nodes. A single point of failure is eliminated is eliminated when used in conjunction with floating IP addresses
provided by Keepalived,

Installation and configuration of this HA Solution can be performed manually or through a single command
using an Ansible playbook. First the following variables must be defined in the Ansible inventory:

external_interface=enp6s0f0

external_netmask=255.255.250.128

external_gateway=10.240.202.129

external_vlan= 302

external_dns=114.114.114.114

internal_interface=bond0

internal_netmask=255.255.0.0

openshift_master_cluster_ip=172.30.4.30

openshift_master_cluster_public_ip=10.240.202.188

https://github.com/lenovo/deployment-scripts-for-OpenShift-Platform
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/keepalived_install_example1.html

31 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

To deploy the Keepalived daemons using an Ansible playbook on Infrastructure nodes, enter following
command inside the cloned GitHub repository:

$ su openshift

$ ansible-playbook \

openshift-container-architecture/src/keepalived-multimaster/keepalived.yaml

6.7.6 OpenShift container platform installation
When the inventory file with the environment description is prepared and all prerequisites are configured, the
OpenShift Container Platform install can be performed from the Bastion node.

For this deployment example, a containerized version of the OpenShift Container Platform is installed on
servers. This installer image provides the same functionality as the RPM-based installer, but it runs in a
containerized environment that provides all of its dependencies rather than being installed directly on the
node. The only requirement to use it is the ability to run a container, and atomic packages are installed. The
installer image can be used as a system container. System containers are stored and run outside of the
traditional Docker service. This enables running the installer image from one of the target hosts without
concern for the install restarting Docker on the host.

This install process is straightforward, and requires two steps:

First execute the prerequisites:

$ atomic install --system --set INVENTORY_FILE=/etc/ansible/hosts --storage=ostree

--set PLAYBOOK_FILE=/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

--set OPTS="-v" registry.access.redhat.com/openshift3/ose-ansible:v3.9

Second, deploy OpenShift platform：

$ atomic install –-system --storage=ostree --set INVENTORY_FILE=/etc/ansible/hosts

--set PLAYBOOK_FILE=/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

--set OPTS="-v" registry.access.redhat.com/openshift3/ose-ansible:v3.9

After the installation process, the Ansible playbook should report no errors and the OpenShift Container
Platform environment is set up. If needed, you can easily uninstall the environment with the following
command:

$ ansible-playbook -i /etc/ansible/hosts /usr/share/ansible/openshift-

ansible/playbooks/adhoc/uninstall.yml

Next user credentials should be created using the following commands:

$ sudo yum install httpd-tools

$ touch users.htpasswd

$ htpasswd -n <user_name> >> users.htpasswd

Use the htpasswd command for each user account and propagate the users.htpasswd file to every OpenShift
master node, into the /etc/origin/master/ directory.

Lastly restart the API services on each master node using the command:

$ sudo systemctl restart atomic-openshift-master-api

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/running_system_containers

32 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

6.7.7 Deployment validation
The deployment should be validated before it is used.

First, log on to one of the OpenShift master nodes and check that all nodes are connected to the cluster using
the commands:

$ ssh master1.ocp.example.local

$ oc get nodes

Here is some example output from the command:

NAME STATUS ROLES AGE VERSION

app0.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

app1.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

app2.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

gluster1.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

gluster2.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

gluster3.ocp.example.local Ready compute 26d v1.9.1+a0ce1bc657

infra1.ocp.example.local Ready <none> 26d v1.9.1+a0ce1bc657

infra2.ocp.example.local Ready <none> 26d v1.9.1+a0ce1bc657

master1.ocp.example.local Ready master 26d v1.9.1+a0ce1bc657

master2.ocp.example.local Ready master 26d v1.9.1+a0ce1bc657

master3.ocp.example.local Ready master 26d v1.9.1+a0ce1bc657

All cluster nodes should be listed and marked as Ready. If any node is in a NotReady state then it is not
properly assigned to a cluster and should be inspected using the following command to verify the etcd state:

$ sudo etcdctl -C https://etcd1.ocp.example.local:2379 --ca-file=/etc/etcd/ca.crt --

cert-file=/etc/etcd/peer.crt --key-file=/etc/etcd/peer.key cluster-health

Here is some example output from the command:

member 5f0aab880290ddeb is healthy: got healthy result from

https://etcd1.ocp.example.local:2379

member c305190f3c57613c is healthy: got healthy result from

https://etcd2.ocp.example.local:2379

member c434590bbf158f3d is healthy: got healthy result from

https://etcd3.ocp.example.local:2379

All etcd members should be listed and marked as healthy. If any etcd member is in an unhealthy state then it
is not properly assigned to an etcd cluster.

To further inspect and verify all the components of the OpenShift Container Platform cluster, use the
command:

$ oc get all

All the listed items should have a Running status.

33 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

At a final verification step, log on to the OpenShift Container Platform web console using the following URL
address: https://openshift.ocp.example.com:8443 and display the OpenShift container catalog. Figure 18
shows an example.

Figure 18. Example Catalog for OpenShift Container Platform

Figure 19 shows other OpenShift application components.

Figure 19. OpenShift Application Components

https://openshift.ocp.example.com:8443/

34 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

7 Appendix A: Lenovo bill of materials
This appendix contains the bill of materials (BOMs) for different configurations of hardware for OpenShift
deployments. There are sections for servers and networking.

 Server BOM
For OpenShift, servers with same configurations are deployed as different nodes (Bastion, Master,
Infrastructure, App, and Storage).

Lenovo ThinkSystem SD530 (Bastion Node, Master Node, Infrastructure Node)

Code Description Quantity

7X21CTO1WW Node : ThinkSystem SD530 - 3yr Warranty 1
AUXN ThinkSystem SD530 Computing Node 1
AWEX Intel Xeon Gold 6126 12C 125W 2.6GHz Processor 2
AUND ThinkSystem 32GB TruDDR4 2666 MHz (2Rx4 1.2V) RDIMM 12
AUYG ThinkSystem SD530 3x2 SAS/SATA BP 1
AUMV ThinkSystem M.2 with Mirroring Enablement Kit 1
B11V ThinkSystem M.2 5100 480GB SATA 6Gbps Non-Hot Swap SSD 2
AUKX ThinkSystem Intel X710-DA2 PCIe 10Gb 2-Port SFP+ Ethernet Adapter 2
A51P 2m Passive DAC SFP+ Cable 1
B0MJ Feature Enable TPM 1.2 1
AVUT ThinkSystem XClarity Controller Standard to Advanced Upgrade 1
B0ML Feature Enable TPM on MB 1

Lenovo ThinkSystem SD530 (Application node with storage)

Code Description Quantity

7X21CTO1WW Node : ThinkSystem SD530 - 3yr Warranty 1
AUXN ThinkSystem SD530 Computing Node 1
AWEX Intel Xeon Gold 6126 12C 125W 2.6GHz Processor 2
AUND ThinkSystem 32GB TruDDR4 2666 MHz (2Rx4 1.2V) RDIMM 12
AUYG ThinkSystem SD530 3x2 SAS/SATA BP 1
5977 Select Storage devices - no configured RAID required 1
B0SS ThinkSystem 430-8i SAS/SATA 12Gb Dense HBA 1
B49N ThinkSystem 2.5" Intel S4610 960GB Mainstream SATA 6Gb HS SSD 2
AUUJ ThinkSystem 2.5" 2TB 7.2K SATA 6Gb Hot Swap 512e HDD 4
AUKX ThinkSystem Intel X710-DA2 PCIe 10Gb 2-Port SFP+ Ethernet Adapter 2
A51P 2m Passive DAC SFP+ Cable 1
B0MJ Feature Enable TPM 1.2 1
AVUT ThinkSystem XClarity Controller Standard to Advanced Upgrade 1
B0ML Feature Enable TPM on MB 1

35 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

ThinkSystem D2 Enclosure

Code Description Quantity

7X20CTO1WW Chassis : ThinkSystem D2 Enclosure -3yr Warranty 1
AUXM ThinkSystem D2 Enclosure 1
AUY8 ThinkSystem D2 4-slot x16 Shuttle 1
AUY9 ThinkSystem D2 10Gb 8 port EIOM SFP+ 1
AUZ2 ThinkSystem D2 2000W Platinum PSU 2
6311 2.8m, 10A/100-250V, C13 to C14 Jumper Cord 2
AUYC ThinkSystem D2 Slide Rail 1
A51P 2m Passive DAC SFP+ Cable 8
AVFZ 1.5m Green Cat6 Cable 1
AVR1 ThinkSystem Single Ethernet Port SMM 1
AVT5 ThinkSystem D2 Chassis Agency Label 1
AVD0 System Document 1
A2N6 Chassis Not Integrated With Planar 1
AUXQ ThinkSystem D2 NODE Dummy Filler 3
AUYT ThinkSystem D2 Chassis Package 1

36 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Lenovo ThinkSystem SR630 (Bastion Node, Master Node, Infrastructure Node)

Code Description Quantity
7X02CTO1WW Server : ThinkSystem SR630 - 3yr Warranty 1
AUW0 ThinkSystem SR630 2.5" Chassis with 8 Bays 1
AWEL Intel Xeon Gold 6126 12C 125W 2.6GHz Processor 2
AUND ThinkSystem 32GB TruDDR4 2666 MHz (2Rx4 1.2V) RDIMM 12
AUWB ThinkSystem SR530/SR630/SR570 2.5" SATA/SAS 8-Bay Backplane 1
AUMV ThinkSystem M.2 with Mirroring Enablement Kit 1
B11V ThinkSystem M.2 5100 480GB SATA 6Gbps Non-Hot Swap SSD 2
AUKK ThinkSystem 10Gb 4 Port SFP+ LOM 1
A51P 2m Passive DAC SFP+ Cable 3
AVWA ThinkSystem 750W (230/115V) Platinum Hot-Swap Power Supply 2
6400 2.8m, 13A/100-250V, C13 to C14 Jumper Cord 2
B0MJ Feature Enable TPM 1.2 1
B0ML Feature Enable TPM on MB 1
AUWG Lenovo ThinkSystem 1U VGA Filler 1
AUW3 Lenovo ThinkSystem Mainstream MB - 1U 1
AUW7 ThinkSystem SR630 4056 Fan Module 2
AULP ThinkSystem 1U CPU Heatsink 2

Lenovo ThinkSystem SR630 (Application node with storage)

Code Description Quantity
7X02CTO1WW Server : ThinkSystem SR630 - 3yr Warranty 1
AUW0 ThinkSystem SR630 2.5" Chassis with 8 Bays 1
AWEL Intel Xeon Gold 6126 12C 125W 2.6GHz Processor 2
AUND ThinkSystem 32GB TruDDR4 2666 MHz (2Rx4 1.2V) RDIMM 12
AUWB ThinkSystem SR530/SR630/SR570 2.5" SATA/SAS 8-Bay Backplane 1
5977 Select Storage devices - no configured RAID required 1
AUNL ThinkSystem 430-8i SAS/SATA 12Gb HBA 1
B49N ThinkSystem 2.5" Intel S4610 960GB Mainstream SATA 6Gb HS SSD 2
AUUJ ThinkSystem 2.5" 2TB 7.2K SATA 6Gb Hot Swap 512e HDD 4
AUKK ThinkSystem 10Gb 4 Port SFP+ LOM 1
A51P 2m Passive DAC SFP+ Cable 3
AVWA ThinkSystem 750W (230/115V) Platinum Hot-Swap Power Supply 2
6400 2.8m, 13A/100-250V, C13 to C14 Jumper Cord 2
B0MJ Feature Enable TPM 1.2 1
B0ML Feature Enable TPM on MB 1
AUWG Lenovo ThinkSystem 1U VGA Filler 1
AUW3 Lenovo ThinkSystem Mainstream MB - 1U 1
AUW7 ThinkSystem SR630 4056 Fan Module 2
AULP ThinkSystem 1U CPU Heatsink 2

37 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

 Networking BOM

Lenovo ThinkSystem NE1032 Switch

Code Description Quantity

7159HD1 Switch : Lenovo ThinkSystem NE1032 RackSwitch (Rear to Front) 1
AU3A Lenovo ThinkSystem NE1032 RackSwitch (Rear to Front) 1
A1PH 1m Passive DAC SFP+ Cable 1
6204 2.8m, 10A/100-250V, C13 to IEC 320-C20 Rack Power Cable 2

Lenovo RackSwitch G8052

Code Description Quantity

7159G52 Lenovo System Networking RackSwitch G8052 (Rear to Front) 1
6201 1.5m, 10A/100-250V, C13 to IEC 320-C14 Rack Power Cable 2
3802 1.5m Blue Cat5e Cable 3
A3KP Lenovo System Networking Adjustable 19" 4 Post Rail Kit 1

38 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Resources
• OpenShift Architecture Overview

docs.openshift.com/container-platform/3.9/architecture/

• Architecture of the Red Hat OpenShift Container Platform

access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/architecture-

index#arch-index-what-is-the-architecture

• OpenShift Container Platform

redhat.com/en/technologies/cloud-computing/openshift

• Kubernetes

kubernetes.io/ and kubernetes.io/docs/tutorials/kubernetes-basics/

• Docker

docker.com/

• OpenShift containerized installation

docs.openshift.com/container-platform/3.9/install_config/install/advanced_install.html

• Red Hat OpenShift Container Storage

access.redhat.com/products/red-hat-openshift-container-storage

https://docs.openshift.com/container-platform/3.9/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/architecture-index#arch-index-what-is-the-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/architecture-index#arch-index-what-is-the-architecture
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://kubernetes.io/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://www.docker.com/
https://docs.openshift.com/container-platform/3.9/install_config/install/advanced_install.html
https://access.redhat.com/products/red-hat-openshift-container-storage

39 Reference Architecture: Red Hat OpenShift Container Platform on Lenovo ThinkSystem Servers

Trademarks and special notices
© Copyright Lenovo 2018.

References in this document to Lenovo products or services do not imply that Lenovo intends to make them
available in every country.

Lenovo, the Lenovo logo, ThinkSystem, ThinkCentre, ThinkVision, ThinkVantage, ThinkPlus and Rescue and
Recovery are trademarks of Lenovo.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Nutanix is a trademark of Nutanix, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used Lenovo
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-Lenovo products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of such
products by Lenovo. Sources for non-Lenovo list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. Lenovo has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims related
to non-Lenovo products. Questions on the capability of non-Lenovo products should be addressed to the
supplier of those products.

All statements regarding Lenovo future direction and intent are subject to change or withdrawal without notice,
and represent goals and objectives only. Contact your local Lenovo office or Lenovo authorized reseller for the
full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive
statement of a commitment to specific levels of performance, function or delivery schedules with respect to
any future products. Such commitments are only made in Lenovo product announcements. The information is
presented here to communicate Lenovo’s current investment and development activities as a good faith effort
to help with our customers' future planning.

Performance is based on measurements and projections using standard Lenovo benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the
storage configuration, and the workload processed. Therefore, no assurance can be given that an individual
user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Any references in this information to non-Lenovo websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this Lenovo product and use of those websites is at your own risk.

	1 Introduction
	2 Business problem and business value
	2.1 Business problem
	2.2 Business value
	2.2.1 DevOps Overview
	2.2.2 Monolithic Vs Micro-services Architecture
	2.2.3 Continuous Integration/Continuous Delivery (CI/CD)

	3 Requirements
	3.1 Functional requirements
	3.2 Non-functional requirements

	4 Architectural overview
	5 Component model
	5.1 OpenShift infrastructure components
	5.1.1 Bastion node
	5.1.2 Master node
	5.1.3 Infrastructure node
	5.1.4 Application node

	5.2 OpenShift architecture

	6 Operational model
	6.1 Hardware components
	6.1.1 Lenovo ThinkSystem D2 Chassis and SD530 Dense Server
	6.1.2 Lenovo ThinkSystem SR630 1U Server
	6.1.3 Lenovo ThinkSystem NE1032/NE1032T Rack Switch
	6.1.4 Lenovo ThinkSystem NE2572 RackSwitch
	6.1.5 Lenovo RackSwitch G8052

	6.2 Deployment models
	6.3 Compute servers
	6.4 Persistent storage for containerized workloads
	6.4.1 Red Hat OpenShift Container Storage

	6.5 Networking
	6.5.1 Hardware management network
	6.5.2 Network redundancy

	6.6 Systems management
	6.7 Deployment example
	6.7.1 Ansible inventory file
	6.7.2 Software
	6.7.3 Networking
	6.7.4 Automatic prerequisites installation
	6.7.5 Automatic Keepalived deployment
	6.7.6 OpenShift container platform installation
	6.7.7 Deployment validation

	7 Appendix A: Lenovo bill of materials
	7.1 Server BOM
	Lenovo ThinkSystem SD530 (Bastion Node, Master Node, Infrastructure Node)
	Lenovo ThinkSystem SD530 (Application node with storage)
	ThinkSystem D2 Enclosure
	Lenovo ThinkSystem SR630 (Bastion Node, Master Node, Infrastructure Node)
	Lenovo ThinkSystem SR630 (Application node with storage)

	7.2 Networking BOM
	Lenovo ThinkSystem NE1032 Switch
	Lenovo RackSwitch G8052

	Resources

