
redhat.com

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

INTRODUCTION

As organizations modernize their application delivery process and adopt new tools to make them

more efficient, infrastructure as code (IaC) has become a critical practice. IaC is an umbrella term,

usually referring to a broad range of tools, operational frameworks, and a rich ecosystem. In this

piece, we describe what is meant by infrastructure as code and how HashiCorp Terraform and

Red Hat® Ansible® Automation can be used as a foundation for an IaC initiative.

WHAT IS INFRASTRUCTURE AS CODE?

In the last four decades, most approaches to infrastructure management have relied on graphical

and command-line user interfaces that human operators have used to initialize or modify system

configurations. These approaches are prone to human error. The process carried out by an operator

might be documented by a checklist or a memorized routine without enforced oversight or

iterative versioning.

In contrast, the IaC approach promotes formalized, standardized, and automated operational

processes — and dictates that these operational processes are documented as configuration files or

programming code.

By treating infrastructure as code, IT organizations can automate management tasks while using

the best practices of software development, including code review and version control. This

approach mitigates management complexity by breaking down a task into smaller, more manageable

processes, controlling the execution of code, and effortlessly maintaining up-to-date documentation.

The IaC approach also reduces operational risks by allowing multiple subject matter experts to

peer review the code and by saving all the previous revisions of a codified infrastructure, enabling

previous versions to be restored in case of mistakes.

Ultimately, the IaC approach mitigates human errors by enforcing an automated execution of the

management task performed on the IT infrastructure.

INFRASTRUCTURE AS CODE WITH TERRAFORM AND
ANSIBLE AUTOMATION

To address the variety of operational challenges that an IT organization faces in large-scale

environments, the industry has developed many tools with specific focus areas.

Two of the most daunting operational challenges in modern environments are infrastructure

provisioning and configuration management. As IT environments grow in scale and complexity,

human errors multiply across all aspects of infrastructure and application life cycle — from

provisioning to configuration, through patching and security enforcement, all the way to

final decommissioning.

HASHICORP TERRAFORM AND
RED HAT ANSIBLE AUTOMATION
Infrastructure as code automation

OVERVIEW

2redhat.com OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

HashiCorp Terraform is an IaC tool for provisioning and managing IT resources. Configuration files

describe to Terraform the components needed to run a single application — or your entire datacenter.

Terraform focuses on the higher-level abstraction of the datacenter and associated services without

sacrificing the ability to use other tools to perform post-creation tasks.

Terraform generates an execution plan describing what it will do to reach the desired state, and then

it executes the plan to build the described infrastructure. As the configuration changes, Terraform is

able to determine what changed and create incremental execution plans, which can then be applied

to reach the desired state.

For many resources, there is additional configuration and setup beyond just creating the resource.

Terraform can invoke external tools, such as Red Hat Ansible Automation, after creating or before

destroying resources to perform additional configuration and other application-specific tasks.

The infrastructure Terraform can manage includes low-level components such as compute instances,

storage, and networking, as well as high-level components such as domain name system (DNS)

entries and Software-as-a-Service (SaaS) features.

Red Hat Ansible Automation is an IaC solution that can automate a wide range of management

tasks across heterogeneous environments. For example, Ansible Automation is designed to

orchestrate complex multitier application deployments to automate the human workflow that

comprises real-world application stacks.

Configuration files describe to Ansible Automation the desired state of the target IT system — and

how to reach that desired state. Ansible Automation also supports a dry run mode to preview

needed changes, allowing an understanding of what will be changed without impacting a running

system. As the configuration changes over time to adapt to the needs of the business, Ansible

Automation is able to incrementally modify the machine to apply the changes.

Modern IT organizations face enormous challenges to deliver increasingly more agile environments.

In most cases, no single tool can address all the needs and perform all tasks efficiently. To solve this

problem, Ansible Automation provides an automation framework designed to easily integrate with

and complement third-party solutions. Ansible Automation can perform automation tasks itself or

invoke external tools, such as HashiCorp Terraform, allowing IT organizations to use their preferred

tools to automate various aspects of IT operations.

ANSIBLE AUTOMATION AND TERRAFORM INTEGRATION

The challenges of provisioning and configuration management are closely related, as IT

organizations usually configure operating systems, middleware, and applications immediately

after deploying the infrastructure resources to support them. IT organizations can automate the

entire process by using Terraform for infrastructure provisioning and Ansible Automation for

infrastructure configuration and application deployment.

Both Ansible Automation and Terraform operate using an agentless architecture. Both also

promote a simplified human-readable interface for defining automation, making adoption easier for

enterprise and community users alike. Because of these similarities, these products are frequently

used together.

3redhat.com OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

While this combination leads to some overlap in capabilities, Terraform and Ansible Automation

can effectively build the foundation of an IaC initiative. For example, Terraform can be used

for infrastructure provisioning and decommissioning while Ansible Automation can be used for

infrastructure configuration and patching, as well as application deployment and maintenance.

Terraform and Ansible Automation can be integrated in different ways, depending on the operating

model of the IT organization:

•	Terraform invoking Ansible Automation

•	Ansible Automation invoking Terraform

Where you initiate your automation depends on the approach taken to resource management and

the scope at which your automation is being addressed. There is no right or wrong answer — the

decision largely depends on preference.

From an infrastructure perspective, initiation with Terraform makes sense if the goal is to create

infrastructure resources and if you use an IaC approach to gain a representation of configuration

and images to be deployed using Ansible Automation. These resources can then be delivered to the

application team for further action.

Example: A cloud operations team creates a selection of virtual machines (VMs) at the request

of the application team. The VMs may have standard packages installed, but they do not have a

business application identity.

From an application or broader system perspective, initiation with Ansible Automation makes sense.

The end-to-end definition of the automation required for the application stack includes a step to

provision infrastructure, and in this case, Ansible Automation would call Terraform for provisioning

activities before continuing with its workflow.

Example: An application team kicks off a build pipeline to create, configure, test, and promote to

production a new version of an application.

Ansible Automation users may want to use HashiCorp Packer to prebuild machine images and

containers to reduce provisioning times. This approach can be used with Ansible Automation local

and remote provisioners. Users of HashiCorp Vault can also integrate with Ansible Automation

using the hashi_vault plugin to securely fetch secrets and deliver them to applications.

TERRAFORM INVOKING ANSIBLE AUTOMATION

The mechanism for invoking external tools in Terraform is called a provisioner, and it includes

several built-in options. The two applicable to Ansible Automation are local-exec and remote-exec.

The local-exec provisioner, which allows any locally installed tool to be executed, can be used to

invoke Ansible Automation locally on the same machine as Terraform. This provisioner is used when

Ansible Automation is configuring a machine over the network.

The remote-exec provisioner, which allows Terraform to execute commands against a remote

resource, can be used to invoke Ansible Playbooks on remote resources after creation. This

provisioner is used when Ansible Automation is running on the machine being configured.

To invoke locally using local-exec requires Terraform to invoke ansible-playbook to start running a

playbook that can be specified using the command argument. Below is an example of a Terraform

configuration that uses local-exec to provision a VM.

4redhat.com OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

hcl

resource “aws_instance” “web” {

 # ...

 provisioner “local-exec” {

 command = “ansible-playbook -u ubuntu -i ‘${aws_instance.web.public_
dns},’ main.yml”

 }

}

A Terraform plan can be generated using the following command:

$ terraform plan

After the plan is reviewed, a Terraform apply can be run using the
following command:

$ terraform apply

Figure 1 details how this process works.

Generates a regular plan for the changes that are about to happen.

terraform plan

Creates the infrastructure resources, such as servers.

terraform apply

Uses local-exec to run ansible-playbook command locally
to start the Ansible Playbook run.

ansible-playbook -i inventory/hosts

Creates cloud resources and Ansible Automation provisions them.

terraform apply finishes

Figure 1. Terraform using local-exec

5redhat.com OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

This approach works well when Terraform is responsible for creating resources and Ansible

Automation is installed on the same machine with access to the newly created resources — i.e.,

Terraform and Ansible Automation are both installed on the same control node used to execute

resource creation commands, like a bastion host or management proxy.

A potential challenge with the local-exec provisioner is that it expects Ansible Automation to be

installed and executed locally on the machine running Terraform. For users who want to run Ansible

Automation on the newly created resource, ensure that Ansible Automation is installed on the

machine image and then the remote-exec provisioner can be used to execute Ansible Playbooks on

the newly created remote resource.

Generates a regular plan for the changes that are about to happen.

terraform plan

Creates the infrastructure resources, such as servers.

terraform apply

Copies files from the machine executing terraform apply to a remote
machine that is created using Terraform.

copy ansible playbook using the file provisioner

Uses local-exec to run ansible-playbook command remotely
to start the Ansible Playbook run on the server.

ansible-playbook -i inventory/hosts

Creates cloud resources and Ansible Automation provisions them.

terraform apply finishes

copy Ansible Playbook using the file provisioner

Figure 2. Terraform using remote-exec

This approach works well when Terraform is responsible for creating the resources, and Ansible

Automation is installed and invoked on the remote machine.

6redhat.com OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

ANSIBLE AUTOMATION INVOKING TERRAFORM

For users who want to use Ansible Automation to invoke Terraform, the Ansible module for

Terraform can be used to run terraform plan, terraform apply, and terraform destroy commands

right from the Ansible Playbook. This approach requires Terraform to be installed and available in

the system path of the Ansible control node. Ansible Automation uses the locally installed Terraform

binary to execute commands. Below is an example of an Ansible Playbook that runs terraform plan,

terraform apply, and terraform destroy commands.

- name: main

 hosts: all

 gather_facts: false

 connection: local

 tasks:

 - name: plan

 terraform:

 project_path: ‘terraform/’

 plan_file: “{{playbook_dir}}/tfplan”

 lock: true

 state: planned

 - name: apply

 terraform:

 project_path: ‘terraform/’

 lock: true

 state: present

 - name: destroy

 terraform:

 project_path: ‘terraform/’

 lock: true

 state: absent

The project_path variable defines where the Terraform configuration is stored. To learn more about

the Ansible Terraform module, visit https://docs.ansible.com/ansible/latest/modules/terraform_

module.html.

Copyright © 2018 Red Hat, Inc. Red Hat, OpenShift, Ansible, Red Hat Enterprise Linux, and the Shadowman logo are trademarks or
registered trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of
Linus Torvalds in the U.S. and other countries.

redhat.com
f14774_1118

NORTH AMERICA
1 888 REDHAT1

ABOUT RED HAT

Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting services.
As a connective hub in a global network of enterprises, partners, and open source communities, Red Hat
helps create relevant, innovative technologies that liberate resources for growth and prepare customers
for the future of IT.

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

SUMMARY

HashiCorp Terraform and Red Hat Ansible Automation are solutions that support an infrastructure

as code initiative. Both products offer strengths and areas of focus and support integrations

with third-party solutions. As technology partners, HashiCorp and Red Hat are committed to

supporting scenarios where Terraform and Ansible Automation can complement each other. This

commitment allows joint customers to automate end-to-end infrastructure and application life-cycle

management — from provisioning and retirement of computing resources to application deployment

and configuration of operating systems, middleware, and applications.

OVERVIEW  HashiCorp Terraform and Red Hat Ansible Automation

