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Executive Summary 

This document describes an example configuration of a performance-optimized Red Hat® Ceph® Storage 

3.2 cluster using Micron® SATA SSDs and NVMe™ SSDs, rack-mount servers based on AMD EPYC™ 

architecture and 100 Gigabit Ethernet (GbE) networking infrastructure.   

It details the hardware and software building blocks used to construct this reference architecture 

(including the Red Hat Enterprise Linux® OS configuration, network switch configurations and Ceph 

tuning parameters) and shows the performance test results and measurement techniques for a scalable 

4-node Ceph architecture. 

This solution is optimized for block performance while also providing very high object performance in a 

compact, rack-efficient design to enable: 

Faster deployment: The configuration has been pre-validated and is thoroughly documented to enable 

faster deployment. 

Balanced design: The right combination of NVMe SSDs, SATA SSDs, DRAM, processors and 

networking ensures subsystems are balanced and performance-matched. 

Broad use: Complete tuning and performance characterization across multiple IO profiles for broad 

deployment across multiple uses.  

Exceptional performance results were recorded for 4KB random block workloads and 4MB object workloads. 

Why Micron for this Solution 

Storage (SSDs and DRAM) represent a large portion 

of the value of today’s advanced server/storage 

solutions. Micron’s storage expertise starts at 

memory technology research, innovation and design 

and extends through collaborating with customers on 

total data solutions. Micron develops and 

manufactures the storage and memory products that 

go into the enterprise solutions we architect. Micron 

is the only storage provider able to offer a reference 

architecture based on quad-level cell (QLC) 

technology.1 We understand how QLC helps reduce 

cost in unique ways that deliver a better total solution 

in combination with our performance leadership on 

the 9200. 

 
____________ 
1As of the publishing of this document (March 2019).  

4KB Random Block Performance 

IO Profile IOPS Avg. Latency 

100% Read 922,261 3.5ms 

70%/30% R/W 392,797 5.0ms (R) / 15.4ms (W) 

100% Writes 190,730 16.8ms 

4MB Object Performance 

IO Profile GiB/s Avg. Latency 

100% Random Read 22.9 55.27ms 

100% Sequential Read 19.5 64.99ms 

100% Writes 4.9 128.33ms 

Micron Accelerated Solutions Reference Architectures  
Micron Accelerated Solutions provide optimized, pre-engineered, enterprise-leading solution 
templates for platforms co-developed between Micron and industry-leading hardware and 
software companies.  

Designed and tested at Micron’s Storage Solutions Center, they provide end users, system 
builders, independent software vendors (ISVs) and OEMs with a proven template to build 
next-generation solutions with reduced time, investment and risk. 

Tables 1a and 1b: Performance Summary 
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Ceph Distributed Architecture Overview 

A Ceph storage cluster is frequently built from multiple Ceph storage and management nodes for 

scalability, fault-tolerance and performance. Each node is based on industry-standard hardware and uses 

intelligent Ceph daemons that communicate with each other to: 

• Store, retrieve and replicate data 

• Monitor and report on cluster health 

• Redistribute data dynamically (remap and backfill) 

• Ensure data integrity (scrubbing) 

• Detect and recover from faults and failures 

To the Ceph client interface that reads and writes data, a Ceph storage cluster looks like a simple, single 

storage pool where data is stored. However, the storage cluster performs many complex operations in a 

manner that is completely transparent to the client interface. Ceph clients and Ceph object storage 

daemons (Ceph OSD daemons, or OSDs) both use the Controlled Replication Under Scalable Hashing 

(CRUSH) algorithm to determine the location to store and retrieve stored data and data objects. 

For a Ceph client, the storage cluster is very simple. When a Ceph client reads or writes data (referred to 

as an I/O context), it connects to a logical storage pool in the Ceph cluster. The figure below illustrates 

the overall Ceph architecture, with concepts that are described in the sections that follow. 

 

 

Figure 1:  Ceph Architecture 
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Clients write to Ceph storage pools while the CRUSH ruleset determines how placement groups are 

distributed across object storage daemons (OSDs). By distributing all data written to the Ceph cluster, it 

can be protected from data loss based on clear, concise data protection rules and policies. 

Ceph Components 

• Pools: A Ceph storage cluster stores data objects in logical dynamic partitions called pools. Pools can 

be created for a variety of reasons such as data types (block, file or object data) or simply to separate 

the data used by different user groups. The Ceph pool configuration dictates the type of data protection 

and the number of placement groups (PGs) in the pool. Ceph storage pools can be either replicated or 

erasure coded, as appropriate for the application and cost model. Additionally, pools can “take root” at 

any position in the CRUSH hierarchy, allowing placement on groups of servers with differing 

performance characteristics—allowing storage to be optimized for different workloads. 

• Placement groups: Ceph maps objects to placement groups (PGs). PGs are shards or fragments of a 

logical object pool that are composed of a group of Ceph OSD daemons that are in a peering 

relationship. Placement groups provide a means of creating replication or erasure coding groups of 

coarser granularity than on a per object basis. A larger number of placement groups (e.g., 200 per OSD 

or more) leads to better balancing. 

• CRUSH ruleset: The CRUSH algorithm provides controlled, scalable, and de-clustered placement of 

replicated or erasure-coded data within Ceph and determines how to store and retrieve data by 

computing data storage locations. CRUSH empowers Ceph clients to communicate with OSDs directly, 

rather than through a centralized server or broker. By determining a method of storing and retrieving 

data by an algorithm, Ceph avoids a single point of failure, a performance bottleneck, and a physical 

limit to scalability. 

• Ceph monitors (MONs): Before Ceph clients can read or write data, they must contact a Ceph MON 

node to obtain the current cluster map. A Ceph storage cluster can operate with a single monitor, but 

this introduces a single point of failure. For added reliability and fault tolerance, Ceph supports an odd 

number of monitors in a quorum (typically three or five for small to mid-sized clusters). Consensus 

among various monitor instances ensures consistent knowledge about the state of the cluster. 

• Ceph OSD daemons: In a Ceph cluster, Ceph Object Storage Daemon (OSD) daemons run on 

storage nodes and store data and handle data replication, recovery, backfilling, and rebalancing. They 

also provide some cluster state information to Ceph monitors by checking other Ceph OSD daemons 

with a heartbeat mechanism. A Ceph storage cluster configured to keep three replicas of every object 

requires a minimum of three Ceph OSD daemons, two of which need to be operational to successfully 

process write requests. Ceph OSD daemons roughly correspond to a file system on a physical hard 

disk drive. 

Ceph BlueStore Overview 

With the release of Red Hat Ceph Storage 3.2, Red Hat now supports as the default storage solution, 

Ceph BlueStore.  Replacing the legacy FileStore solution used prior to Ceph Luminous, BlueStore 

provides an optimized object storage solution designed that eliminates several components that were 

limiting the performance potential of the Ceph solution. 

BlueStore differs from FileStore in two key ways.  First, BlueStore no longer uses a Linux native file 

system (XFS), but stores data directly to raw storage devices. Second, metadata is no longer stored 

using leveldb, which has been replaced with the RocksDB key-value store on top of a lite custom 

filesystem called BlueFS to support storing RocksDB files on the raw storage devices. These differences 

are illustrated in Figure 2.   

https://ceph.com/wp-content/uploads/2016/08/weil-crush-sc06.pdf


 
 

 

 
 4 

A Micron Reference Architecture 
 

 

Figure 2:  FileStore vs. BlueStore 

Reference Architecture Overview 

This reference architecture (RA) is based on a single socket AMD® platform with an EPYCTM 7551P 

processor. This server platform provides the high CPU performance required for a performance-optimized 

Ceph cluster and yields an open, cost-effective software-defined storage (SDS) platform. This platform 

can be utilized as an effective building block for implementing a multi-petabyte OpenStack® cloud 

infrastructure. 

The storage configuration consists of two tiers of SSD storage. The Micron 5210 ION QLC SATA SSD  

provides fast, cost-effective capacity used for all data object storage. The Micron 9200 MAX NVMe SSDs 

provide a low-latency storage tier to host all write-ahead logs and the RocksDB key-value store. This two-

tiered storage configuration provides a more cost-effective, high-capacity data storage solution with little 

performance compromise relative to all NVMe Ceph configurations of the same size. Capacity per rack 

unit (RU) is maximized with 12, 3.84TB 5210 SSDs and 2, 1.6TB 9200 NVMe SSDs per 2U storage node.  

This reference Ceph implementation, including four storage nodes and one monitor node, takes up 10 

rack units and can be easily scaled up 2U and 46TB at a time (Figure 3). 

Network throughput is handled by a dual-port Mellanox® ConnectX®-5 100 GbE network card per storage 

node — one port for the client storage access network and another for the internal Ceph replication 

network. Clients and monitor nodes are connected to the client network via Mellanox ConnectX-4 50 GbE 

networking. 

  

https://www.amd.com/en/products/cpu/amd-epyc-7551p
http://collab.micron.com/Pages/results.aspx?https://www.micron.com/products/solid-state-drives/product-lines/5210k=ssd%20over%20provisioning
https://www.micron.com/products/solid-state-storage/product-lines/9200
http://www.mellanox.com/page/products_dyn?product_family=260&mtag=connectx_5_en_card
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Figure 3:  Micron NVMe Reference Architecture 

Software 

Red Hat Ceph Storage 3.2 

Red Hat Ceph Storage 3.2 is an implementation of Ceph version 12.2 “Luminous,” an open source, 

massively scalable storage solution. Suitable for both traditional and cloud infrastructures, it is used for 

multiple use cases such as data analytics and media streaming repositories. Red Hat Ceph Storage 3.2 is 

the first version of Red Hat Ceph Storage to fully support the use of the new BlueStore Ceph storage 

engine that has been designed and optimized for flash storage. 

Red Hat Enterprise Linux 7.6 

Red Hat® Enterprise Linux® (RHEL) is a high-performing operating system that has been deployed in IT 

environments for more than a decade. 

Red Hat Enterprise Linux 7.6 is noted for its enterprise-level performance, reliability, and security as well 

as its broad use (it is certified by leading hardware and software vendors), broad scalability (from 

workstations, to servers, to mainframes) and consistent application environment across physical, virtual, 

and cloud deployments.  

Software by Node Type 

Table 2 shows the software and version numbers used in the Ceph Monitor and Storage Nodes. 

Operating System Red Hat Enterprise Linux 7.6 

Storage Red Hat Ceph Storage 3.2 

NIC Driver Mellanox OFED Driver 4.4-2.0.7.0 

Host Bus Adapter Avago 9305-24i (SATA Drives) Firmware: 16.00.01.00 

Table 2:  Ceph Storage and Monitor Nodes: Software 

Table 3 shows the software and version numbers for the Ceph Load Generation Servers. Note that the 

Load Generation server software stack is very similar to the Storage Node software stack. 

  

Network Switches 

100 GbE, 32x QSFP28 

ports 

 

Monitor Nodes 

Intel x86 dual-socket 1U 

 

Storage Nodes 

AMD EPYC™ single 

socket with PCIe Gen3 
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Operating System Red Hat Enterprise Linux 7.5 

Storage Ceph Client: Red Hat Ceph Storage 3.2 

Benchmark FIO 3.10 w/ librbd enabled 

NIC Driver Mellanox OFED Driver 4.4-2.0.7.0 

Table 3:  Ceph Load Generation Nodes: Software 

Hardware 

This RA uses standard 2U, single-socket AMD EPYC architecture, x86 server platforms, each housing 12 

SATA SSDs and 2 NVMe SSDs (U.2 form factor) with additional storage for local operating systems. All 

SATA SSDs were connected to Avago 9305-24i SAS/SATA HBA. 

Ceph Storage Node  

We chose Supermicro's latest A+ Solutions product line AS-2113S-WTRT servers, supporting both 

SATA3 and NVMe SSDs in a compact form factor. Designed to deliver performance, flexibility, scalability, 

and serviceability, the servers are well-suited for demanding enterprise workloads (Figure 4). 

Performance: A single AMD EPYC 7551P (180W/32 cores) with support for up to 2TB of memory in 16 

DIMM sockets and support for up to 14 2.5-inch SSDs. 

Flexibility: AS-2113S-WTRT enables enterprise IT professionals to easily use a single server platform 

that can be configured for a wide variety of workloads, reducing qualification time and the need for 

excessive spare inventories to manage.  

Scalability: Support for up to 2TB of memory in 16 DIMM sockets, up to 10, 2.5-inch SATA3 drives and 

up to 6, 2.5-inch SATA3/NVMe drives for increased storage bandwidth and up to 5 add-on PCIe 

expansion cards in 2U. 

Serviceability: Supermicro’s remote management software packages make monitoring infrastructure 

simple and effective. 

 

  

Figure 4:  Supermicro A+ Server AS-2113S-WTRT 
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Server Type x86 (single-socket) 2U with PCIe Gen3 (“EPYC”) 

Model Supermicro A+ AS-2113S-WTRT 

CPU (x1) AMD EPYC 7551P: 32 cores, 64 threads, 2.0 GHz base (2.55 GHz turbo) 

DRAM (x8) Micron 32GB DDR4-2666 MT/s, 256GB total per node 

SATA (x12) Micron 5210 ION QLC SSDs, 3.84TB each 

NVMe (x2) Micron 9200 MAX NVMe SSDs, 1.6TB each 

SATA (OS) 64GB SATA DOM 

Network (x1) Mellanox ConnectX-5 100 GbE dual-port (MCX516A-CCAT) 

Host Bus Adapter Avago 9305-24i 

Table 4:  Storage Nodes Hardware Details 

 

Ceph Monitor Node  

Server Type x86 (single-socket) 2U with PCIe Gen3 (“EPYC”) 

Model Supermicro A+ AS-2113S-WTRT 

CPU (x1) AMD EPYC 7551P: 32 cores, 64 threads, 2.0 GHz base (2.55 GHz turbo) 

DRAM (x8) Micron 32GB DDR4-2666 MT/s, 256GB total per node 

SATA (OS) 64GB SATA DOM 

Network (x1) Mellanox ConnectX-4 50GbE single-port (MC4X413A-GCAT) 

Table 5:  Monitor Nodes Hardware Details 

Micron 5210 ION SATA SSD 

The Micron 5210 ION is the world’s first SSD to market with groundbreaking quad-level cell (QLC) NAND 

technology, delivering fast capacity for less. Ideal for handling the demands of real-time analytics, big 

data, media streaming, block/object stores, SQL/NoSQL and the data lakes that feed artificial intelligence 

(AI) and machine learning, which are workloads that Red Hat Ceph Storage is designed to support. 

Available in capacities from 1.92TB to 7.68TB, the 5210 ION is a highly read-centric solution for large, 

primarily read workloads such as long-term data archives used in many of today’s analytics solutions. 

Model 5210 ION Interface 6 Gb/s SATA 

Form Factor 2.5-inch Capacity 3.84TB 

NAND Micron 3D QLC MTTF 2M device hours 

Sequential Read1 540 MB/s Random Read 83,000 IOPS 

Sequential Write1 350 MB/s Random Write 6,500 IOPS 

Table 6:  5210 ION 1.6TB Specifications Summary  

                                                
 

1 MB/s measured using 128K transfers, IOPS measured using 4K transfers. All data is steady state. Complete MTTF details are 

available in the product data sheet. 

https://www.micron.com/-/media/client/global/documents/products/product-flyer/5210_ion_ssd_product_brief.pdf?la=en
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Micron 9200 MAX NVMe SSDs 

The Micron 9200 series of NVMe SSDs is our flagship performance family and our second generation of 

NVMe SSDs. The 9200 family has the right capacity for demanding workloads, with capacities from 1.6TB 

to 11TB in write-intensive, mixed-use and read-intensive designs.  

Model 9200 MAX Interface PCIe x4 Gen3  

Form Factor U.2 Capacity 1.6TB 

NAND Micron 3D TLC MTTF 2M device hours 

Sequential Read1 3.50 GB/s Random Read 680,000 IOPS 

Sequential Write1 1.90 GB/s Random Write 255,000 IOPS 

Table 6:  9200 MAX 1.6TB Specifications Summary 

Network Switches 

Supermicro 100 GbE switches are configured with multiple VLANs — one for the client network and one 

for the Red Hat Ceph Storage private cluster network. 

Model  Supermicro SSE-C3632SR 

Software Cumulus Linux 3.7.1 

Table 7:  Network Switches (Hardware and Software) 

Offering 32 Ethernet ports at 40 Gb/s /100 Gb/s, the SSE-C3632S switch enables robust layer-3 IP fabric 

for flexible layer-2 overlay in Ethernet fabric architectures. For modern scale-out, leaf-and-spine data 

center network deployments, the SSE-C3632S is positioned as the high-speed spine layer to provide 

scalable bisectional fabric bandwidth for leaf layer such as the SSE-X3648S switch.  

Depending on deployment connectivity, physical Ethernet QSFP28 ports in the SSE-C3632S can be 

configured for either 40 Gb/s or 100 Gb/s per port, thus enabling a flexible physical connectivity option 

between the spine layer and leaf layer in the data center Ethernet fabric. 

Mellanox ConnectX®-5 EN Dual Port NICs 

The ConnectX-5 EN Network Controller with two ports of 100 Gb/s Ethernet connectivity and advanced 

offload capabilities delivers high bandwidth, low latency and high computation efficiency for high-

performance, data-intensive and scalable HPC, cloud, data analytics, database and storage platforms.  

Planning Considerations 

Number of Ceph Storage Nodes 

Ten storage nodes are the recommended upper scale limit for an enterprise Ceph cluster. Four storage 

nodes represent a valid building block to use for scaling up to larger deployments. Additional nodes can 

be integrated with the cluster as needed for scale. This RA uses four storage nodes. 

Number of Ceph Monitor Nodes 

At least three monitor nodes should be configured on separate hardware for any nontest purposes. These 

nodes do not require high-performance CPUs and do not affect the performance of the storage nodes. 

They do benefit from having SSDs to store the monitor (CRUSH) map data.  

For testing only, this RA uses only a single monitor node. Budget for at least three nodes for production. 
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Replication Factor 

NVMe SSDs have high reliability with high MTBR and low bit error rate. 2x replication is recommended in 

production when deploying OSDs on NVMe versus the 3x replication common with legacy storage. 

CPU Sizing 

Ceph OSD processes can consume large amounts of CPU while doing small block operations. 

Consequently, a higher CPU core count generally results in higher performance for I/O-intensive 

workloads. For throughput-intensive workloads characterized by large sequential I/O, Ceph performance 

is more likely to be bound by the maximum network bandwidth or storage bandwidth of the cluster. 

Ceph Configuration Tuning 

Tuning Ceph for SSD devices can be complex. The ceph.conf settings used in this RA are optimized for 

small block random performance and are included in Appendix A. 

Networking 

A 25 GbE network is required to leverage the maximum block performance benefits of an NVMe-based 

Ceph cluster. For throughput-intensive workloads, 50 GbE to 100 GbE is recommended. It is 

recommended that a physical network be deployed for Ceph internal data movement between storage 

nodes and a separate physical network be deployed for application client server access to Ceph monitor 

and data nodes to maximize performance. 

Number of OSDs per Drive 

To reduce tail (QoS) latency in 4KB write transfers, it is recommended to run more than one OSD per 

physical SSD. Testing with one OSD per SSD yields slightly better performance in I/Os per second 

(IOPS); however, running two OSDs per SSD provides more consistent and reduced tail latency for 4KB 

random writes across all tested workloads, as seen in Figure 5.  

 

Figure 5:  Number of OSDs and Write Average Latency 
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Figure 6 shows using two OSDs per drive also yields better read QoS latency at all tested queue depths. 

 

Figure 6:  OSDs and Read Tail Latency 

For this RA, two OSDs per QLC SSD device are used. The method used for deploying two OSDs per 

drive is included in Appendix A. 

Measuring Performance 

4KB Random Workloads: FIO + RBD 

Four-kilobyte random workloads were tested using the FIO synthetic IO generation tool and the Ceph 

RADOS Block Device (RBD) driver on each of 10 load generation client servers. 

Fifty RBD images were created at the start of testing. When testing on a 2x replicated pool, the RBD 

images were 150GB each (7.5TB of data); on a 2x replicated pool, that equals 15TB of total data stored. 

The four storage nodes have a combined total of 1TB of DRAM, which is 6.7% of the dataset size. 

Four-kilobyte random writes were measured by scaling the number of FIO clients running against Ceph at 

a fixed queue depth of 64. A client in this case is a single instance of FIO running on a load generation 

server. Using a queue depth of 64 simulates a reasonably active RDB image consumer and allows our 

tests to scale up to a high client count. The number of clients was scaled from 10 clients up to 50 clients. 

Ten load generation servers were used in testing with an equal number of FIO instances on each. 

Four-kilobyte random reads and 70/30 read/write tests were measured by using all 50 RBD images and 

using all 50 instances of FIO executing simultaneously, scaling up the queue depth per FIO client from 1 

to 64. Using the maximum of our testing scale (50 FIO clients) ensures that the entire 15TB dataset is 

being accessed without depending on data being cached by the Linux filesystem caching capabilities and 

providing results not representative of the SSDs. 
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Each test was run three times for 10 minutes with a 5-minute ramp-up time. Linux filesystem caches were 

cleared and the Ceph service was restarted between each test. The results reported are the averages 

across all test runs. 

4MB Object Workloads: RADOS Bench 

RADOS Bench is a built-in tool for measuring object performance. It represents the best-case object 

performance scenario of data coming directly to Ceph from a RADOS Gateway node. 

Four-megabyte object writes were measured by running RADOS Bench with a “threads” value of 16 on a 

load generation server writing directly to a Ceph storage pool. The number of load generation servers 

scaled up from 2 to 10. 

Four-megabyte object reads were measured by first writing 15TB of object data into a 2x replicated pool 

using 10 RADOS Bench instances (1 per load generation server). Using the 10 RADOS Bench instances 

during testing ensures that the entire 15TB dataset is being accessed and not cached by the operating 

system. Once the data load was complete, the RADOS Bench instances were used to run 4MB object 

reads against the storage pool. Performance was then measured across a wide variety of RADOS Bench 

threads scaling from 1 thread to 32 threads. Separate read tests were performed to measure random and 

sequential read use cases. 

Object workload tests were run for 10 minutes, three times each. Linux filesystem caches were cleared, 

and the Ceph service was restarted between each test. The results reported are the averages across all 

test runs. 

Baseline Test Methodology 

Before Ceph testing was initiated, both the storage and network performance were baseline tested 

(tested without Ceph software) to determine the theoretical hardware performance maximums using FIO 

for storage testing and iPerf for network bandwidth testing. This provided a baseline for storage from 

which to measure the impact of the Ceph software, as well as the benefits of adding NVMe SSDs as a 

cache tier, as well as a baseline for network performance to identify the maximum usable network 

bandwidth available. 

• Baseline storage testing was done with one locally run FIO command test across all 12 SATA drives 

simultaneously.  

• Network testing used two concurrent iperf3 tests (details provided below).  

Storage Baseline Results 

Each storage node was tested using FIO across the 12, 5210 ION 3.6TB QLC SSDs. Four-kilobyte 

random writes were measured with 20 jobs at a queue depth of 4. Four-kilobyte random reads were 

measured with 50 jobs at a queue depth of 32. 

Storage Node 
4KB Workloads: FIO on 12x 5210 ION QLC SSDs 

Write IOPS Write Avg. Latency (ms) Read IOPS Read Avg. Latency (ms) 

Node 1 263,741 0.2895 656,766 0.2621 

Node 2 264,492 0.2867 646,356 0.2643 

Node 3 280,203 0.2711 643,157 0.2652 

Node 4 274,638 0.2763 638,891 0.2631 

Table 8:  Baseline FIO 4KB Random Workloads  

https://iperf.fr/
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Four-megabyte writes were measured with 20 jobs at a queue depth of 1. Four-megabyte reads were 

measured with 20 jobs at a queue depth of 2. 

Storage Node  

4MB Workloads: FIO on 12x 5210 ION QLC SSDs 

Write Throughput 
Write Avg. 

Latency  
Read Throughput 

Read Avg. 

Latency  

Node 1 3.16 GiB/s 41.3ms 5.60 GiB/s 24.9ms 

Node 2 3.26 GiB/s 41.6ms 5.64 GiB/s 24.7ms 

Node 3 3.28 GiB/s 40.1ms 5.55 GiB/s 25.0ms 

Node 4 3.27 GiB/s 39.8ms 5.47 GiB/s 33.9ms 

Table 9:  Baseline FIO 4MB Workloads 

Network Baseline Results 

Each server’s network connectivity was tested using four concurrent iPerf3 runs for one minute.  

Each server was tested against each other. 

All storage nodes with 100 GbE NICs averaged 96+ Gb/s during baseline testing. Monitor nodes and 

clients with 50 GbE NICs averaged 45+ Gb/s during testing. 

Ceph Test Results and Analysis 

The results detailed below were collected on a 2x replicated storage pool in Red Hat Ceph Storage 3.2 

with 8192 placement groups. For all test results, a maximum QoS (99.99%) latency of 3 seconds was 

used to determine a suitable stopping point for testing.  

4KB Random Workload Testing 

4KB Random Write Workload Analysis 

Four-kilobyte random writes performance reached a maximum of 190K IOPS at 50 clients. Average 

latency ramped up linearly with the number of clients, reaching a maximum of 16.8ms at 50 clients.  

Figures 7 and 8 show that IOPS increased gradually, then flattened out around 40 clients. Ceph starts to 

become CPU limited with 40 clients, which created erratic behavior in tail latency. 99.99% tail latency 

gradually increased from 51ms at 10 clients to 151ms at 50 clients.  
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Figure 7:  4KB Random Write Performance 

Average CPU utilization in Ceph was high, increasing from 85.7% with 10 clients to 90%+  

at 20 clients. Above 20 clients, average CPU utilization was flat. 
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Figure 8:  4KB Random Write IOPS vs. CPU Utilization 

Table 10 includes 95% latency, which scales linearly, similar to average latency behavior. 

FIO 

Clients 

4KB Random Write Performance: FIO RBD @ Queue Depth 64 

4KB Random 

Write IOPS 

Average 

Latency 
95% Latency 99.99% Latency 

Average CPU 

Utilization 

10 Clients 166,927 3.8ms 7.1ms 51.7ms 85.7% 

20 Clients 181,098 7.1ms 14.8ms 75.5ms 91.3% 

30 Clients 187,964 10.2ms 22.0ms 93.7ms 93.1% 

40 Clients 189,979 13.5ms 29.0ms 118.5ms 94.1% 

50 Clients 190,730 16.8ms 36.0ms 151.1ms 94.7% 

Table 10:  4KB Random Write Results 
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4KB Random Read Workload Analysis 

Four-kilobyte random reads scaled from 73K IOPS up to 922K IOPS. Average latency increased to a 

maximum of 3.5ms at queue depth = 64 (Figure 9), and QoS (99.99% tail) latency increased to a little 

over 300ms (Figure 10) as queue depth increased to our test maximum of QD64, with a sharp increase at 

queue depths greater than 16. Moving from a queue depth of 16 to 32 resulted in a tail latency increase of 

almost 7X for only an additional 6.9% increase in IOPS performance. Based on this data, it is 

recommended that heavy read workloads should use a queue depth of 16 or less to optimize 

performance. 

 

Figure 9:  4KB Random Read IOPS vs. Average Latency 
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Figure 10:  4KB Random Read IOPS vs. QoS Latency 

Ceph reached extreme CPU utilization levels starting at a queue depth of 16 at 91%. Again, this data 

indicates that heavy read workloads should use a queue depth of 16 or less to optimize performance. 
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Figure 11:  4KB Random Read IOPS vs. CPU Utilization 

Table 11 summarizes these results, including 95%.  Average and 95% latencies were similar until a 

queue depth of 16, coinciding with CPU utilization reaching 90%+, also occurring at a queue depth of 16. 

Random Read Results Summary 

Queue 

Depth 

4KB Random Read Performance: 100 FIO RBD Clients at Varied QD 

4KB Random 

Read IOPS 

Average 

Latency 

95% 

Latency 

99.99% 

Latency 

Average 

CPU 

Utilization 

QD 1 73,507 0.7ms 0.8ms 5.2ms 12.3% 

QD 4 345,579 0.6ms 0.8ms 6.5ms 52.2% 

QD 8 601,321 0.7ms 1.0ms 9.0ms 76.4% 

QD 16 803,781 1.0ms 2.0ms 21.6ms 90.9% 

QD 32 873,479 1.8ms 5.0ms 149.5ms 95.3% 

QD 64 922,261 3.5ms 10.0ms 301.7ms 97.0% 

Table 11:  4KB Random Read Results 
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4KB Random 70% Read / 30% Write Workload Analysis 

The 70% read / 30% write testing scales from 51K IOPS at a queue depth of 1 to 392K IOPS at a queue 

depth of 64 in a very smooth trajectory. Read and write average latencies are graphed separately, with 

maximum average read latency at 5ms and max average write latency at 15.4ms.  

 

Figure 12:  4KB Random 70/30 R/W IOPS vs. Average Latency 

Figure 13 shows that read and write tail latency started increasing more rapidly at a queue depth of 8. 

IOPS performance at a queue depth of 16 increased by 22%, while tail latency increased 90% for read 

operations and 44% for write operations. This tail latency rate of increase gets worse as queue depth is 

increased, indicating that we are reaching CPU utilization saturation, which is verified in Figure 14.  
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Figure 13:  4KB Random 70/30 R/W IOPS vs. QoS (99.99%) Latency 

Figure 14 below shows that the CPU utilization increased in a smooth progression across the entire span 

of tested queue depths indicating that mixed read / write workloads. Once CPU utilization moved above 

90%, latency — especially QoS latency — it was negatively impacted, showing sharp increases starting 

at queue depths greater than 16. 
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Figure 14:  4KB Random 70/30 R/W IOPS vs. CPU Utilization 

Random 70/30 R/W Results Summary 

Due to FIO reporting a maximum latency of 17 seconds, tail latencies above a queue depth of 16 are 

unknown. 

Queue 

Depth 

4KB Random 70/30 R/W Performance: 100 FIO RBD Clients  

at Varied QD 

R/W 

IOPS 

Avg. Read 

Latency 

Avg. Write 

Latency 

99.99% Read 

Latency 

99.99% Write 

Latency 

Avg. CPU 

Utilization 

QD 1 51,677 0.8ms 1.4ms 7.9ms 18.7ms 18.2% 

QD 2 102,688 0.7ms 1.5ms 12.8ms 25.0ms 35.9% 

QD 4 174,620 0.8ms 1.9ms 20.2ms 29.9ms 58.2% 

QD 6 229,695 0.9ms 2.2ms 23.0ms 32.0ms 70.0% 

QD 8 263,721 1.0ms 2.6ms 26.0ms 35.4ms 77.9% 

QD 16 323,293 1.6ms 4.5ms 34.6ms 51.1ms 89.5% 

QD 32 363,568 2.7ms 8.4ms 71.6ms 104.2ms 94.7% 

QD 64 392,797 5.0ms 15.4ms 312.7ms 334.2ms 96.9% 

Table 12:  4KB 70/30 Random Read/Write Results  
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4MB Object Workloads 

Object workloads were tested using RADOS Bench, a built-in Ceph benchmarking tool. These results 

represent the best-case scenario of Ceph accepting data from RADOS Gateway nodes. The configuration 

of RADOS Gateway is outside the scope of this RA. 

Object writes were measured by using a constant 16 threads in RADOS Bench and scaling up the 

number of instances writing to Ceph concurrently.  

Figure 15 below shows the results for 4MB object writes at varying thread counts. 

 

Figure 15:  4MB Object Write Throughput vs. Average Latency 

Four-megabyte object writes reached their maximum value of 4.9 GiB/s and 128ms average latency with 

10 clients. CPU utilization was low for this test and never reached above an average of 17%.  
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4MB Object Write Results Summary 

Instances @  

16 Threads 

4MB Object Write Performance: RADOS Bench 

Write Throughput Average Latency 

2 Instances 2.9 GiB/s 42.5ms 

4 Instances 3.8 GiB/s 65.9ms 

6 Instances 4.2 GiB/s 88.6ms 

8 Instances 4.6 GiB/s 109ms 

10 Instances 4.9 GiB/s 128ms 

Table 15:  4MB Object Write Results 

Reads were measured by first writing out 7.5TB of object data with 10 instances, then reading that data 

with all 10 RADOS Bench clients while scaling up the number of threads used from 1 to 32. 

Figure 16 shows that 4MB object random reads reached 21.6 GiB/s at around 16 threads on 10 

instances, while sequential reads peeked at 17.3 GiB/s at 16 threads. 

 

Figure 16:  4MB Object Read Throughput vs. Average Latency 

Four-megabyte object reads reached their maximum of 22.4 GiB/s and 55.3ms average latency at 32 

threads. CPU utilization was low for this test and never reached above an average of 15% of CPU 

utilization. 
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10 Instances @  

Varied Threads 

4MB Object Read Performance: RADOS Bench 

Random Read 

Throughput 

Random Read 

Average Latency 

Sequential Read 

Throughput 

Sequential Read 

Average Latency 

1 Thread 2.9 GiB/s 13ms 2.5 GiB/s 15ms 

2 Threads 5.5 GiB/s 14ms 4.7 GiB/s 16ms 

4 Threads 10.1 GiB/s 15ms 8.3 GiB/s 18ms 

8 Threads 16.5 GiB/s 18ms 13.3 GiB/s 23ms 

16 Threads 21.6 GiB/s 28ms 17.3 GiB/s 36ms 

32 Threads 22.4 GiB/s 55ms 19.0 GiB/s 65ms 

Table 14:  4MB Object Read Results 

Summary 

With almost one million 4KB random read IOPS, 210K random write IOPS and 346K mixed IOPS 

performance in four rack units with 184TB data storage and 200TB of total storage, the two-tiered storage 

configuration using NVMe and SATA provides a high-performance, lower-cost alternative to an all-NVMe 

Ceph solution.   

Performance is more predictable when using more than one OSD per SSD across the entire range of 

tested client workloads and queue depths. While this reference solution uses two OSDs per SSD, it is 

recommended that testing be performed using real-world application workloads that are targeted for use 

with the Ceph cluster. 

Previous test results have clearly shown that Ceph BlueStore is the recommended configuration for all 

Ceph deployments using Red Hat Ceph Storage 3.2 or later (Ceph Community Edition 12.2 or later).  

For general purpose workloads or those analytics workloads that have a high-capacity storage 

requirement, this NVMe/SATA solution is highly recommended. When no-compromise performance is 

required, Micron’s all-NVMe Ceph solution is our fastest measured solution to date and is highly 

recommended as an alternative. 

  

http://bit.ly/2MphqnH
http://bit.ly/2U5zvJU
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Appendix A: Configuration Details 

OS Tuning/NUMA 

OS tuning parameters are deployed by Ceph-Ansible. The following OS settings were used: 

disable_transparent_hugepage: true 

kernel.pid_max, value: 4,194,303 

fs.file-max, value: 26,234,859 

vm.zone_reclaim_mode, value: 0 

vm.swappiness, value: 1 

vm.min_free_kbytes, value: 1,000,000 

net.core.rmem_max, value: 268,435,456 

net.core.wmem_max, value: 268,435,456 

net.ipv4.tcp_rmem, value: 4096 87,380 134,217,728 

net.ipv4.tcp_wmem, value: 4096 65,536 134,217,728 

ceph_tcmalloc_max_total_thread_cache: 134,217,728 

NUMA tuning was not relevant to this RA as it is based on a single CPU architecture. 

Ceph.conf 

[client] 

rbd_cache = False 

rbd_cache_writethrough_until_flush = False 

 

# Please do not change this file directly 

since it is managed by Ansible and will be 

overwritten 

[global] 

auth client required = none 

auth cluster required = none 

auth service required = none 

auth supported = none 

cephx require signatures = False 

cephx sign messages = False 

cluster network = 192.168.1.0/24 

debug asok = 0/0 

debug auth = 0/0 

debug bluefs = 0/0 

debug bluestore = 0/0 

debug buffer = 0/0 

debug client = 0/0 

debug context = 0/0 

debug crush = 0/0 

debug filer = 0/0 

debug filestore = 0/0 

debug finisher = 0/0 

debug hadoop = 0/0 

debug heartbeatmap = 0/0 

debug journal = 0/0 

debug journaler = 0/0 

debug lockdep = 0/0 

debug log = 0 

debug mds = 0/0 

debug mds_balancer = 0/0 

debug mds_locker = 0/0 

debug mds_log = 0/0 

debug mds_log_expire = 0/0 

debug mds_migrator = 0/0 

debug mon = 0/0 

debug monc = 0/0 

debug ms = 0/0 

debug objclass = 0/0 

debug objectcacher = 0/0 

debug objecter = 0/0 

debug optracker = 0/0 

debug osd = 0/0 

debug paxos = 0/0 

debug perfcounter = 0/0 

debug rados = 0/0 

debug rbd = 0/0 

debug rgw = 0/0 

debug rocksdb = 0/0 

debug throttle = 0/0 

debug timer = 0/0 

debug tp = 0/0 

debug zs = 0/0 

fsid = 36a9e9ee-a7b8-4c41-a3e5-0b575f289379 

mon host = 192.168.0.203 

mon pg warn max per osd = 800 

mon_allow_pool_delete = True 

mon_max_pg_per_osd = 800 

ms type = async 
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ms_crc_data = False 

ms_crc_header = True 

osd objectstore = bluestore 

osd_pool_default_size = 2 

perf = True 

public network = 192.168.0.0/24 

rocksdb_perf = True 

 

[mon] 

mon_max_pool_pg_num = 166496 

mon_osd_max_split_count = 10000 

 

[osd] 

bluestore_csum_type = none 

bluestore_extent_map_shard_max_size = 200 

bluestore_extent_map_shard_min_size = 50 

bluestore_extent_map_shard_target_size = 100 

osd_max_pg_log_entries = 10 

osd_memory_target = 10737418240 

osd_min_pg_log_entries = 10 

osd_pg_log_dups_tracked = 10 

osd_pg_log_trim_min = 10 

 

bluestore_rocksdb_options = 

compression=kNoCompression,max_write_buffer_

number=64,min_write_buffer_number_to_merge=3

2,recycle_log_file_num=64,compaction_style=k

CompactionStyleLevel,write_buffer_size=4MB,t

arget_file_size_base=4MB,max_background_comp

actions=64,level0_file_num_compaction_trigge

r=64,level0_slowdown_writes_trigger=128,leve

l0_stop_writes_trigger=256,max_bytes_for_lev

el_base=6GB,compaction_threads=32,flusher_th

reads=8,compaction_readahead_size=2

Ceph-Ansible Configuration 

All.yml 

---

dummy: 

mon_group_name: mons 

osd_group_name: osds 

rgw_group_name: rgws 

mds_group_name: mdss 

nfs_group_name: nfss 

restapi_group_name: restapis 

rbdmirror_group_name: rbdmirrors 

client_group_name: clients 

iscsi_gw_group_name: iscsigws 

mgr_group_name: mgrs 

ntp_service_enabled: false 

ceph_origin: repository 

ceph_repository: rhcs 

ceph_rhcs_version: "{{ 

ceph_stable_rh_storage_version | default(3) 

}}" 

ceph_repository_type: iso 

ceph_rhcs_iso_path: "{{ 

ceph_stable_rh_storage_iso_path | 

default('/home/cdep/rhceph-3.2-rhel-7-beta-

x86_64-dvd.iso') }}" 

ceph_rhcs_mount_path: "{{ 

ceph_stable_rh_storage_mount_path | 

default('/tmp/rh-storage-mount') }}" 

ceph_rhcs_repository_path: "{{ 

ceph_stable_rh_storage_repository_path | 

default('/tmp/rh-storage-repo') }}" # where 

to copy iso's content 

fsid: <insert-fsid-here> 

generate_fsid: false 

cephx: false 

rbd_cache: "false" 

rbd_cache_writethrough_until_flush: "false" 

monitor_interface: enp99s0f1.501 

ip_version: ipv4 

public_network: 192.168.0.0/24 

cluster_network: 192.168.1.0/24 

osd_mkfs_type: xfs 

osd_mkfs_options_xfs: -f -i size=2048 

osd_mount_options_xfs: 

noatime,largeio,inode64,swalloc 

osd_objectstore: bluestore 

ceph_conf_overrides: 

 global: 

  auth client required: none 

  auth cluster required: none 

  auth service required: none 

  auth supported: none 

  osd objectstore: bluestore 

  cephx require signatures: False 

  cephx sign messages: False 

  mon_allow_pool_delete: True 

  mon_max_pg_per_osd: 800 

  mon pg warn max per osd: 800 

  ms_crc_header: True 

  ms_crc_data: False 

  ms type: async 

  perf: True 

  rocksdb_perf: True 
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  osd_pool_default_size: 2 

  debug asok: 0/0 

  debug auth: 0/0 

  debug bluefs: 0/0 

  debug bluestore: 0/0 

  debug buffer: 0/0 

  debug client: 0/0 

  debug context: 0/0 

  debug crush: 0/0 

  debug filer: 0/0 

  debug filestore: 0/0 

  debug finisher: 0/0 

  debug hadoop: 0/0 

  debug heartbeatmap: 0/0 

  debug journal: 0/0 

  debug journaler: 0/0 

  debug lockdep: 0/0 

  debug log: 0 

  debug mds: 0/0 

  debug mds_balancer: 0/0 

  debug mds_locker: 0/0 

  debug mds_log: 0/0 

  debug mds_log_expire: 0/0 

  debug mds_migrator: 0/0 

  debug mon: 0/0 

  debug monc: 0/0 

  debug ms: 0/0 

  debug objclass: 0/0 

  debug objectcacher: 0/0 

  debug objecter: 0/0 

  debug optracker: 0/0 

  debug osd: 0/0 

  debug paxos: 0/0 

  debug perfcounter: 0/0 

  debug rados: 0/0 

  debug rbd: 0/0 

  debug rgw: 0/0 

  debug rocksdb: 0/0 

  debug throttle: 0/0 

  debug timer: 0/0 

  debug tp: 0/0 

  debug zs: 0/0 

 mon: 

  mon_max_pool_pg_num: 166496 

  mon_osd_max_split_count: 10000 

 client: 

  rbd_cache: false 

  rbd_cache_writethrough_until_flush: false 

 osd: 

  osd_min_pg_log_entries: 10 

  osd_max_pg_log_entries: 10 

  osd_pg_log_dups_tracked: 10 

  osd_pg_log_trim_min: 10  

  bluestore_csum_type: none 

  osd_memory_target: 10737418240 

  bluestore_extent_map_shard_min_size: 50 

  bluestore_extent_map_shard_max_size: 200 

  bluestore_extent_map_shard_target_size: 

100 

 

disable_transparent_hugepage: true 

os_tuning_params: 

  - { name: kernel.pid_max, value: 4194303 } 

  - { name: fs.file-max, value: 26234859 } 

  - { name: vm.zone_reclaim_mode, value: 0 } 

  - { name: vm.swappiness, value: 1 } 

  - { name: vm.min_free_kbytes, value: 

1000000 } 

  - { name: net.core.rmem_max, value: 

268435456 } 

  - { name: net.core.wmem_max, value: 

268435456 } 

  - { name: net.ipv4.tcp_rmem, value: 4096 

87380 134217728 } 

  - { name: net.ipv4.tcp_wmem, value: 4096 

65536 134217728 } 

ceph_tcmalloc_max_total_thread_cache: 

134217728 

containerized_deployment: False
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Osds.yml 

--- 

dummy: 

osd_scenario: lvm 

 

lvm_volumes: 

   - data: data-lv1 

     data_vg: vg_sda 

     wal: wal-lv1 

     wal_vg: vg_nvme0n1 

     db: db-lv1 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdb 

     wal: wal-lv2 

     wal_vg: vg_nvme0n1 

     db: db-lv2 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdc 

     wal: wal-lv3 

     wal_vg: vg_nvme0n1 

     db: db-lv3 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdd 

     wal: wal-lv4 

     wal_vg: vg_nvme0n1 

     db: db-lv4 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sde 

     wal: wal-lv5 

     wal_vg: vg_nvme0n1 

     db: db-lv5 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdf 

     wal: wal-lv6 

     wal_vg: vg_nvme0n1 

     db: db-lv6 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdg 

     wal: wal-lv7 

     wal_vg: vg_nvme0n1 

     db: db-lv7 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdh 

     wal: wal-lv8 

     wal_vg: vg_nvme0n1 

     db: db-lv8 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdi 

     wal: wal-lv9 

     wal_vg: vg_nvme0n1 

     db: db-lv9 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdj 

     wal: wal-lv10 

     wal_vg: vg_nvme0n1 

     db: db-lv10 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdk 

     wal: wal-lv11 

     wal_vg: vg_nvme0n1 

     db: db-lv11 

     db_vg: vg_nvme0n1 

   - data: data-lv1 

     data_vg: vg_sdl 

     wal: wal-lv12 

     wal_vg: vg_nvme0n1 

     db: db-lv12 

     db_vg: vg_nvme0n1 

   - data: data-lv2 

     data_vg: vg_sda 

     wal: wal-lv1 

     wal_vg: vg_nvme1n1 

     db: db-lv1 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdb 

     wal: wal-lv2 

     wal_vg: vg_nvme1n1 

     db: db-lv2 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdc 

     wal: wal-lv3 

     wal_vg: vg_nvme1n1 

     db: db-lv3 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdd 

     wal: wal-lv4 

     wal_vg: vg_nvme1n1 

     db: db-lv4 
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     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sde 

     wal: wal-lv5 

     wal_vg: vg_nvme1n1 

     db: db-lv5 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdf 

     wal: wal-lv6 

     wal_vg: vg_nvme1n1 

     db: db-lv6 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdg 

     wal: wal-lv7 

     wal_vg: vg_nvme1n1 

     db: db-lv7 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdh 

     wal: wal-lv8 

     wal_vg: vg_nvme1n1 

     db: db-lv8 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdi 

     wal: wal-lv9 

     wal_vg: vg_nvme1n1 

     db: db-lv9 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdj 

     wal: wal-lv10 

     wal_vg: vg_nvme1n1 

     db: db-lv10 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdk 

     wal: wal-lv11 

     wal_vg: vg_nvme1n1 

     db: db-lv11 

     db_vg: vg_nvme1n1 

   - data: data-lv2 

     data_vg: vg_sdl 

     wal: wal-lv12 

     wal_vg: vg_nvme1n1 

     db: db-lv12 

     db_vg: vg_nvme1n1
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Partitioning Drives for OSDs with Cache  

Create_ceph_partitions.py 

Run this script on the storage nodes to create two lvm volumes per device: 

python create_ceph_partitions.py -h for help message 

import argparse 

import os 

from subprocess import Popen, PIPE 

 

def parse_arguments(): 

    parser = argparse.ArgumentParser(description='This file partitions devices for 

ceph storage deployment') 

    parser.add_argument('-o', '--osds-per-device', required=True, type=int, 

help='Number of OSDs per data device') 

    parser.add_argument('-d', '--data-devices', nargs='+', required=True, type=str, 

                        help='Space separated list of data devices to create OSDs 

on.') 

    parser.add_argument('-c', '--cache-devices', nargs='+', required=False, type=str, 

                        help='Space separated list of cache devices to store BlueStore 

RocksDB and write-ahead log') 

    parser.add_argument('-ws', '--wal-sz', required=False, type=int, 

                        help='Size of each write-ahead log on specified cache devices 

in GiB') 

    parser.add_argument('-dnr', '--do-not-remove', action='store_true', 

                        help='Do Not remove old volumes (Disabled by default)') 

    parser.add_argument('-dnc', '--do-not-create', action='store_true', 

                        help='Do not create new volumes (Disabled by default)') 

 

    return {k: v for k, v in vars(parser.parse_args()).items() } 

 

def execute_command(cmd): 

    process = Popen(cmd, stdout=PIPE, stderr=PIPE) 

    stdout, stderr = process.communicate() 

 

    if stderr not in ('', None): 

        print stdout 

        raise Exception(stderr) 

    else: 

        return stdout 

 

 

def remove_lvm_volumes(): 

    dev_path = '/dev' 

    cache_prefix = 'vg_nvm' 

    data_prefix = 'vg_sd' 

 

    for device in os.listdir(dev_path): 

        path = os.path.join(dev_path, device) 

        if device.startswith(cache_prefix) or device.startswith(data_prefix): 

 

            # Remove Logical Volumes 

            for item in os.listdir(path): 

                cmd = ['lvremove','-y',os.path.join(path, item)] 

                print execute_command(cmd=cmd) 

 

            # Remove Volume Group 

            cmd = ['vgremove', '-y', device] 
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            print execute_command(cmd=cmd) 

 

            # Remove Physical Volume 

            pv_name = device[3:] 

            cmd = ['pvremove', '-y', '/dev/{}'.format(pv_name)] 

            print execute_command(cmd=cmd) 

 

            # Wipe FS 

            cmd = ['wipefs', '-a', '/dev/{}'.format(pv_name)] 

            print execute_command(cmd=cmd) 

 

            # Create GPT 

            cmd = ['sudo', 'sgdisk', '-Z', '/dev/{}'.format(pv_name)] 

            print execute_command(cmd=cmd) 

 

 

def create_partitions(data_devices, osds_per_device, cache_devices, wal_sz, **_): 

    # Create cache partitions 

    if cache_devices: 

        db_partitions = len(data_devices) * osds_per_device / len(cache_devices) 

        create_cache_device_volumes(cache_devices=cache_devices, wal_sz=wal_sz, 

db_partitions=db_partitions) 

 

    # Create data partitions 

    create_data_device_volumes(data_devices=data_devices, 

osds_per_device=osds_per_device) 

 

 

def create_cache_device_volumes(cache_devices, wal_sz, db_partitions): 

    for dev in cache_devices: 

        cmd = ['pvcreate', dev] 

        print execute_command(cmd=cmd) 

 

        vg_name = 'vg_{}'.format(os.path.basename(dev)) 

        cmd = ['vgcreate', vg_name, dev] 

        print execute_command(cmd=cmd) 

 

        gb_total = get_total_size(vg_name=vg_name) 

 

        # If WAL was given 

        if not wal_sz: 

            wal_sz = 0 

 

        sz_per_db = (gb_total / db_partitions) - wal_sz 

 

        for i in range(1, db_partitions+1): 

            cmd = ['lvcreate', '-y', '--name', 'db-lv{}'.format(i), '--size', 

'{}G'.format(sz_per_db), vg_name] 

            print execute_command(cmd=cmd) 

            if wal_sz: 

                cmd = ['lvcreate', '-y', '--name', 'wal-lv{}'.format(i), '--size', 

'{}G'.format(wal_sz), vg_name] 

                print execute_command(cmd=cmd) 

 

 

def create_data_device_volumes(data_devices, osds_per_device): 

    for dev in data_devices: 

        cmd = ['pvcreate', dev] 

        print 
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        execute_command(cmd=cmd) 

 

        vg_name = 'vg_{}'.format(os.path.basename(dev)) 

        cmd = ['vgcreate', vg_name, dev] 

        print 

        execute_command(cmd=cmd) 

 

        gb_total = get_total_size(vg_name=vg_name) 

 

        sz_per_osd = gb_total / osds_per_device 

 

        for i in range(1, osds_per_device+1): 

            cmd = ['lvcreate', '-y', '--name', 'data-lv{}'.format(i), '--size', 

'{}G'.format(sz_per_osd), vg_name] 

            print execute_command(cmd=cmd) 

 

 

def get_total_size(vg_name): 

    cmd = ['vgdisplay', vg_name] 

    stdout = execute_command(cmd=cmd) 

    for line in stdout.split('\n'): 

        if 'Total PE' in line: 

            total_pe = int(line.split()[2]) 

        elif 'PE Size' in line: 

            pe_size = int(float(line.split()[2])) 

 

    gb_total = total_pe * pe_size / 1024 

    return gb_total 

 

def run_test(): 

    arguments = parse_arguments() 

 

    if not arguments['do_not_remove']: 

        # Remove All Old LVM Volumes 

        remove_lvm_volumes() 

 

    if not arguments['do_not_create']: 

        create_partitions(**arguments) 

 

 

if __name__ == '__main__': 

    run_test()  
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About Micron 

Micron Technology (Nasdaq: MU) is a world leader in innovative memory solutions. Through our global 

brands — Micron, Crucial® and Ballistix® — our broad portfolio of high-performance memory technologies, 

including DRAM, NAND and NOR memory, is transforming how the world uses information. Backed by 

more than 35 years of technology leadership, Micron's memory solutions enable the world's most 

innovative computing, consumer, enterprise storage, data center, mobile, embedded, and automotive 

applications. To learn more about Micron, and our complete portfolio of storage and memory products, 

visit micron.com.  

About Red Hat® 

Red Hat is the world’s leading provider of open source software solutions, using a community-powered 

approach to provide reliable and high-performing cloud, Linux, middleware, storage, and virtualization 

technologies. Red Hat also offers award-winning support, training, and consulting services. As a 

connective hub in a global network of enterprises, partners, and open source communities, Red Hat helps 

create relevant, innovative technologies that liberate resources for growth and prepare customers for the 

future of IT. 

About Ceph Storage  

Ceph is an open-source distributed object and file storage solution designed to provide excellent 

performance, reliability and scalability. It can: 

• Free you from the expensive lock-in of proprietary, hardware-based storage solutions. 

• Consolidate labor and storage costs into 1 versatile solution. 

• Introduce cost-effective scalability on self-healing clusters based on standard servers and disks. 

micron.com 
©2019 Micron Technology, Inc. All rights reserved. All information herein is provided on as “AS IS” basis without warranties of any kind, including any 
implied warranties, warranties of merchantability or warranties of fitness for a particular purpose. Micron, the Micron logo, and all other Micron 
trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners. No hardware, software or 
system can provide absolute security and protection of data under all conditions. Micron assumes no liability for lost, stolen or corrupted data arising 
from the use of any Micron product, including those products that incorporate any of the mentioned security features. Products are warranted only to 
meet Micron’s production data sheet specifications. Products, programs and specifications are subject to change without notice. Dates are estimates 
only. All data and statements within this document were developed by Micron with cooperation of the vendors used.  All vendors have reviewed the 
content for accuracy. Rev. A 03/19  CCM004-676576390-11275 

 

http://www.micron.com/

