

A Micron Reference Architecture

Micron® 9200 MAX NVMe™ With 5210 QLC
SATA SSDs for Red Hat® Ceph Storage 3.2
and BlueStore on AMD EPYC™

Reference Architecture

John Mazzie, Storage Solutions Engineer

Tony Ansley, Principle Technical Marketing Engineer

 ii

A Micron Reference Architecture

Contents

Executive Summary .. 1

Why Micron for this Solution ... 1

Ceph Distributed Architecture Overview ... 1

Reference Architecture Overview ... 4

Software .. 5

Red Hat Ceph Storage 3.2 .. 5

Red Hat Enterprise Linux 7.6 .. 5

Software by Node Type .. 5

Hardware .. 6

Ceph Storage Node ... 6

Ceph Monitor Node .. 7

Micron 5210 ION SATA SSD ... 7

Micron 9200 MAX NVMe SSDs ... 8

Network Switches .. 8

Mellanox ConnectX®-5 EN Dual Port NICs ... 8

Planning Considerations ... 8

Number of Ceph Storage Nodes .. 8

Number of Ceph Monitor Nodes ... 8

Replication Factor ... 9

CPU Sizing ... 9

Ceph Configuration Tuning ... 9

Networking .. 9

Number of OSDs per Drive ... 9

Measuring Performance .. 10

4KB Random Workloads: FIO + RBD .. 10

4MB Object Workloads: RADOS Bench ... 11

Baseline Test Methodology ... 11

Storage Baseline Results ... 11

Network Baseline Results ... 12

Ceph Test Results and Analysis ... 12

4KB Random Workload Testing ... 12

4KB Random Write Workload Analysis ... 12

4KB Random Read Workload Analysis ... 15

Random Read Results Summary .. 17

4KB Random 70% Read / 30% Write Workload Analysis ... 18

Random 70/30 R/W Results Summary .. 20

4MB Object Workloads ... 21

4MB Object Write Results Summary ... 22

Summary ... 23

Appendix A: Configuration Details .. 24

OS Tuning/NUMA ... 24

About Micron ... 32

About Red Hat® ... 32

About Ceph Storage .. 32

 iii

A Micron Reference Architecture

List of Figures

Figure 1: Ceph Architecture ... 2

Figure 2: FileStore vs BlueStore .. 4

Figure 3: Micron NVMe Reference Architecture .. 5

Figure 4: Supermicro A+ server AS-2113S-WTRT .. 6

Figure 5: Number of OSDs and Write Average Latency .. 9

Figure 6: OSDs and Read Tail Latency ... 10

Figure 7: 4KB Random Write Performance ... 13

Figure 8: 4KB Random Write IOPS vs CPU Utilization ... 14

Figure 9: 4KB Random Read IOPS vs Average Latency .. 15

Figure 10: 4KB Random Read IOPS vs QoS Latency ... 16

Figure 11: 4KB Random Read IOPS vs CPU Utilization ... 17

Figure 12: 4KB Random 70/30 R/W IOPS vs Average Latency .. 18

Figure 13: 4KB Random 70/30 R/W IOPS vs QoS (99.99%) Latency .. 19

Figure 14: 4KB Random 70/30 R/W IOPS vs CPU Utilization ... 20

Figure 15: 4MB Object Write Throughput vs Average Latency ... 21

Figure 16: 4MB Object Read Throughput vs Average Latency ... 22

 1

A Micron Reference Architecture

Executive Summary

This document describes an example configuration of a performance-optimized Red Hat® Ceph® Storage

3.2 cluster using Micron® SATA SSDs and NVMe™ SSDs, rack-mount servers based on AMD EPYC™

architecture and 100 Gigabit Ethernet (GbE) networking infrastructure.

It details the hardware and software building blocks used to construct this reference architecture

(including the Red Hat Enterprise Linux® OS configuration, network switch configurations and Ceph

tuning parameters) and shows the performance test results and measurement techniques for a scalable

4-node Ceph architecture.

This solution is optimized for block performance while also providing very high object performance in a

compact, rack-efficient design to enable:

Faster deployment: The configuration has been pre-validated and is thoroughly documented to enable

faster deployment.

Balanced design: The right combination of NVMe SSDs, SATA SSDs, DRAM, processors and

networking ensures subsystems are balanced and performance-matched.

Broad use: Complete tuning and performance characterization across multiple IO profiles for broad

deployment across multiple uses.

Exceptional performance results were recorded for 4KB random block workloads and 4MB object workloads.

Why Micron for this Solution

Storage (SSDs and DRAM) represent a large portion

of the value of today’s advanced server/storage

solutions. Micron’s storage expertise starts at

memory technology research, innovation and design

and extends through collaborating with customers on

total data solutions. Micron develops and

manufactures the storage and memory products that

go into the enterprise solutions we architect. Micron

is the only storage provider able to offer a reference

architecture based on quad-level cell (QLC)

technology.1 We understand how QLC helps reduce

cost in unique ways that deliver a better total solution

in combination with our performance leadership on

the 9200.

1As of the publishing of this document (March 2019).

4KB Random Block Performance

IO Profile IOPS Avg. Latency

100% Read 922,261 3.5ms

70%/30% R/W 392,797 5.0ms (R) / 15.4ms (W)

100% Writes 190,730 16.8ms

4MB Object Performance

IO Profile GiB/s Avg. Latency

100% Random Read 22.9 55.27ms

100% Sequential Read 19.5 64.99ms

100% Writes 4.9 128.33ms

Micron Accelerated Solutions Reference Architectures
Micron Accelerated Solutions provide optimized, pre-engineered, enterprise-leading solution
templates for platforms co-developed between Micron and industry-leading hardware and
software companies.

Designed and tested at Micron’s Storage Solutions Center, they provide end users, system
builders, independent software vendors (ISVs) and OEMs with a proven template to build
next-generation solutions with reduced time, investment and risk.

Tables 1a and 1b: Performance Summary

 2

A Micron Reference Architecture

Ceph Distributed Architecture Overview

A Ceph storage cluster is frequently built from multiple Ceph storage and management nodes for

scalability, fault-tolerance and performance. Each node is based on industry-standard hardware and uses

intelligent Ceph daemons that communicate with each other to:

• Store, retrieve and replicate data

• Monitor and report on cluster health

• Redistribute data dynamically (remap and backfill)

• Ensure data integrity (scrubbing)

• Detect and recover from faults and failures

To the Ceph client interface that reads and writes data, a Ceph storage cluster looks like a simple, single

storage pool where data is stored. However, the storage cluster performs many complex operations in a

manner that is completely transparent to the client interface. Ceph clients and Ceph object storage

daemons (Ceph OSD daemons, or OSDs) both use the Controlled Replication Under Scalable Hashing

(CRUSH) algorithm to determine the location to store and retrieve stored data and data objects.

For a Ceph client, the storage cluster is very simple. When a Ceph client reads or writes data (referred to

as an I/O context), it connects to a logical storage pool in the Ceph cluster. The figure below illustrates

the overall Ceph architecture, with concepts that are described in the sections that follow.

Figure 1: Ceph Architecture

 3

A Micron Reference Architecture

Clients write to Ceph storage pools while the CRUSH ruleset determines how placement groups are

distributed across object storage daemons (OSDs). By distributing all data written to the Ceph cluster, it

can be protected from data loss based on clear, concise data protection rules and policies.

Ceph Components

• Pools: A Ceph storage cluster stores data objects in logical dynamic partitions called pools. Pools can

be created for a variety of reasons such as data types (block, file or object data) or simply to separate

the data used by different user groups. The Ceph pool configuration dictates the type of data protection

and the number of placement groups (PGs) in the pool. Ceph storage pools can be either replicated or

erasure coded, as appropriate for the application and cost model. Additionally, pools can “take root” at

any position in the CRUSH hierarchy, allowing placement on groups of servers with differing

performance characteristics—allowing storage to be optimized for different workloads.

• Placement groups: Ceph maps objects to placement groups (PGs). PGs are shards or fragments of a

logical object pool that are composed of a group of Ceph OSD daemons that are in a peering

relationship. Placement groups provide a means of creating replication or erasure coding groups of

coarser granularity than on a per object basis. A larger number of placement groups (e.g., 200 per OSD

or more) leads to better balancing.

• CRUSH ruleset: The CRUSH algorithm provides controlled, scalable, and de-clustered placement of

replicated or erasure-coded data within Ceph and determines how to store and retrieve data by

computing data storage locations. CRUSH empowers Ceph clients to communicate with OSDs directly,

rather than through a centralized server or broker. By determining a method of storing and retrieving

data by an algorithm, Ceph avoids a single point of failure, a performance bottleneck, and a physical

limit to scalability.

• Ceph monitors (MONs): Before Ceph clients can read or write data, they must contact a Ceph MON

node to obtain the current cluster map. A Ceph storage cluster can operate with a single monitor, but

this introduces a single point of failure. For added reliability and fault tolerance, Ceph supports an odd

number of monitors in a quorum (typically three or five for small to mid-sized clusters). Consensus

among various monitor instances ensures consistent knowledge about the state of the cluster.

• Ceph OSD daemons: In a Ceph cluster, Ceph Object Storage Daemon (OSD) daemons run on

storage nodes and store data and handle data replication, recovery, backfilling, and rebalancing. They

also provide some cluster state information to Ceph monitors by checking other Ceph OSD daemons

with a heartbeat mechanism. A Ceph storage cluster configured to keep three replicas of every object

requires a minimum of three Ceph OSD daemons, two of which need to be operational to successfully

process write requests. Ceph OSD daemons roughly correspond to a file system on a physical hard

disk drive.

Ceph BlueStore Overview

With the release of Red Hat Ceph Storage 3.2, Red Hat now supports as the default storage solution,

Ceph BlueStore. Replacing the legacy FileStore solution used prior to Ceph Luminous, BlueStore

provides an optimized object storage solution designed that eliminates several components that were

limiting the performance potential of the Ceph solution.

BlueStore differs from FileStore in two key ways. First, BlueStore no longer uses a Linux native file

system (XFS), but stores data directly to raw storage devices. Second, metadata is no longer stored

using leveldb, which has been replaced with the RocksDB key-value store on top of a lite custom

filesystem called BlueFS to support storing RocksDB files on the raw storage devices. These differences

are illustrated in Figure 2.

https://ceph.com/wp-content/uploads/2016/08/weil-crush-sc06.pdf

 4

A Micron Reference Architecture

Figure 2: FileStore vs. BlueStore

Reference Architecture Overview

This reference architecture (RA) is based on a single socket AMD® platform with an EPYCTM 7551P

processor. This server platform provides the high CPU performance required for a performance-optimized

Ceph cluster and yields an open, cost-effective software-defined storage (SDS) platform. This platform

can be utilized as an effective building block for implementing a multi-petabyte OpenStack® cloud

infrastructure.

The storage configuration consists of two tiers of SSD storage. The Micron 5210 ION QLC SATA SSD

provides fast, cost-effective capacity used for all data object storage. The Micron 9200 MAX NVMe SSDs

provide a low-latency storage tier to host all write-ahead logs and the RocksDB key-value store. This two-

tiered storage configuration provides a more cost-effective, high-capacity data storage solution with little

performance compromise relative to all NVMe Ceph configurations of the same size. Capacity per rack

unit (RU) is maximized with 12, 3.84TB 5210 SSDs and 2, 1.6TB 9200 NVMe SSDs per 2U storage node.

This reference Ceph implementation, including four storage nodes and one monitor node, takes up 10

rack units and can be easily scaled up 2U and 46TB at a time (Figure 3).

Network throughput is handled by a dual-port Mellanox® ConnectX®-5 100 GbE network card per storage

node — one port for the client storage access network and another for the internal Ceph replication

network. Clients and monitor nodes are connected to the client network via Mellanox ConnectX-4 50 GbE

networking.

https://www.amd.com/en/products/cpu/amd-epyc-7551p
http://collab.micron.com/Pages/results.aspx?https://www.micron.com/products/solid-state-drives/product-lines/5210k=ssd%20over%20provisioning
https://www.micron.com/products/solid-state-storage/product-lines/9200
http://www.mellanox.com/page/products_dyn?product_family=260&mtag=connectx_5_en_card

 5

A Micron Reference Architecture

Figure 3: Micron NVMe Reference Architecture

Software

Red Hat Ceph Storage 3.2

Red Hat Ceph Storage 3.2 is an implementation of Ceph version 12.2 “Luminous,” an open source,

massively scalable storage solution. Suitable for both traditional and cloud infrastructures, it is used for

multiple use cases such as data analytics and media streaming repositories. Red Hat Ceph Storage 3.2 is

the first version of Red Hat Ceph Storage to fully support the use of the new BlueStore Ceph storage

engine that has been designed and optimized for flash storage.

Red Hat Enterprise Linux 7.6

Red Hat® Enterprise Linux® (RHEL) is a high-performing operating system that has been deployed in IT

environments for more than a decade.

Red Hat Enterprise Linux 7.6 is noted for its enterprise-level performance, reliability, and security as well

as its broad use (it is certified by leading hardware and software vendors), broad scalability (from

workstations, to servers, to mainframes) and consistent application environment across physical, virtual,

and cloud deployments.

Software by Node Type

Table 2 shows the software and version numbers used in the Ceph Monitor and Storage Nodes.

Operating System Red Hat Enterprise Linux 7.6

Storage Red Hat Ceph Storage 3.2

NIC Driver Mellanox OFED Driver 4.4-2.0.7.0

Host Bus Adapter Avago 9305-24i (SATA Drives) Firmware: 16.00.01.00

Table 2: Ceph Storage and Monitor Nodes: Software

Table 3 shows the software and version numbers for the Ceph Load Generation Servers. Note that the

Load Generation server software stack is very similar to the Storage Node software stack.

Network Switches

100 GbE, 32x QSFP28

ports

Monitor Nodes

Intel x86 dual-socket 1U

Storage Nodes

AMD EPYC™ single

socket with PCIe Gen3

 6

A Micron Reference Architecture

Operating System Red Hat Enterprise Linux 7.5

Storage Ceph Client: Red Hat Ceph Storage 3.2

Benchmark FIO 3.10 w/ librbd enabled

NIC Driver Mellanox OFED Driver 4.4-2.0.7.0

Table 3: Ceph Load Generation Nodes: Software

Hardware

This RA uses standard 2U, single-socket AMD EPYC architecture, x86 server platforms, each housing 12

SATA SSDs and 2 NVMe SSDs (U.2 form factor) with additional storage for local operating systems. All

SATA SSDs were connected to Avago 9305-24i SAS/SATA HBA.

Ceph Storage Node

We chose Supermicro's latest A+ Solutions product line AS-2113S-WTRT servers, supporting both

SATA3 and NVMe SSDs in a compact form factor. Designed to deliver performance, flexibility, scalability,

and serviceability, the servers are well-suited for demanding enterprise workloads (Figure 4).

Performance: A single AMD EPYC 7551P (180W/32 cores) with support for up to 2TB of memory in 16

DIMM sockets and support for up to 14 2.5-inch SSDs.

Flexibility: AS-2113S-WTRT enables enterprise IT professionals to easily use a single server platform

that can be configured for a wide variety of workloads, reducing qualification time and the need for

excessive spare inventories to manage.

Scalability: Support for up to 2TB of memory in 16 DIMM sockets, up to 10, 2.5-inch SATA3 drives and

up to 6, 2.5-inch SATA3/NVMe drives for increased storage bandwidth and up to 5 add-on PCIe

expansion cards in 2U.

Serviceability: Supermicro’s remote management software packages make monitoring infrastructure

simple and effective.

Figure 4: Supermicro A+ Server AS-2113S-WTRT

 7

A Micron Reference Architecture

Server Type x86 (single-socket) 2U with PCIe Gen3 (“EPYC”)

Model Supermicro A+ AS-2113S-WTRT

CPU (x1) AMD EPYC 7551P: 32 cores, 64 threads, 2.0 GHz base (2.55 GHz turbo)

DRAM (x8) Micron 32GB DDR4-2666 MT/s, 256GB total per node

SATA (x12) Micron 5210 ION QLC SSDs, 3.84TB each

NVMe (x2) Micron 9200 MAX NVMe SSDs, 1.6TB each

SATA (OS) 64GB SATA DOM

Network (x1) Mellanox ConnectX-5 100 GbE dual-port (MCX516A-CCAT)

Host Bus Adapter Avago 9305-24i

Table 4: Storage Nodes Hardware Details

Ceph Monitor Node

Server Type x86 (single-socket) 2U with PCIe Gen3 (“EPYC”)

Model Supermicro A+ AS-2113S-WTRT

CPU (x1) AMD EPYC 7551P: 32 cores, 64 threads, 2.0 GHz base (2.55 GHz turbo)

DRAM (x8) Micron 32GB DDR4-2666 MT/s, 256GB total per node

SATA (OS) 64GB SATA DOM

Network (x1) Mellanox ConnectX-4 50GbE single-port (MC4X413A-GCAT)

Table 5: Monitor Nodes Hardware Details

Micron 5210 ION SATA SSD

The Micron 5210 ION is the world’s first SSD to market with groundbreaking quad-level cell (QLC) NAND

technology, delivering fast capacity for less. Ideal for handling the demands of real-time analytics, big

data, media streaming, block/object stores, SQL/NoSQL and the data lakes that feed artificial intelligence

(AI) and machine learning, which are workloads that Red Hat Ceph Storage is designed to support.

Available in capacities from 1.92TB to 7.68TB, the 5210 ION is a highly read-centric solution for large,

primarily read workloads such as long-term data archives used in many of today’s analytics solutions.

Model 5210 ION Interface 6 Gb/s SATA

Form Factor 2.5-inch Capacity 3.84TB

NAND Micron 3D QLC MTTF 2M device hours

Sequential Read1 540 MB/s Random Read 83,000 IOPS

Sequential Write1 350 MB/s Random Write 6,500 IOPS

Table 6: 5210 ION 1.6TB Specifications Summary

1 MB/s measured using 128K transfers, IOPS measured using 4K transfers. All data is steady state. Complete MTTF details are

available in the product data sheet.

https://www.micron.com/-/media/client/global/documents/products/product-flyer/5210_ion_ssd_product_brief.pdf?la=en

 8

A Micron Reference Architecture

Micron 9200 MAX NVMe SSDs

The Micron 9200 series of NVMe SSDs is our flagship performance family and our second generation of

NVMe SSDs. The 9200 family has the right capacity for demanding workloads, with capacities from 1.6TB

to 11TB in write-intensive, mixed-use and read-intensive designs.

Model 9200 MAX Interface PCIe x4 Gen3

Form Factor U.2 Capacity 1.6TB

NAND Micron 3D TLC MTTF 2M device hours

Sequential Read1 3.50 GB/s Random Read 680,000 IOPS

Sequential Write1 1.90 GB/s Random Write 255,000 IOPS

Table 6: 9200 MAX 1.6TB Specifications Summary

Network Switches

Supermicro 100 GbE switches are configured with multiple VLANs — one for the client network and one

for the Red Hat Ceph Storage private cluster network.

Model Supermicro SSE-C3632SR

Software Cumulus Linux 3.7.1

Table 7: Network Switches (Hardware and Software)

Offering 32 Ethernet ports at 40 Gb/s /100 Gb/s, the SSE-C3632S switch enables robust layer-3 IP fabric

for flexible layer-2 overlay in Ethernet fabric architectures. For modern scale-out, leaf-and-spine data

center network deployments, the SSE-C3632S is positioned as the high-speed spine layer to provide

scalable bisectional fabric bandwidth for leaf layer such as the SSE-X3648S switch.

Depending on deployment connectivity, physical Ethernet QSFP28 ports in the SSE-C3632S can be

configured for either 40 Gb/s or 100 Gb/s per port, thus enabling a flexible physical connectivity option

between the spine layer and leaf layer in the data center Ethernet fabric.

Mellanox ConnectX®-5 EN Dual Port NICs

The ConnectX-5 EN Network Controller with two ports of 100 Gb/s Ethernet connectivity and advanced

offload capabilities delivers high bandwidth, low latency and high computation efficiency for high-

performance, data-intensive and scalable HPC, cloud, data analytics, database and storage platforms.

Planning Considerations

Number of Ceph Storage Nodes

Ten storage nodes are the recommended upper scale limit for an enterprise Ceph cluster. Four storage

nodes represent a valid building block to use for scaling up to larger deployments. Additional nodes can

be integrated with the cluster as needed for scale. This RA uses four storage nodes.

Number of Ceph Monitor Nodes

At least three monitor nodes should be configured on separate hardware for any nontest purposes. These

nodes do not require high-performance CPUs and do not affect the performance of the storage nodes.

They do benefit from having SSDs to store the monitor (CRUSH) map data.

For testing only, this RA uses only a single monitor node. Budget for at least three nodes for production.

 9

A Micron Reference Architecture

Replication Factor

NVMe SSDs have high reliability with high MTBR and low bit error rate. 2x replication is recommended in

production when deploying OSDs on NVMe versus the 3x replication common with legacy storage.

CPU Sizing

Ceph OSD processes can consume large amounts of CPU while doing small block operations.

Consequently, a higher CPU core count generally results in higher performance for I/O-intensive

workloads. For throughput-intensive workloads characterized by large sequential I/O, Ceph performance

is more likely to be bound by the maximum network bandwidth or storage bandwidth of the cluster.

Ceph Configuration Tuning

Tuning Ceph for SSD devices can be complex. The ceph.conf settings used in this RA are optimized for

small block random performance and are included in Appendix A.

Networking

A 25 GbE network is required to leverage the maximum block performance benefits of an NVMe-based

Ceph cluster. For throughput-intensive workloads, 50 GbE to 100 GbE is recommended. It is

recommended that a physical network be deployed for Ceph internal data movement between storage

nodes and a separate physical network be deployed for application client server access to Ceph monitor

and data nodes to maximize performance.

Number of OSDs per Drive

To reduce tail (QoS) latency in 4KB write transfers, it is recommended to run more than one OSD per

physical SSD. Testing with one OSD per SSD yields slightly better performance in I/Os per second

(IOPS); however, running two OSDs per SSD provides more consistent and reduced tail latency for 4KB

random writes across all tested workloads, as seen in Figure 5.

Figure 5: Number of OSDs and Write Average Latency

 10

A Micron Reference Architecture

Figure 6 shows using two OSDs per drive also yields better read QoS latency at all tested queue depths.

Figure 6: OSDs and Read Tail Latency

For this RA, two OSDs per QLC SSD device are used. The method used for deploying two OSDs per

drive is included in Appendix A.

Measuring Performance

4KB Random Workloads: FIO + RBD

Four-kilobyte random workloads were tested using the FIO synthetic IO generation tool and the Ceph

RADOS Block Device (RBD) driver on each of 10 load generation client servers.

Fifty RBD images were created at the start of testing. When testing on a 2x replicated pool, the RBD

images were 150GB each (7.5TB of data); on a 2x replicated pool, that equals 15TB of total data stored.

The four storage nodes have a combined total of 1TB of DRAM, which is 6.7% of the dataset size.

Four-kilobyte random writes were measured by scaling the number of FIO clients running against Ceph at

a fixed queue depth of 64. A client in this case is a single instance of FIO running on a load generation

server. Using a queue depth of 64 simulates a reasonably active RDB image consumer and allows our

tests to scale up to a high client count. The number of clients was scaled from 10 clients up to 50 clients.

Ten load generation servers were used in testing with an equal number of FIO instances on each.

Four-kilobyte random reads and 70/30 read/write tests were measured by using all 50 RBD images and

using all 50 instances of FIO executing simultaneously, scaling up the queue depth per FIO client from 1

to 64. Using the maximum of our testing scale (50 FIO clients) ensures that the entire 15TB dataset is

being accessed without depending on data being cached by the Linux filesystem caching capabilities and

providing results not representative of the SSDs.

 11

A Micron Reference Architecture

Each test was run three times for 10 minutes with a 5-minute ramp-up time. Linux filesystem caches were

cleared and the Ceph service was restarted between each test. The results reported are the averages

across all test runs.

4MB Object Workloads: RADOS Bench

RADOS Bench is a built-in tool for measuring object performance. It represents the best-case object

performance scenario of data coming directly to Ceph from a RADOS Gateway node.

Four-megabyte object writes were measured by running RADOS Bench with a “threads” value of 16 on a

load generation server writing directly to a Ceph storage pool. The number of load generation servers

scaled up from 2 to 10.

Four-megabyte object reads were measured by first writing 15TB of object data into a 2x replicated pool

using 10 RADOS Bench instances (1 per load generation server). Using the 10 RADOS Bench instances

during testing ensures that the entire 15TB dataset is being accessed and not cached by the operating

system. Once the data load was complete, the RADOS Bench instances were used to run 4MB object

reads against the storage pool. Performance was then measured across a wide variety of RADOS Bench

threads scaling from 1 thread to 32 threads. Separate read tests were performed to measure random and

sequential read use cases.

Object workload tests were run for 10 minutes, three times each. Linux filesystem caches were cleared,

and the Ceph service was restarted between each test. The results reported are the averages across all

test runs.

Baseline Test Methodology

Before Ceph testing was initiated, both the storage and network performance were baseline tested

(tested without Ceph software) to determine the theoretical hardware performance maximums using FIO

for storage testing and iPerf for network bandwidth testing. This provided a baseline for storage from

which to measure the impact of the Ceph software, as well as the benefits of adding NVMe SSDs as a

cache tier, as well as a baseline for network performance to identify the maximum usable network

bandwidth available.

• Baseline storage testing was done with one locally run FIO command test across all 12 SATA drives

simultaneously.

• Network testing used two concurrent iperf3 tests (details provided below).

Storage Baseline Results

Each storage node was tested using FIO across the 12, 5210 ION 3.6TB QLC SSDs. Four-kilobyte

random writes were measured with 20 jobs at a queue depth of 4. Four-kilobyte random reads were

measured with 50 jobs at a queue depth of 32.

Storage Node
4KB Workloads: FIO on 12x 5210 ION QLC SSDs

Write IOPS Write Avg. Latency (ms) Read IOPS Read Avg. Latency (ms)

Node 1 263,741 0.2895 656,766 0.2621

Node 2 264,492 0.2867 646,356 0.2643

Node 3 280,203 0.2711 643,157 0.2652

Node 4 274,638 0.2763 638,891 0.2631

Table 8: Baseline FIO 4KB Random Workloads

https://iperf.fr/

 12

A Micron Reference Architecture

Four-megabyte writes were measured with 20 jobs at a queue depth of 1. Four-megabyte reads were

measured with 20 jobs at a queue depth of 2.

Storage Node

4MB Workloads: FIO on 12x 5210 ION QLC SSDs

Write Throughput
Write Avg.

Latency
Read Throughput

Read Avg.

Latency

Node 1 3.16 GiB/s 41.3ms 5.60 GiB/s 24.9ms

Node 2 3.26 GiB/s 41.6ms 5.64 GiB/s 24.7ms

Node 3 3.28 GiB/s 40.1ms 5.55 GiB/s 25.0ms

Node 4 3.27 GiB/s 39.8ms 5.47 GiB/s 33.9ms

Table 9: Baseline FIO 4MB Workloads

Network Baseline Results

Each server’s network connectivity was tested using four concurrent iPerf3 runs for one minute.

Each server was tested against each other.

All storage nodes with 100 GbE NICs averaged 96+ Gb/s during baseline testing. Monitor nodes and

clients with 50 GbE NICs averaged 45+ Gb/s during testing.

Ceph Test Results and Analysis

The results detailed below were collected on a 2x replicated storage pool in Red Hat Ceph Storage 3.2

with 8192 placement groups. For all test results, a maximum QoS (99.99%) latency of 3 seconds was

used to determine a suitable stopping point for testing.

4KB Random Workload Testing

4KB Random Write Workload Analysis

Four-kilobyte random writes performance reached a maximum of 190K IOPS at 50 clients. Average

latency ramped up linearly with the number of clients, reaching a maximum of 16.8ms at 50 clients.

Figures 7 and 8 show that IOPS increased gradually, then flattened out around 40 clients. Ceph starts to

become CPU limited with 40 clients, which created erratic behavior in tail latency. 99.99% tail latency

gradually increased from 51ms at 10 clients to 151ms at 50 clients.

 13

A Micron Reference Architecture

Figure 7: 4KB Random Write Performance

Average CPU utilization in Ceph was high, increasing from 85.7% with 10 clients to 90%+

at 20 clients. Above 20 clients, average CPU utilization was flat.

0

20

40

60

80

100

120

140

160

0

50

100

150

200

250

10 20 30 40 50

RBD Clients @ Queue Depth = 64

m
ill

is
e
c
o
n
d
s

K
-I

O
P

S

RHCS 3.2 RBD 4KiB Random Write

4KiB IOPs Average Latency (ms) 99.99% Latency (ms)

 14

A Micron Reference Architecture

Figure 8: 4KB Random Write IOPS vs. CPU Utilization

Table 10 includes 95% latency, which scales linearly, similar to average latency behavior.

FIO

Clients

4KB Random Write Performance: FIO RBD @ Queue Depth 64

4KB Random

Write IOPS

Average

Latency
95% Latency 99.99% Latency

Average CPU

Utilization

10 Clients 166,927 3.8ms 7.1ms 51.7ms 85.7%

20 Clients 181,098 7.1ms 14.8ms 75.5ms 91.3%

30 Clients 187,964 10.2ms 22.0ms 93.7ms 93.1%

40 Clients 189,979 13.5ms 29.0ms 118.5ms 94.1%

50 Clients 190,730 16.8ms 36.0ms 151.1ms 94.7%

Table 10: 4KB Random Write Results

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

10 20 30 40 50

RBD Clients @ Queue Depth = 64

P
e
rc

e
n
t

K
-I

O
P

S
RHCS 3.2 RBD 4KiB Random Write

4KiB IOPs CPU Utilization (%)

 15

A Micron Reference Architecture

4KB Random Read Workload Analysis

Four-kilobyte random reads scaled from 73K IOPS up to 922K IOPS. Average latency increased to a

maximum of 3.5ms at queue depth = 64 (Figure 9), and QoS (99.99% tail) latency increased to a little

over 300ms (Figure 10) as queue depth increased to our test maximum of QD64, with a sharp increase at

queue depths greater than 16. Moving from a queue depth of 16 to 32 resulted in a tail latency increase of

almost 7X for only an additional 6.9% increase in IOPS performance. Based on this data, it is

recommended that heavy read workloads should use a queue depth of 16 or less to optimize

performance.

Figure 9: 4KB Random Read IOPS vs. Average Latency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

100

200

300

400

500

600

700

800

900

1,000

1 4 8 16 32 64

m
ill

is
e
c
o
n
d
s

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depths

RHCS 3.2 RBD 4KiB Random Read

4KiB IOPs Average Latency (ms)

 16

A Micron Reference Architecture

Figure 10: 4KB Random Read IOPS vs. QoS Latency

Ceph reached extreme CPU utilization levels starting at a queue depth of 16 at 91%. Again, this data

indicates that heavy read workloads should use a queue depth of 16 or less to optimize performance.

0

50

100

150

200

250

300

350

0

100

200

300

400

500

600

700

800

900

1,000

1 4 8 16 32 64

m
ill

is
e
c
o
n
d
s

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depths

RHCS 3.2 RBD 4KiB Random Read

4KiB IOPs 99.99% QoS Latency (ms)

 17

A Micron Reference Architecture

Figure 11: 4KB Random Read IOPS vs. CPU Utilization

Table 11 summarizes these results, including 95%. Average and 95% latencies were similar until a

queue depth of 16, coinciding with CPU utilization reaching 90%+, also occurring at a queue depth of 16.

Random Read Results Summary

Queue

Depth

4KB Random Read Performance: 100 FIO RBD Clients at Varied QD

4KB Random

Read IOPS

Average

Latency

95%

Latency

99.99%

Latency

Average

CPU

Utilization

QD 1 73,507 0.7ms 0.8ms 5.2ms 12.3%

QD 4 345,579 0.6ms 0.8ms 6.5ms 52.2%

QD 8 601,321 0.7ms 1.0ms 9.0ms 76.4%

QD 16 803,781 1.0ms 2.0ms 21.6ms 90.9%

QD 32 873,479 1.8ms 5.0ms 149.5ms 95.3%

QD 64 922,261 3.5ms 10.0ms 301.7ms 97.0%

Table 11: 4KB Random Read Results

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

800

900

1,000

1 4 8 16 32 64

P
e
rc

e
n
t

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depths

RHCS 3.2 RBD 4KiB Random Read

4KiB IOPs CPU Utilization (%)

 18

A Micron Reference Architecture

4KB Random 70% Read / 30% Write Workload Analysis

The 70% read / 30% write testing scales from 51K IOPS at a queue depth of 1 to 392K IOPS at a queue

depth of 64 in a very smooth trajectory. Read and write average latencies are graphed separately, with

maximum average read latency at 5ms and max average write latency at 15.4ms.

Figure 12: 4KB Random 70/30 R/W IOPS vs. Average Latency

Figure 13 shows that read and write tail latency started increasing more rapidly at a queue depth of 8.

IOPS performance at a queue depth of 16 increased by 22%, while tail latency increased 90% for read

operations and 44% for write operations. This tail latency rate of increase gets worse as queue depth is

increased, indicating that we are reaching CPU utilization saturation, which is verified in Figure 14.

0

2

4

6

8

10

12

14

16

18

0

50

100

150

200

250

300

350

400

450

1 2 4 6 8 16 32 64

m
ill

is
e
c
o
n
d
s

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depth

RHCS 3.2 RBD 4KiB Random 70/30 R/W

4KiB IOPs Average Read Latency (ms) Average Write Latency (ms)

 19

A Micron Reference Architecture

Figure 13: 4KB Random 70/30 R/W IOPS vs. QoS (99.99%) Latency

Figure 14 below shows that the CPU utilization increased in a smooth progression across the entire span

of tested queue depths indicating that mixed read / write workloads. Once CPU utilization moved above

90%, latency — especially QoS latency — it was negatively impacted, showing sharp increases starting

at queue depths greater than 16.

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

450

1 2 4 6 8 16 32 64

m
ill

is
e
c
o
n
d
s

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depth

RHCS 3.2 RBD 4KiB Random 70/30 R/W

4KiB IOPs 99.99% Read Latency (ms) 99.99% Write Latency (ms)

 20

A Micron Reference Architecture

Figure 14: 4KB Random 70/30 R/W IOPS vs. CPU Utilization

Random 70/30 R/W Results Summary

Due to FIO reporting a maximum latency of 17 seconds, tail latencies above a queue depth of 16 are

unknown.

Queue

Depth

4KB Random 70/30 R/W Performance: 100 FIO RBD Clients

at Varied QD

R/W

IOPS

Avg. Read

Latency

Avg. Write

Latency

99.99% Read

Latency

99.99% Write

Latency

Avg. CPU

Utilization

QD 1 51,677 0.8ms 1.4ms 7.9ms 18.7ms 18.2%

QD 2 102,688 0.7ms 1.5ms 12.8ms 25.0ms 35.9%

QD 4 174,620 0.8ms 1.9ms 20.2ms 29.9ms 58.2%

QD 6 229,695 0.9ms 2.2ms 23.0ms 32.0ms 70.0%

QD 8 263,721 1.0ms 2.6ms 26.0ms 35.4ms 77.9%

QD 16 323,293 1.6ms 4.5ms 34.6ms 51.1ms 89.5%

QD 32 363,568 2.7ms 8.4ms 71.6ms 104.2ms 94.7%

QD 64 392,797 5.0ms 15.4ms 312.7ms 334.2ms 96.9%

Table 12: 4KB 70/30 Random Read/Write Results

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

1 2 4 6 8 16 32 64

P
e
rc

e
n
t

K
-I

O
P

S

50 RBD Clients @ Varying Queue Depth

RHCS 3.2 RBD 4KiB Random 70/30 R/W

4KiB IOPs CPU Utilization (%)

 21

A Micron Reference Architecture

4MB Object Workloads

Object workloads were tested using RADOS Bench, a built-in Ceph benchmarking tool. These results

represent the best-case scenario of Ceph accepting data from RADOS Gateway nodes. The configuration

of RADOS Gateway is outside the scope of this RA.

Object writes were measured by using a constant 16 threads in RADOS Bench and scaling up the

number of instances writing to Ceph concurrently.

Figure 15 below shows the results for 4MB object writes at varying thread counts.

Figure 15: 4MB Object Write Throughput vs. Average Latency

Four-megabyte object writes reached their maximum value of 4.9 GiB/s and 128ms average latency with

10 clients. CPU utilization was low for this test and never reached above an average of 17%.

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

2 4 6 8 10

m
ill

is
e
c
o
n
d
s

G
iB

/s

RADOS Bench Instances @ 16 Threads

RHCS 3.2 RADOS Bench 4MiB Object Write

Write Throughput (MiB/s) Avg Latency (ms)

 22

A Micron Reference Architecture

4MB Object Write Results Summary

Instances @

16 Threads

4MB Object Write Performance: RADOS Bench

Write Throughput Average Latency

2 Instances 2.9 GiB/s 42.5ms

4 Instances 3.8 GiB/s 65.9ms

6 Instances 4.2 GiB/s 88.6ms

8 Instances 4.6 GiB/s 109ms

10 Instances 4.9 GiB/s 128ms

Table 15: 4MB Object Write Results

Reads were measured by first writing out 7.5TB of object data with 10 instances, then reading that data

with all 10 RADOS Bench clients while scaling up the number of threads used from 1 to 32.

Figure 16 shows that 4MB object random reads reached 21.6 GiB/s at around 16 threads on 10

instances, while sequential reads peeked at 17.3 GiB/s at 16 threads.

Figure 16: 4MB Object Read Throughput vs. Average Latency

Four-megabyte object reads reached their maximum of 22.4 GiB/s and 55.3ms average latency at 32

threads. CPU utilization was low for this test and never reached above an average of 15% of CPU

utilization.

0

10

20

30

40

50

60

70

0

5

10

15

20

25

1 2 4 8 16 32

m
ill

is
e
c
o
n
d
s

G
iB

/s

10 RADOS Bench Instances @ Varying Threads

RHCS 3.2 RADOS Bench 4MiB Object Random Read

Random Read Throughput (GiB/s) Sequential Read Throughput (GiB/s)

Random Avg Latency (ms) Sequential Avg Latency (ms)

 23

A Micron Reference Architecture

10 Instances @

Varied Threads

4MB Object Read Performance: RADOS Bench

Random Read

Throughput

Random Read

Average Latency

Sequential Read

Throughput

Sequential Read

Average Latency

1 Thread 2.9 GiB/s 13ms 2.5 GiB/s 15ms

2 Threads 5.5 GiB/s 14ms 4.7 GiB/s 16ms

4 Threads 10.1 GiB/s 15ms 8.3 GiB/s 18ms

8 Threads 16.5 GiB/s 18ms 13.3 GiB/s 23ms

16 Threads 21.6 GiB/s 28ms 17.3 GiB/s 36ms

32 Threads 22.4 GiB/s 55ms 19.0 GiB/s 65ms

Table 14: 4MB Object Read Results

Summary

With almost one million 4KB random read IOPS, 210K random write IOPS and 346K mixed IOPS

performance in four rack units with 184TB data storage and 200TB of total storage, the two-tiered storage

configuration using NVMe and SATA provides a high-performance, lower-cost alternative to an all-NVMe

Ceph solution.

Performance is more predictable when using more than one OSD per SSD across the entire range of

tested client workloads and queue depths. While this reference solution uses two OSDs per SSD, it is

recommended that testing be performed using real-world application workloads that are targeted for use

with the Ceph cluster.

Previous test results have clearly shown that Ceph BlueStore is the recommended configuration for all

Ceph deployments using Red Hat Ceph Storage 3.2 or later (Ceph Community Edition 12.2 or later).

For general purpose workloads or those analytics workloads that have a high-capacity storage

requirement, this NVMe/SATA solution is highly recommended. When no-compromise performance is

required, Micron’s all-NVMe Ceph solution is our fastest measured solution to date and is highly

recommended as an alternative.

http://bit.ly/2MphqnH
http://bit.ly/2U5zvJU

 24

A Micron Reference Architecture

Appendix A: Configuration Details

OS Tuning/NUMA

OS tuning parameters are deployed by Ceph-Ansible. The following OS settings were used:

disable_transparent_hugepage: true

kernel.pid_max, value: 4,194,303

fs.file-max, value: 26,234,859

vm.zone_reclaim_mode, value: 0

vm.swappiness, value: 1

vm.min_free_kbytes, value: 1,000,000

net.core.rmem_max, value: 268,435,456

net.core.wmem_max, value: 268,435,456

net.ipv4.tcp_rmem, value: 4096 87,380 134,217,728

net.ipv4.tcp_wmem, value: 4096 65,536 134,217,728

ceph_tcmalloc_max_total_thread_cache: 134,217,728

NUMA tuning was not relevant to this RA as it is based on a single CPU architecture.

Ceph.conf

[client]

rbd_cache = False

rbd_cache_writethrough_until_flush = False

Please do not change this file directly

since it is managed by Ansible and will be

overwritten

[global]

auth client required = none

auth cluster required = none

auth service required = none

auth supported = none

cephx require signatures = False

cephx sign messages = False

cluster network = 192.168.1.0/24

debug asok = 0/0

debug auth = 0/0

debug bluefs = 0/0

debug bluestore = 0/0

debug buffer = 0/0

debug client = 0/0

debug context = 0/0

debug crush = 0/0

debug filer = 0/0

debug filestore = 0/0

debug finisher = 0/0

debug hadoop = 0/0

debug heartbeatmap = 0/0

debug journal = 0/0

debug journaler = 0/0

debug lockdep = 0/0

debug log = 0

debug mds = 0/0

debug mds_balancer = 0/0

debug mds_locker = 0/0

debug mds_log = 0/0

debug mds_log_expire = 0/0

debug mds_migrator = 0/0

debug mon = 0/0

debug monc = 0/0

debug ms = 0/0

debug objclass = 0/0

debug objectcacher = 0/0

debug objecter = 0/0

debug optracker = 0/0

debug osd = 0/0

debug paxos = 0/0

debug perfcounter = 0/0

debug rados = 0/0

debug rbd = 0/0

debug rgw = 0/0

debug rocksdb = 0/0

debug throttle = 0/0

debug timer = 0/0

debug tp = 0/0

debug zs = 0/0

fsid = 36a9e9ee-a7b8-4c41-a3e5-0b575f289379

mon host = 192.168.0.203

mon pg warn max per osd = 800

mon_allow_pool_delete = True

mon_max_pg_per_osd = 800

ms type = async

 25

A Micron Reference Architecture

ms_crc_data = False

ms_crc_header = True

osd objectstore = bluestore

osd_pool_default_size = 2

perf = True

public network = 192.168.0.0/24

rocksdb_perf = True

[mon]

mon_max_pool_pg_num = 166496

mon_osd_max_split_count = 10000

[osd]

bluestore_csum_type = none

bluestore_extent_map_shard_max_size = 200

bluestore_extent_map_shard_min_size = 50

bluestore_extent_map_shard_target_size = 100

osd_max_pg_log_entries = 10

osd_memory_target = 10737418240

osd_min_pg_log_entries = 10

osd_pg_log_dups_tracked = 10

osd_pg_log_trim_min = 10

bluestore_rocksdb_options =

compression=kNoCompression,max_write_buffer_

number=64,min_write_buffer_number_to_merge=3

2,recycle_log_file_num=64,compaction_style=k

CompactionStyleLevel,write_buffer_size=4MB,t

arget_file_size_base=4MB,max_background_comp

actions=64,level0_file_num_compaction_trigge

r=64,level0_slowdown_writes_trigger=128,leve

l0_stop_writes_trigger=256,max_bytes_for_lev

el_base=6GB,compaction_threads=32,flusher_th

reads=8,compaction_readahead_size=2

Ceph-Ansible Configuration

All.yml

dummy:

mon_group_name: mons

osd_group_name: osds

rgw_group_name: rgws

mds_group_name: mdss

nfs_group_name: nfss

restapi_group_name: restapis

rbdmirror_group_name: rbdmirrors

client_group_name: clients

iscsi_gw_group_name: iscsigws

mgr_group_name: mgrs

ntp_service_enabled: false

ceph_origin: repository

ceph_repository: rhcs

ceph_rhcs_version: "{{

ceph_stable_rh_storage_version | default(3)

}}"

ceph_repository_type: iso

ceph_rhcs_iso_path: "{{

ceph_stable_rh_storage_iso_path |

default('/home/cdep/rhceph-3.2-rhel-7-beta-

x86_64-dvd.iso') }}"

ceph_rhcs_mount_path: "{{

ceph_stable_rh_storage_mount_path |

default('/tmp/rh-storage-mount') }}"

ceph_rhcs_repository_path: "{{

ceph_stable_rh_storage_repository_path |

default('/tmp/rh-storage-repo') }}" # where

to copy iso's content

fsid: <insert-fsid-here>

generate_fsid: false

cephx: false

rbd_cache: "false"

rbd_cache_writethrough_until_flush: "false"

monitor_interface: enp99s0f1.501

ip_version: ipv4

public_network: 192.168.0.0/24

cluster_network: 192.168.1.0/24

osd_mkfs_type: xfs

osd_mkfs_options_xfs: -f -i size=2048

osd_mount_options_xfs:

noatime,largeio,inode64,swalloc

osd_objectstore: bluestore

ceph_conf_overrides:

 global:

 auth client required: none

 auth cluster required: none

 auth service required: none

 auth supported: none

 osd objectstore: bluestore

 cephx require signatures: False

 cephx sign messages: False

 mon_allow_pool_delete: True

 mon_max_pg_per_osd: 800

 mon pg warn max per osd: 800

 ms_crc_header: True

 ms_crc_data: False

 ms type: async

 perf: True

 rocksdb_perf: True

 26

A Micron Reference Architecture

 osd_pool_default_size: 2

 debug asok: 0/0

 debug auth: 0/0

 debug bluefs: 0/0

 debug bluestore: 0/0

 debug buffer: 0/0

 debug client: 0/0

 debug context: 0/0

 debug crush: 0/0

 debug filer: 0/0

 debug filestore: 0/0

 debug finisher: 0/0

 debug hadoop: 0/0

 debug heartbeatmap: 0/0

 debug journal: 0/0

 debug journaler: 0/0

 debug lockdep: 0/0

 debug log: 0

 debug mds: 0/0

 debug mds_balancer: 0/0

 debug mds_locker: 0/0

 debug mds_log: 0/0

 debug mds_log_expire: 0/0

 debug mds_migrator: 0/0

 debug mon: 0/0

 debug monc: 0/0

 debug ms: 0/0

 debug objclass: 0/0

 debug objectcacher: 0/0

 debug objecter: 0/0

 debug optracker: 0/0

 debug osd: 0/0

 debug paxos: 0/0

 debug perfcounter: 0/0

 debug rados: 0/0

 debug rbd: 0/0

 debug rgw: 0/0

 debug rocksdb: 0/0

 debug throttle: 0/0

 debug timer: 0/0

 debug tp: 0/0

 debug zs: 0/0

 mon:

 mon_max_pool_pg_num: 166496

 mon_osd_max_split_count: 10000

 client:

 rbd_cache: false

 rbd_cache_writethrough_until_flush: false

 osd:

 osd_min_pg_log_entries: 10

 osd_max_pg_log_entries: 10

 osd_pg_log_dups_tracked: 10

 osd_pg_log_trim_min: 10

 bluestore_csum_type: none

 osd_memory_target: 10737418240

 bluestore_extent_map_shard_min_size: 50

 bluestore_extent_map_shard_max_size: 200

 bluestore_extent_map_shard_target_size:

100

disable_transparent_hugepage: true

os_tuning_params:

 - { name: kernel.pid_max, value: 4194303 }

 - { name: fs.file-max, value: 26234859 }

 - { name: vm.zone_reclaim_mode, value: 0 }

 - { name: vm.swappiness, value: 1 }

 - { name: vm.min_free_kbytes, value:

1000000 }

 - { name: net.core.rmem_max, value:

268435456 }

 - { name: net.core.wmem_max, value:

268435456 }

 - { name: net.ipv4.tcp_rmem, value: 4096

87380 134217728 }

 - { name: net.ipv4.tcp_wmem, value: 4096

65536 134217728 }

ceph_tcmalloc_max_total_thread_cache:

134217728

containerized_deployment: False

 27

A Micron Reference Architecture

Osds.yml

dummy:

osd_scenario: lvm

lvm_volumes:

 - data: data-lv1

 data_vg: vg_sda

 wal: wal-lv1

 wal_vg: vg_nvme0n1

 db: db-lv1

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdb

 wal: wal-lv2

 wal_vg: vg_nvme0n1

 db: db-lv2

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdc

 wal: wal-lv3

 wal_vg: vg_nvme0n1

 db: db-lv3

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdd

 wal: wal-lv4

 wal_vg: vg_nvme0n1

 db: db-lv4

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sde

 wal: wal-lv5

 wal_vg: vg_nvme0n1

 db: db-lv5

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdf

 wal: wal-lv6

 wal_vg: vg_nvme0n1

 db: db-lv6

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdg

 wal: wal-lv7

 wal_vg: vg_nvme0n1

 db: db-lv7

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdh

 wal: wal-lv8

 wal_vg: vg_nvme0n1

 db: db-lv8

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdi

 wal: wal-lv9

 wal_vg: vg_nvme0n1

 db: db-lv9

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdj

 wal: wal-lv10

 wal_vg: vg_nvme0n1

 db: db-lv10

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdk

 wal: wal-lv11

 wal_vg: vg_nvme0n1

 db: db-lv11

 db_vg: vg_nvme0n1

 - data: data-lv1

 data_vg: vg_sdl

 wal: wal-lv12

 wal_vg: vg_nvme0n1

 db: db-lv12

 db_vg: vg_nvme0n1

 - data: data-lv2

 data_vg: vg_sda

 wal: wal-lv1

 wal_vg: vg_nvme1n1

 db: db-lv1

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdb

 wal: wal-lv2

 wal_vg: vg_nvme1n1

 db: db-lv2

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdc

 wal: wal-lv3

 wal_vg: vg_nvme1n1

 db: db-lv3

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdd

 wal: wal-lv4

 wal_vg: vg_nvme1n1

 db: db-lv4

 28

A Micron Reference Architecture

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sde

 wal: wal-lv5

 wal_vg: vg_nvme1n1

 db: db-lv5

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdf

 wal: wal-lv6

 wal_vg: vg_nvme1n1

 db: db-lv6

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdg

 wal: wal-lv7

 wal_vg: vg_nvme1n1

 db: db-lv7

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdh

 wal: wal-lv8

 wal_vg: vg_nvme1n1

 db: db-lv8

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdi

 wal: wal-lv9

 wal_vg: vg_nvme1n1

 db: db-lv9

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdj

 wal: wal-lv10

 wal_vg: vg_nvme1n1

 db: db-lv10

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdk

 wal: wal-lv11

 wal_vg: vg_nvme1n1

 db: db-lv11

 db_vg: vg_nvme1n1

 - data: data-lv2

 data_vg: vg_sdl

 wal: wal-lv12

 wal_vg: vg_nvme1n1

 db: db-lv12

 db_vg: vg_nvme1n1

 29

A Micron Reference Architecture

Partitioning Drives for OSDs with Cache

Create_ceph_partitions.py

Run this script on the storage nodes to create two lvm volumes per device:

python create_ceph_partitions.py -h for help message

import argparse

import os

from subprocess import Popen, PIPE

def parse_arguments():

 parser = argparse.ArgumentParser(description='This file partitions devices for

ceph storage deployment')

 parser.add_argument('-o', '--osds-per-device', required=True, type=int,

help='Number of OSDs per data device')

 parser.add_argument('-d', '--data-devices', nargs='+', required=True, type=str,

 help='Space separated list of data devices to create OSDs

on.')

 parser.add_argument('-c', '--cache-devices', nargs='+', required=False, type=str,

 help='Space separated list of cache devices to store BlueStore

RocksDB and write-ahead log')

 parser.add_argument('-ws', '--wal-sz', required=False, type=int,

 help='Size of each write-ahead log on specified cache devices

in GiB')

 parser.add_argument('-dnr', '--do-not-remove', action='store_true',

 help='Do Not remove old volumes (Disabled by default)')

 parser.add_argument('-dnc', '--do-not-create', action='store_true',

 help='Do not create new volumes (Disabled by default)')

 return {k: v for k, v in vars(parser.parse_args()).items() }

def execute_command(cmd):

 process = Popen(cmd, stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 if stderr not in ('', None):

 print stdout

 raise Exception(stderr)

 else:

 return stdout

def remove_lvm_volumes():

 dev_path = '/dev'

 cache_prefix = 'vg_nvm'

 data_prefix = 'vg_sd'

 for device in os.listdir(dev_path):

 path = os.path.join(dev_path, device)

 if device.startswith(cache_prefix) or device.startswith(data_prefix):

 # Remove Logical Volumes

 for item in os.listdir(path):

 cmd = ['lvremove','-y',os.path.join(path, item)]

 print execute_command(cmd=cmd)

 # Remove Volume Group

 cmd = ['vgremove', '-y', device]

 30

A Micron Reference Architecture

 print execute_command(cmd=cmd)

 # Remove Physical Volume

 pv_name = device[3:]

 cmd = ['pvremove', '-y', '/dev/{}'.format(pv_name)]

 print execute_command(cmd=cmd)

 # Wipe FS

 cmd = ['wipefs', '-a', '/dev/{}'.format(pv_name)]

 print execute_command(cmd=cmd)

 # Create GPT

 cmd = ['sudo', 'sgdisk', '-Z', '/dev/{}'.format(pv_name)]

 print execute_command(cmd=cmd)

def create_partitions(data_devices, osds_per_device, cache_devices, wal_sz, **_):

 # Create cache partitions

 if cache_devices:

 db_partitions = len(data_devices) * osds_per_device / len(cache_devices)

 create_cache_device_volumes(cache_devices=cache_devices, wal_sz=wal_sz,

db_partitions=db_partitions)

 # Create data partitions

 create_data_device_volumes(data_devices=data_devices,

osds_per_device=osds_per_device)

def create_cache_device_volumes(cache_devices, wal_sz, db_partitions):

 for dev in cache_devices:

 cmd = ['pvcreate', dev]

 print execute_command(cmd=cmd)

 vg_name = 'vg_{}'.format(os.path.basename(dev))

 cmd = ['vgcreate', vg_name, dev]

 print execute_command(cmd=cmd)

 gb_total = get_total_size(vg_name=vg_name)

 # If WAL was given

 if not wal_sz:

 wal_sz = 0

 sz_per_db = (gb_total / db_partitions) - wal_sz

 for i in range(1, db_partitions+1):

 cmd = ['lvcreate', '-y', '--name', 'db-lv{}'.format(i), '--size',

'{}G'.format(sz_per_db), vg_name]

 print execute_command(cmd=cmd)

 if wal_sz:

 cmd = ['lvcreate', '-y', '--name', 'wal-lv{}'.format(i), '--size',

'{}G'.format(wal_sz), vg_name]

 print execute_command(cmd=cmd)

def create_data_device_volumes(data_devices, osds_per_device):

 for dev in data_devices:

 cmd = ['pvcreate', dev]

 print

 31

A Micron Reference Architecture

 execute_command(cmd=cmd)

 vg_name = 'vg_{}'.format(os.path.basename(dev))

 cmd = ['vgcreate', vg_name, dev]

 print

 execute_command(cmd=cmd)

 gb_total = get_total_size(vg_name=vg_name)

 sz_per_osd = gb_total / osds_per_device

 for i in range(1, osds_per_device+1):

 cmd = ['lvcreate', '-y', '--name', 'data-lv{}'.format(i), '--size',

'{}G'.format(sz_per_osd), vg_name]

 print execute_command(cmd=cmd)

def get_total_size(vg_name):

 cmd = ['vgdisplay', vg_name]

 stdout = execute_command(cmd=cmd)

 for line in stdout.split('\n'):

 if 'Total PE' in line:

 total_pe = int(line.split()[2])

 elif 'PE Size' in line:

 pe_size = int(float(line.split()[2]))

 gb_total = total_pe * pe_size / 1024

 return gb_total

def run_test():

 arguments = parse_arguments()

 if not arguments['do_not_remove']:

 # Remove All Old LVM Volumes

 remove_lvm_volumes()

 if not arguments['do_not_create']:

 create_partitions(**arguments)

if __name__ == '__main__':

 run_test()

 32

A Micron Reference Architecture

About Micron

Micron Technology (Nasdaq: MU) is a world leader in innovative memory solutions. Through our global

brands — Micron, Crucial® and Ballistix® — our broad portfolio of high-performance memory technologies,

including DRAM, NAND and NOR memory, is transforming how the world uses information. Backed by

more than 35 years of technology leadership, Micron's memory solutions enable the world's most

innovative computing, consumer, enterprise storage, data center, mobile, embedded, and automotive

applications. To learn more about Micron, and our complete portfolio of storage and memory products,

visit micron.com.

About Red Hat®

Red Hat is the world’s leading provider of open source software solutions, using a community-powered

approach to provide reliable and high-performing cloud, Linux, middleware, storage, and virtualization

technologies. Red Hat also offers award-winning support, training, and consulting services. As a

connective hub in a global network of enterprises, partners, and open source communities, Red Hat helps

create relevant, innovative technologies that liberate resources for growth and prepare customers for the

future of IT.

About Ceph Storage

Ceph is an open-source distributed object and file storage solution designed to provide excellent

performance, reliability and scalability. It can:

• Free you from the expensive lock-in of proprietary, hardware-based storage solutions.

• Consolidate labor and storage costs into 1 versatile solution.

• Introduce cost-effective scalability on self-healing clusters based on standard servers and disks.

micron.com
©2019 Micron Technology, Inc. All rights reserved. All information herein is provided on as “AS IS” basis without warranties of any kind, including any
implied warranties, warranties of merchantability or warranties of fitness for a particular purpose. Micron, the Micron logo, and all other Micron
trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners. No hardware, software or
system can provide absolute security and protection of data under all conditions. Micron assumes no liability for lost, stolen or corrupted data arising
from the use of any Micron product, including those products that incorporate any of the mentioned security features. Products are warranted only to
meet Micron’s production data sheet specifications. Products, programs and specifications are subject to change without notice. Dates are estimates
only. All data and statements within this document were developed by Micron with cooperation of the vendors used. All vendors have reviewed the
content for accuracy. Rev. A 03/19 CCM004-676576390-11275

http://www.micron.com/

