
redhat.com

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

Containers quick
reference guide

Container

Technology that allows computer
software to be packaged and
isolated in a standardized, light-
weight, and portable format.

Container runtime

Software that runs and manages
the components of a container
running on a host (e.g., Podman,
CRI-O, Docker).

Open Container
Initiative (OCI)

An open governance structure
for creating open industry
standards around container
formats and runtimes.

Namespaces

A Linux concept for labeling
processes, network interfaces,
files, and other system compo-
nents. Labeling is used to isolate
containers from each other and
the host system.

Application containers have quickly become the foundation of modern software design and digital
infrastructures. Their characteristics enable an essential transformation toward data-driven warfare
and the development of highly agile and flexible warfighting capabilities that can be delivered at the
speed of need.

While containers are not new, they may be unfamiliar to many IT professionals, and there is often con-
fusion about what containers are and how they differ from virtual machines. Fortunately, the key to
understanding these two related but fundamentally different concepts is in their names.

Virtual machines

A virtual machine (VM) is a software-defined computer with every component explicitly defined and
represented such as memory, CPU, disk, and audio and video devices. Once a VM has been built, it is
used like any other computer: an operating system and applications are installed and configured.

Application containers

An application container is precisely that: a container. It is not a software-defined computer like a
virtual machine, and it does not have an operating system, disks, CPUs, memory, or other devices.
There is no boot process for a container because there is no computer or operating system to boot.

Containers are standardized, portable packages that hold only the files and metadata necessary
to define an application. Containers are loaded onto a host computer where they run like any other
application: application binaries are executed and run as processes, which interact with the comput-
er’s network interfaces, disks, and other processes. This is different from a virtual machine, which runs
applications on top of an operating system and software-defined hardware.

While containers run like regular applications on a host, they differ from applications that are not
containerized in that containers are managed and run by container runtimes, which use features of
the host such as namespaces and other security features to isolate applications from each other. A
namespace is defined by a tag that is assigned to every file, process, and network connection associ-
ated with a particular container, and only components with the same namespace tag can interact with
each other, which maintains strict isolation of running containers.

Whitepaper

Demystifying application containers and
virtual machines

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://en.wikipedia.org/wiki/Linux_namespaces

2redhat.com Whitepaper Demystifying application containers and virtual machines

Why use containers?

Both containers and virtual machines have their place in an IT infrastructure, and which one is appro-
priate depends on the use case. Some large, monolithic applications like traditional databases do not
containerize well. However, many applications do, and the size, portability, and security characteristics
of containers make them ideal for modern distributed and collaborative defense architectures such as
hybrid cloud, edge computing, and microservices.

Size

Because containers are composed only of application files, they are much smaller than virtual
machines and easier to move around a hybrid cloud, physical, or edge architecture. Additionally,
because they are processes running on a host computer, they require fewer resources than virtual
machines, vastly increasing the maximum density per host to dozens or hundreds of containers
instead of a few virtual machines.

Containers also allow software developers to test their code efficiently and frequently because
they are lightweight, start fast, consume few resources, and can be destroyed as quickly as they are
created. Containers start up in seconds and do not require interaction with operations teams like
virtual machines do. Ask developers how much time and productivity they lose when they drop out of
their flow and the benefits of using containers for near-real-time code testing become evident.

Portability

Just like a shipping container that can be moved from a cargo ship to a tractor trailer and to a railroad
car, the standard form factor of an application container gives it similar flexibility. Application contain-
ers can run anywhere that their parent operating system can run. For example, a Linux® container can
be built once and run unchanged anywhere that Linux runs. Containers are commonly built to be OCI-
compliant, which ensures that they will run on an OCI-compliant host without requiring the container
to be changed.

Conversely, virtual machine formats are incompatible across hypervisors. For example, a VMWare
virtual machine won’t run directly on Amazon EC2 and an EC2 Amazon machine image won’t run on a
kernel-based virtual machine hypervisor. Import and export mechanisms exist, but these necessarily
change the virtual machine format, take time, and potentially introduce errors. There is no guarantee
that everything will work once the virtual machine is migrated between hypervisors.

When software developers build their applications directly into container images, they are able to
promote the exact same images along their DevSecOps pipeline until the applications are put into
production. The container that a developer is working on is the same container that goes into pro-
duction, byte for byte, regardless of whether the container host is bare metal, an on-premise virtual
machine, in a public cloud, or on an edge device. Using consistent, immutable containers is far more
predictable and less error-prone than deploying software on virtual machines on different hypervi-
sors across and within different environments.

Security

A virtual machine-based architecture involves one operating system on each host (hypervisor) plus a
completely separate operating system for every virtual machine that is running—100 virtual machines
means at least 101 operating systems to manage. This is a massive attack surface to maintain, patch,
and monitor in addition to securing the applications that run on each virtual machine.

SELinux

A security-focused architec-
ture for Linux, developed jointly
by Red Hat and the National
Security Agency. It is used to
enforce container isolation
and provide security controls
over containers and container
runtimes.

Kubernetes

A system used to manage,
deploy, scale, and orches-
trate containers across an
organization.

Containers in the
Department of Defense
(DoD)

Heterogeneous defense
architectures are made more
efficient and effective with
containers.

•	 Containers accelerate the
speed at which new capabili-
ties can be delivered to the
warfighter.

•	 Build containers once and
deploy many times across
public cloud, private cloud,
weapon systems, and on the
tactical edge.

•	 Containers are lightweight
and ideal for small-form factor
tactical hardware platforms.

•	 Immutable containers can be
secured to DoD standards
when they are built, and these
standards follow them every-
where they go.

http://redhat.com
https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Microservices
https://www.brightdevelopers.com/the-cost-of-interruption-for-software-developers/
https://link.springer.com/article/10.1007/s10270-017-0621-x
https://opencontainers.org/
https://opencontainers.org/
https://www.redhat.com/en/topics/devops/what-is-devsecops

Copyright © 2020 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

North America
1 888 REDHAT1
www.redhat.com

About Red Hat
Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered
approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies.
Red Hat helps customers integrate new and existing IT applications, develop cloud-native applications, standardize on
our industry-leading operating system, and automate, secure, and manage complex environments. Award-winning
support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500. As a strategic partner
to cloud providers, system integrators, application vendors, customers, and open source communities, Red Hat can
help organizations prepare for the digital future.

Europe, Middle East,
and Africa
00800 7334 2835
europe@redhat.com

Asia Pacific
+65 6490 4200
apac@redhat.com

Latin America
+54 11 4329 7300
info-latam@redhat.comfacebook.com/redhatinc

@RedHat
linkedin.com/company/red-hat

redhat.com
#F25654_1120

Conversely, with containers, there is only one operating system to secure—the container host.
Managing only one operating system is less burdensome than managing virtual machines, espe-
cially at scale, and developers can focus on securing the applications themselves. The security
features of the host operating system are also inherited by the containers and provide strong iso-
lation and defense-grade protection (SELinux, Cgroups, seccomp, and more).

Additionally, as a container image moves through the development cycle, it can be vetted and
hardened by security tests and scans before it is promoted into production. Once promoted,
because the container does not change after it is hardened, the security posture of that container
is the same as during the final stages of development as validated by its unchanged crypto-
graphic signature.

Summary

There is far more to learn about containers, such as managing containers at scale, orchestration
with Kubernetes, container registries, service meshes, or the myriad other technologies that are
part of this domain. Before starting down this path, it is important to have a clear understanding
of what containers are and what they are not in order to effectively use this tool.

•	 Containers are important
components of microser-
vices architectures, which are
relevant as large, exquisite
military assets are decon-
structed into aggregates of
smaller, attritable assets.

Learn more

Understanding Linux containers

Open Container Initiative

Cloud Native
Computing Foundation

Kubernetes project

Learning Red Hat® OpenShift®

Whitepaper

mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
https://www.linkedin.com/company/red-hat
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/Cgroups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp?extIdCarryOver=true&sc_cid=701f2000000Rm4fAAC
https://www.redhat.com/en/resources/container-security-openshift-cloud-devops-whitepaper
https://en.wikipedia.org/wiki/Kubernetes
https://quay.io/
https://istio.io/latest/docs/concepts/what-is-istio/
https://www.redhat.com/en/topics/containers
https://opencontainers.org/
https://www.cncf.io/
https://www.cncf.io/
https://kubernetes.io/
https://learn.openshift.com/

