With an aim to separate hype from reality in Day 4 at Sibos, I was on a mission to understand what the existing and near-term applications of Artificial Intelligence (AI) were in banking. With machine learning described as “table stakes” now, Richard Harris (Feedzai) during The Ethical Side of AI panel, suggested that the closest we have to understanding the impact AI will have is by looking at the internet – knowing the internet would change everything but twenty years ago, we didn’t know how – describes the state of AI today.
Risk mitigation appears to be an active area for current AI application. For example, with a worldwide impact of money laundering estimates between 2% to 5% of global GDP (upwards of $2 trillion USD), Heike Riel, IBM (Sensemaker: The interconnectedness of everything and advanced AI) cited a case where they found a reduction in false positives of 95% to 50%, along with a reduction of 27% in manual effort by using AI/ML to help discover the undefined unknowns in the data. Using AI to help triage fraud for human interpretation and action is considered ‘narrow’ AI – the application of AI to one particular task.
Broadening the scope of AI beyond a single task may be on the horizon. In the future I can see a time when an AI would become a new hire to the bank, employed to derive new, company-wide insights to improve processes, identify efficiencies or ways to improve customer experience.
As Ayesha Khanna (ADDO AI) mentioned in her breakfast keynote, we will need to be able to accept the insights from AI for this to be successful, and not dismiss them simply because we never thought of them before.
For now AI use is openly described for risk mitigation and advisory applications with a general expectation that this is only the beginning. And although AI begins with a use case – with a defined goal and data to learn from – ultimately the application of AI needs to create value. Currently value is focused on generating efficiencies, improving operations and cutting costs. But in the broader applications of ‘true AI’ we will likely need to reconsider how to measure value.
As Genevieve Bell put it during the closing plenary we will need question the metrics upon which we assess value, especially when considering autonomous applications of AI. Harkening back on previous industrial revolutions that created entirely new disciplines (like computer science during the 3rd industrial revolution) to this 4th industrial revolution powered data, AI, sensors and other advances she pointed out the likelihood of entirely new disciplines to form.
Perhaps by then we’ll also have new metrics to ascribe value of AI – like measuring the transparency, or trustworthiness of AI. The human doesn’t leave the equation in AI, for labeling data for example, but we may need to redefine how we treat it – possibly more, as Bell termed it during her session, a colleague than an algorithm. To learn more about some of the people we are working with in AI, and their stories, don’t miss “The People behind OpenAI” from our Open Source Stories series.
Über den Autor
Described as a pioneer and one of the most influential people by CRMPower, Fiona McNeill has worked alongside some of the largest global organizations, helping them derive tangible benefit from the strategic application of technology to real-world business scenarios.
During her 25 year professional tenure, she has led teams, product strategy, marketing, and consulted across a wide range of industries, while at SAS, IBM Global Services, and others. McNeill co-authored Heuristics in Analytics with Dr. Carlos Andre Pinheiro, has previously published both in academic and business journals, and has served on the board of the Cognitive Computing Consortium. She received her M.A. in Quantitative Behavioral Geography from McMaster University and graduated with a B.Sc. in Bio-Physical Systems, University of Toronto.
Mehr davon
Nach Thema durchsuchen
Automatisierung
Das Neueste zum Thema IT-Automatisierung für Technologien, Teams und Umgebungen
Künstliche Intelligenz
Erfahren Sie das Neueste von den Plattformen, die es Kunden ermöglichen, KI-Workloads beliebig auszuführen
Open Hybrid Cloud
Erfahren Sie, wie wir eine flexiblere Zukunft mit Hybrid Clouds schaffen.
Sicherheit
Erfahren Sie, wie wir Risiken in verschiedenen Umgebungen und Technologien reduzieren
Edge Computing
Erfahren Sie das Neueste von den Plattformen, die die Operations am Edge vereinfachen
Infrastruktur
Erfahren Sie das Neueste von der weltweit führenden Linux-Plattform für Unternehmen
Anwendungen
Entdecken Sie unsere Lösungen für komplexe Herausforderungen bei Anwendungen
Original Shows
Interessantes von den Experten, die die Technologien in Unternehmen mitgestalten
Produkte
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Cloud-Services
- Alle Produkte anzeigen
Tools
- Training & Zertifizierung
- Eigenes Konto
- Kundensupport
- Für Entwickler
- Partner finden
- Red Hat Ecosystem Catalog
- Mehrwert von Red Hat berechnen
- Dokumentation
Testen, kaufen und verkaufen
Kommunizieren
Über Red Hat
Als weltweit größter Anbieter von Open-Source-Software-Lösungen für Unternehmen stellen wir Linux-, Cloud-, Container- und Kubernetes-Technologien bereit. Wir bieten robuste Lösungen, die es Unternehmen erleichtern, plattform- und umgebungsübergreifend zu arbeiten – vom Rechenzentrum bis zum Netzwerkrand.
Wählen Sie eine Sprache
Red Hat legal and privacy links
- Über Red Hat
- Jobs bei Red Hat
- Veranstaltungen
- Standorte
- Red Hat kontaktieren
- Red Hat Blog
- Diversität, Gleichberechtigung und Inklusion
- Cool Stuff Store
- Red Hat Summit