Subscribe to the feed

In Part 1 of this series on the Open Policy Agent (OPA), we gave a brief rundown of why you might want to use the OPA Gatekeeper controller for policy enforcement in your Kubernetes clusters. We also gave a few examples of OPA’s query language, Rego, and of the Kubernetes Custom Resource Definitions (CRDs) that OPA Gatekeeper uses and creates.

This follow-up post dives into practical aspects of writing and implementing OPA policies for Kubernetes clusters, demonstrating a working example that can be used to restrict a pod’s allowed tolerations of node taints.

The Problem: Node Taints and Tolerations

Taints and tolerations provide one mechanism to allow fine-grained control of the placement of pods on a specific set of nodes. Typically, the default Kubernetes scheduler just considers CPU and memory resource availability when placing pods. Pods can use node affinity to request placement on certain nodes. While node affinity rules implement scheduling preferences on the pod side, node taints manage pod placement preferences from the node’s point of view. When you instruct Kubernetes to drain a node of its pods, Kubernetes gives that node the taint node.kubernetes.io/unschedulable:NoSchedule to signal to the scheduler not to add new pods. You may also want to taint nodes that have expensive Graphics Processing Units (GPUs) to limit their availability to pods that need them or to taint certain nodes to isolate their sensitive workloads.

To permit the Kubernetes scheduler to place a given pod on a node with a given taint, you can add a taint toleration to that pod’s specification. A taint toleration will not force the scheduler to drop that pod onto a corresponding node, but it does give the scheduler that option. When used in combination with node affinity rules, taint tolerations can force scheduling onto specific nodes.

While these native Kubernetes controls provide a great deal of control over workload scheduling, one piece is missing. What if you do not want certain pods to be able to tolerate certain node taints? Kubernetes offers no built-in way to declare that only certain pods can have certain taint tolerations. OPA Gatekeeper constraint policies can fill that enforcement gap.

Restricting Taint Tolerations with OPA Gatekeeper

Setup

Follow these steps if you would like to work through the examples in this post.

  1. Check out the GitHub repository stackrox/blog-examples and navigate to the subdirectory code/opa-gatekeeper-taint-tolerations. Due to the length of the example files, we will not quote them in full here. You can still follow along in the online repository without cloning it locally, if you prefer.
  2. Create or use a Kubernetes test cluster of version 1.14 or later.
  3. Deploy OPA Gatekeeper. (This post’s files were tested against Gatekeeper release v3.1.0-beta.8.)
  4. Install the opa command-line tool on the computer where you checked out the blog-examples repository. You may want to align the opa version to the OPA version compiled into your installed Gatekeeper release. For example, Gatekeeper v3.1.0-beta.8 uses OPA v0.17.2, which is not the latest release.

Repository structure

.
└── opa-gatekeeper-taint-tolerations
├── README.md
├── constraint.yaml
├── constraint_template.yaml
├── hello-world.yaml
├── src.rego
└── src_test.rego

The core files:

  1. src.rego contains the OPA Rego code for our taint toleration policy.
  2. src_test.rego contains the corresponding test cases for our policy Rego.
  3. constraint_template.yaml - The Gatekeeper Custom Resource (CR) ConstraintTemplate for our policy. Note that this file also contains the code from src.rego inline, but the opa tool cannot parse the manifest YAML, so we need to copy the Rego code out to a separate file for testing. If you use this layout for your own policies, you will need to remember to synchronize code changes between the two files.

Additional files:

  1. constraint.yaml - The manifest for a test of our RestrictedTaintToleration CR.
  2. hello-world.yaml - A minimalist deployment to demonstrate the constraint in practice.

ConstraintTemplate

constraint_template.yaml, on first glance, looks like a lot of Kubernetes resource manifests. A few special fields to note:

spec.crd.spec defines the Custom Resource Definition (CRD) of our new constraint type. The names field sets the resource type’s name; only kind is required. The validation field is optional, but with it you can define the CR’s field names and types using an OpenAPI v3 schema, allowing some manifest correctness verification and enforcement by the Kubernetes API.

The spec.targets field contains the policy Rego code.

When we apply this manifest in a Kubernetes cluster with Gatekeeper installed, the Gatekeeper custom controller will create a new Kubernetes CR of type RestrictedTaintToleration. We can then create RestrictedTaintToleration cluster objects to define which objects the Gatekeeper admission controller will reject when queried by the Kubernetes API.

Writing a Policy

We outlined a few basics on writing Rego and ConstraintTemplates in Part I. Keep these additional points in mind, especially when writing policies that involve more complexity than just checking an object to see if a given field does or does not exist.

Policy Inputs

Gatekeeper passes data to each policy evaluation in the input object in JSON notation, with the Constraint fields in input.parameters. input.review.object contains the Kubernetes API spec of the object sent for evaluation.

Violations

  • The violation method forms the crux of a Gatekeeper policy. Your policy can contain zero or violation definitions, although with no defined violations, all objects will pass.
  • A violation method block triggers a policy violation only if all of the block’s statements evaluate to true.
  • One or more triggered violations in a policy evaluation signals Gatekeeper to deny an admission request. Gatekeeper does not stop evaluating the policy after the first violation, allowing interested users to see all the potential reasons for an object’s failure.
  • Note that this usage of violation in Gatekeeper differs from standalone OPA’s allow/deny semantics. Rego policies generally cannot be used in both Gatekeeper and non-Gatekeeper OPA without some modifications.

Our policy has two violation blocks. One tests for exact matches to our restricted taint, while the other applies when a pod has a global toleration that is not allowed per our constraint’s configuration.

Comprehensions and Undefined Fields

We use Rego comprehensions to find tolerations that match our restricted taint and to check if the pod has a global toleration that matches all taints.

global_tolerations := [key | k := object.get(tolerations[_], "key", "")
k == ""
key := k]

Global tolerations have only an operator field defined. They are the only toleration type that does not have a key, so we check the pod’s tolerations for those without a valid key field. Note that we do not test the key field directly using the path-based tolerations[_].key notation. Instead, we use the method object.get, which takes three arguments: (1) the object whose element we want to read, (2) the field name that we want to read, and (3) a default value if object.key is undefined. If we tried to read tolerations[_].key from a tolerations array that contained an element without a key field, the comprehension would return undefined and our policy evaluation would fail when we tried to access global_tolerations later.

We use object.get several times in this policy, to ensure that we do not try to access optional fields that may not be set in our input spec. Failing to handle values that could be undefined can result in unintended policy execution outcomes.

Functions

Our policy defines several functions to match a pod’s tolerations against our restricted taint. Note that we define some functions more than once.

# If effect is empty, match any
effect_check("") {
true
}

# Otherwise, specific effect must match
effect_check(effect) {
effect == taint.effect
}

The first definition gets called if effect_checkreceives an empty string as its argument. The second definition gets called if the passed argument is not empty, in which case it assigns the value to effect.

Rego does not have a standard if-then-else syntax in most contexts. Using multiple definitions of a function allows for conditional execution.

Testing a Policy

If your enforcement use case was important enough to necessitate writing a policy, it should also warrant tests for that policy.

When writing test coverage for your Gatekeeper policy, you want to consider the following points carefully.

  1. What Kubernetes API resource fields does my policy query? Are any of them optional? Can they appear more than once in a spec?
  2. How many positive test cases do I need to write to make sure my policy will do what I expect?
  3. How many negative test cases do I need to write to make sure my policy will not produce results that I do not want?

Writing Tests

Policy tests are also written in Rego. By convention, they live in the same directory as the source file. In our case, they can be found in the file src_test.rego to correspond with src.rego. Note the matching package name at the top of each file.

Test method names should always begin with the prefix test_. Let’s take a look at the first test in the file.

test_input_no_global_violation {
input := { "review": input_review_global,
"parameters": input_parameters_no_global }
results := violation with input as input
count(results) > 0
}

First, we define the input object variable with a review field, whose contents come from the input_review_global declaration later in the file, and a parameters field, set to the value of the input_parameters_no_global object, also defined later in the file.

As we said earlier, input.review contains the specification of the object request that was sent to Gatekeeper for evaluation, while input.parameters holds the constraint’s configuration.

Our mock object spec is:

input_review_global = {
"object": {
"spec": {
"tolerations": [
{
"operator": "Exists"
}
]
}
}
}

Our mock object does not need to comprise a complete pod manifest. We need to define only the fields that our policy requires for evaluation.

For our constraint parameters:

input_parameters_no_global = {
"restrictedTaint": {
"key": "taintname",
"value": "taintvalue",
"effect": "NoSchedule"
},
"allowGlobalToleration": false
}

Our mock pod spec from input_review_global has only one taint toleration defined, a global taint toleration. However, our constraint parameters set allowGlobalToleration to false, meaning we do not want to allow pods with global taint tolerations to use this restricted taint. Therefore, in the last line of our test method, we expect the number of violation results to be greater than zero. Gatekeeper should deny a matching request.

Running Tests

We can use the opa command-line tool to evaluate our tests.

$ opa test --explain fails src.rego src_test.rego
data.restrictedtainttoleration.test_input_no_global_violation: PASS (7.099785ms)
data.restrictedtainttoleration.test_input_ok_global_allow: PASS (474.856µs)
data.restrictedtainttoleration.test_input_no_global_equal_match_violation: PASS (563.708µs)
data.restrictedtainttoleration.test_input_ok_global_equal_match_allow: PASS (455.672µs)
data.restrictedtainttoleration.test_input_equal_match_violation: PASS (870.17µs)
data.restrictedtainttoleration.test_input_equal_no_effect_match_violation: PASS (660.812µs)
data.restrictedtainttoleration.test_input_equal_no_operator_match_violation: PASS (1.14774ms)
data.restrictedtainttoleration.test_input_equal_no_effect_no_operator_match_violation: PASS (928.342µs)
data.restrictedtainttoleration.test_input_equal_different_value_match_allow: PASS (424.302µs)
data.restrictedtainttoleration.test_input_no_toleration_field_allow: PASS (330.352µs)
--------------------------------------------------------------------------------
PASS: 10/10

Testing in Kubernetes

Now we are ready to test our Gatekeeper constraint in an actual Kubernetes cluster.

  1. Apply the ConstraintTemplate: kubectl apply -f constraint_template.yaml

  2. Apply the sample constraint: kubectl apply -f constraint.yaml (Note that this file needs to be applied separately from and after the ConstraintTemplate object, because the Kubernetes API will reject this manifest if its resource type does not yet exist.)

  3. Apply a deployment with the restricted taint and watch its pod fail to run: kubectl apply -f hello-world.yaml

     $ kubectl get events --sort-by=.metadata.creationTimestamp
    LAST SEEN TYPE REASON OBJECT MESSAGE
    [...]
    2m Normal ScalingReplicaSet deployment/hello-world Scaled up replica set hello-world-675bf47d7f to 1
    37s Warning FailedCreate replicaset/hello-world-675bf47d7f Error creating: admission webhook "validation.gatekeeper.sh" denied the request: [denied by privileged] Toleration is not allowed for taint {"effect": "NoSchedule", "key": "privileged", "value": "true"}
    119s Warning FailedCreate replicaset/hello-world-675bf47d7f Error creating: admission webhook "validation.gatekeeper.sh" denied the request: [denied by privileged] Toleration is not allowed for taint {"value": "true", "effect": "NoSchedule", "key": "privileged"}
    [...]

Gatekeeper evaluates our policy against all pod requests in any namespace except kube-system. That scoping comes from our RestrictedTaintToleration spec.match field, which exists in all constraint resources that Gatekeeper creates.

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]
excludedNamespaces:
- kube-system

The kinds field matches specific Kubernetes API resource groups and types. We use another matcher, excludedNamespaces, to scope evaluation to any resource that is not in the kube-system namespace. You can read about more constraint matching options in the Gatekeeper docs.

Wrapping Up

You can find more examples of Gatekeeper policies in the GitHub repo for reference or use in your clusters.

We hope you have a better idea of what OPA Gatekeeper policies can do and the requirements for writing reliable policies. Gatekeeper opens up a lot of possibilities for enforcing security best practices and general consistency of cluster resource configurations. OPA and Gatekeeper provide the ability to manage object configuration best practices and conventions to a very fine degree. However, creating effective and safe policies requires defining and writing comprehensive test cases. A faulty policy could allow unwanted objects into the cluster or keep acceptable objects out. Policy writing also requires a strong knowledge of the Kubernetes API specifications in question, although writing policies can serve as motivation and an exercise to learn more about resource specs.


About the author

UI_Icon-Red_Hat-Close-A-Black-RGB

Browse by channel

automation icon

Automation

The latest on IT automation for tech, teams, and environments

AI icon

Artificial intelligence

Updates on the platforms that free customers to run AI workloads anywhere

open hybrid cloud icon

Open hybrid cloud

Explore how we build a more flexible future with hybrid cloud

security icon

Security

The latest on how we reduce risks across environments and technologies

edge icon

Edge computing

Updates on the platforms that simplify operations at the edge

Infrastructure icon

Infrastructure

The latest on the world’s leading enterprise Linux platform

application development icon

Applications

Inside our solutions to the toughest application challenges

Original series icon

Original shows

Entertaining stories from the makers and leaders in enterprise tech