
Red Hat Enterprise Linux 6 -
High Performance Network with
MRG - MRG Messaging:
Throughput & Latency 1-GigE, 10-GigE
and 10 Gb InfiniBand

TM

Version 2.0

November 2010

Intel 1 GigE /
Mellanox 10 GigE /

Mellanox InfiniBand

Red Hat ® Enterprise Linux ® 6.0

Intel Westmere 12 CPU 24 GB

Red Hat Enterprise MRG –
MRG Messaging 1.3

Red Hat Enterprise MRG - MRG Messaging: Throughput & Latency
with 1 GigE, 10 GigE and 20 Gb InfiniBand

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

© 2010 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

 www.redhat.com 2

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Table of Contents

 1 Goals & Executive Summary .. 5
 1.1 Goals .. 5
 1.2 Executive Summary .. 6

 2 Red Hat MRG Messaging – Introduction & Architecture 7
 2.1 The Basis of MRG Messaging .. 7

 2.1.1 Advanced Message Queuing Protocol .. 7
 2.1.2 Apache Qpid .. 7
 2.1.3 Red Hat Enterprise MRG Messaging .. 7

 2.2 How MRG Messaging Operates ... 7
 2.3 Red Hat MRG Messaging (AMQP) Architecture ... 9

 2.3.1 Main Features .. 10
 2.3.2 Messages ... 11
 2.3.3 Queues .. 11
 2.3.4 Exchanges ... 11
 2.3.5 Bindings ... 14

 2.4 AMQP Communication Model .. 15
 2.5 AMQP Object Model ... 16

 3 Performance Testing Methodology ... 17
 3.1 Test Harnesses ... 18

 3.1.1 Throughput (Perftest) ... 18
 3.1.2 Latency (Latencytest) .. 19

 3.2 Tuning & Parameter Settings ... 19
 3.2.1 Processes .. 20
 3.2.2 SysCtl ... 21
 3.2.3 ethtool .. 22
 3.2.4 ifconfig .. 22
 3.2.5 CPU affinity .. 23
 3.2.6 AMQP parameters ... 23

 4 Hardware/Software Versions .. 25
 4.1 Hardware .. 25
 4.2 Network ... 25
 4.3 Software ... 26

 5 Performance Results .. 26
 5.1 Latencey ... 26

 5.1.1 1-GigE .. 27
 5.1.2 10-GigE .. 28
 5.1.3 Internet Protocol over InfiniBand (IPoIB) ... 29
 5.1.4 Sockets Direct Protocol (SDP) .. 29

 3 www.redhat.com

 5.1.5 Remote Direct Memory Access (RDMA) ... 31
 5.1.6 Comparisons .. 32

 5.2 Throughput ... 35
 5.2.1 1-GigE .. 36
 5.2.2 10-GigE .. 37
 5.2.3 IPoIB .. 38
 5.2.4 IB SDP ... 39
 5.2.5 IB RDMA .. 40
 5.2.6 Comparisons .. 41

 5.3 System Metrics ... 44

 6 Conclusions .. 48

 7 Next Steps .. 48

 Appendix B: Memlock configuration .. 48

 www.redhat.com 4

 Goals & Executive Summary

High Performance Network Add-On

Red Hat Enterprise Linux 6 includes Red Hat's High Performance Network Add-On. This
Add-on delivers remote directory memory access over converged Ethernet (RoCE) for those
times when low network latency and high capacity are important. Because RoCE bypasses
system and kernel calls to place data directly into remote system memory with less CPU
overhead, the High Performance Networking Add-On is ideal for high-speed data processing
applications that require low latency, for speeding up cluster locking, or for scaling up
applications on distributed systems without investing in specialized networking technologies.

MRG is a next-generation IT infrastructure that makes enterprise computing 100-fold faster,
defines new levels of interoperability and gives customers competitive advantage by running
applications and transactions with greater performance and reliability. Red Hat Enterprise
MRG integrates Messaging, Realtime, and Grid technologies. Messaging is the backbone of
enterprise and high-performance computing, SOA (Service-oriented architecture)
deployments, and platform services. MRG provides enterprise messaging technology that
delivers:

• Unprecedented interoperability through the implementation of AMQP (Advanced
Message Queuing Protocol), the industry's first open messaging standard. The solution
is cross-language, cross-platform, multi-vendor, spans hardware and software, and
extends down to the wire level. Red Hat is a founding member of the AMQP working
group, which develops the AMQP standard.

• Linux-specific optimizations to achieve optimal performance on Red Hat Enterprise
Linux and MRG Realtime. It can also be deployed on non-Linux platforms such as
Windows and Solaris without the full performance and quality of service benefits that
Red Hat Enterprise Linux provides.

• Support for most major development languages.

 This paper generates performance numbers for MRG Messaging under the Red Hat
Enterprise Linux 6 (RHEL) operating system using various interconnects and supported
protocols include RoCE.

• Performance numbers are useful to raise interest in AMQP and MRG Messaging
technology when deployed on Red Hat Enterprise Linux.

• This report compares hardware network options to help in deployment and
technology selection.

• This report makes no attempt to plot the maximum throughput of MRG, but rather a
controlled comparison in a minimal network configuration.

 5 www.redhat.com

http://www.redhat.com/rhel/add-ons/high_performance_network.html

 1 Goals
• Generate MRG Messaging performance numbers, latency and throughput, with various

interconnects and supported protocols.

• Evaluate the High Performance Network Add-On in Red Hat Enterprise Linux 6 w/
RDMA over Converged Ethernet (RoCE).

• Provide tuning and optimization recommendations for MRG Messaging.

 2 Executive Summary
This study measured the throughput and 2-hop fully reliable latency of MRG Messaging V1.1
(using AMQP 0-10 protocol) using 8 to 16384-byte packets running on RHEL 6.0. The results
provided were achieved with the testbed described in Section 4. It is quite possible higher
throughput could be achieved with multiple drivers and multiple instances of adapters.

Three physical interconnects were used. A single protocol, TCP, was used with the 1-GigE.
Two protocols were used with the 10-GigE interconnects and InfiniBand (IB) interconnect.
Internet Protocol over InfiniBand (IPoIB) allows users to take partial advantage of IB's latency
and throughput using pervasive Internet Protocols (IP). Using the Remote Direct Memory
Access (RDMA) protocol allows users to take full advantage of the latency and throughput of
the IB interconnect however, the cost is loss of the IP application and programming
interfaces.

Latency results show that faster interconnects will yield lower latencies. Also show is
Mellonox 10Gig-E and Mellonox 10Gbit-IB provided the shortest latency. The new Mellonox
10Gig-E w/ RDMA over Converged Ethernet (RoCE) had best with averaged readings at 68
microseconds using 10Ge. Mellonox's IB (connectX2) had latencies just over 70
microseconds. The 10-GigE latencies increased more with transfer size but had results just
over 100 microseconds. The 1-GigE best average was 130 microseconds.

For throughput, the faster interconnects prove their worth with larger transfer sizes, the results
for smaller transfers had much smaller variances. While 10 GigE hardware was always the
best performer, which of the two tested IB protocols to achieve the best throughput changed
with the transfer size. For 64-byte transfers, 10Gig-E performed best with over 73.5 MB/s
recorded, followed by 1-gigE (72.67 MB/s), RDMA (64.7 MB/s), 10-GigE RDMA (63 MB), and
IB RDMA (59.23 MB/s). Using 256-byte transfers, 10-GigE and 1-GigE wins with 243 MB/s,
closely trailed by IPoIB (234 MB/s), 10-GigE RDMA (224), IB RDMA (176.8). With a 1024-
byte transfer size, 10-GigE ranks first at 815 MB/s, 10-GigE is close with 679 MB/s, then IB
RDMA (333.2 MB/s), IPoIB (331.58 MB/s), and 1-GigE (201.6 MB/s) complete the sequence.

 www.redhat.com 6

 Red Hat MRG Messaging – Introduction &
Architecture

 1 The Basis of MRG Messaging

 1.1 Advanced Message Queuing Protocol

AMQP is an open-source messaging protocol. It offers increased flexibility and interoperability
across languages, operating systems, and platforms. AMQP is the first open standard for high
performance enterprise messaging. More information about AMQP is available at
http://www.amqp.org. The full protocol specification is available at
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1 .

 1.2 Apache Qpid

Qpid is an Apache project that implements the AMQP protocol. It is a multi-platform
messaging implementation that delivers transaction management, queuing, distribution,
security and management. Development on MRG Messaging is also contributed back
upstream to the Qpid project. More information can be found on the http://qpid.apache.org.

 1.3 Red Hat Enterprise MRG Messaging

MRG Messaging is an open source messaging distribution that uses the AMQP protocol.
MRG Messaging is based on Qpid, but includes persistence options, additional components,
Linux kernel optimizations, and operating system services not found in the Qpid
implementation. For more information refer to http://www.redhat.com/mrg.

 2 How MRG Messaging Operates
MRG Messaging was designed to provide a way to build distributed applications in which
programs exchange data by sending and receiving messages. A message can contain any
kind of data. Middleware messaging systems allow a single application to be distributed over
a network and throughout an organization without being restrained by differing operating
systems, languages, or network protocols. Sending and receiving messages is simple, and
MRG Messaging provides guaranteed delivery and extremely good performance.

In MRG Messaging a message producer is any program that sends messages. The program
that receives the message is referred to as a message consumer. If a program both sends
and receives messages it is both a message producer and a message consumer.

The message broker is the hub for message distribution. It receives messages from message
producers and uses information stored in the message's headers to decide where to send it
on to. The broker will normally attempt to send a message until it gets notification from a
consumer that the message has been received.

 7 www.redhat.com

http://www.redhat.com/mrg
http://cwiki.apache.org/qpid/
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
http://www.amqp.org/

 3 The Basis of MRG Messaging

 3.1 Advanced Message Queuing Protocol

AMQP is an open-source messaging protocol. It offers increased flexibility and interoperability
across languages, operating systems, and platforms. AMQP is the first open standard for high
performance enterprise messaging. More information about AMQP is available at
http://www.amqp.org. The full protocol specification is available at
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1 .

 3.2 Apache Qpid

Qpid is an Apache project that implements the AMQP protocol. It is a multi-platform
messaging implementation that delivers transaction management, queuing, distribution,
security and management. Development on MRG Messaging is also contributed back
upstream to the Qpid project. More information can be found on the http://qpid.apache.org.

 3.3 Red Hat Enterprise MRG Messaging

MRG Messaging is an open source messaging distribution that uses the AMQP protocol.
MRG Messaging is based on Qpid, but includes persistence options, additional components,
Linux kernel optimizations, and operating system services not found in the Qpid
implementation. For more information refer to http://www.redhat.com/mrg.

 4 How MRG Messaging Operates

 www.redhat.com 8

http://www.redhat.com/mrg
http://cwiki.apache.org/qpid/
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
http://www.amqp.org/

MRG Messaging was designed to provide a way to build distributed applications in which
programs exchange data by sending and receiving messages. A message can contain any
kind of data. Middleware messaging systems allow a single application to be distributed over
a network and throughout an organization without being restrained by differing operating
systems, languages, or network protocols. Sending and receiving messages is simple, and
MRG Messaging provides guaranteed delivery and extremely good performance.

In MRG Messaging a message producer is any program that sends messages. The program
that receives the message is referred to as a message consumer. If a program both sends
and receives messages it is both a message producer and a message consumer.

The message broker is the hub for message distribution. It receives messages from message
producers and uses information stored in the message's headers to decide where to send it
on to. The broker will normally attempt to send a message until it gets notification from a
consumer that the message has been received.

Within the broker are exchanges and queues. Message producers send messages to
exchanges, message consumers subscribe to queues and receive messages from them.

The message headers contain routing information. The routing key is a string of text that the
exchange uses to determine which queues to deliver the message to. Message properties
can also be defined for settings such as message durability.

A binding defines the relationship between an exchange and a message queue. A queue
must be bound to an exchange in order to receive messages from it. When an exchange
receives a message from a message producer, it examines its active bindings, and routes the
message to the corresponding queue. Consumers read messages from the queues to which
they are subscribed. Once a message is read, it is removed from the queue and discarded.

As shown in Figure 1, a producer sends messages to an exchange. The exchange reads the
active bindings and places the message in the appropriate queue. Consumers then retrieve
messages from the queues.

 9 www.redhat.com

 www.redhat.com 10

Figure 1

 5 Red Hat MRG Messaging (AMQP) Architecture
AMQP was born out of the frustrations in developing front- and back-office processing sys-
tems at investment banks. No existing products appeared to meet all the requirements of
these investment banks.

AMQP is a binary wire protocol and well-defined set of behaviors for transmitting application
messages between systems using a combination of store-and-forward, publish-and-
subscribe, and other techniques. AMQP addresses the scenario where there is likely to be
some economic impact if a message is lost, does not arrive in a timely manner, or is
improperly processed.

The protocol is designed to be usable from different programming environments, operating
systems, and hardware devices, as well as making high-performance implementations
possible on various network transports including TCP, SCTP (Stream Control Transmission
Protocol), and InfiniBand.

From the beginning, AMQP's design objective was to define enough MOM semantics (Figure
2) to meet the needs of most commercial computing systems and to do so in an efficient
manner that could ultimately be embedded into the network infrastructure. It's not just for
banks.

AMQP encompasses the domains of store-and-forward messaging, publish-and-subscribe
messaging, and point to point. It incorporates common patterns to ease the traversal of
firewalls while retaining security, and to permit network QoS. To ease adoption and migration,
AMQP is also designed to encompass JMS (Java Message Service) semantics.

 11
www.redhat.com

Figure 2

AMQP goes further, however, and includes additional semantics not found in JMS that
members of the working group have found useful in delivering large, robust systems over the
decades. Interestingly, AMQP does not itself specify the API a developer uses, though it is
likely that will happen in the future.

 5.1 Main Features

AMQP is split into two main areas: transport model and queuing model. AMQP is unusual in
that it thoroughly specifies the semantics of the services it provides within the queuing model;
since applications have a very intimate relationship with their middleware, this needs to be
well defined or interoperability cannot be achieved. In this respect, AMQP semantics are more
tightly defined than JMS semantics.

As stated, AMQP's transport is a binary protocol using network byte ordering. AMQP aims to
be high performance and flexible, and to be hardware friendly rather than human friendly. The
protocol specification itself, however, is written in XML so implementers can code-generate
large portions of their implementations; this makes it easier for vendors to support the
technology.

The transport model itself can use different underlying transports. MRG supports TCP/IP,
InfiniBand RDMA, 10GigE RDMA and TSL.

 www.redhat.com 12

 5.2 Messages

Messages in AMQP are self-contained and long-lived, and their content is immutable and
opaque. The content of messages is essentially unlimited in size; 4GB messages are
supported just as easily as 4KB messages. Messages have headers that AMQP can read and
use to help in routing.

You can liken this to a postal service: a message is the envelope, the headers are information
written on the envelope and visible to the mail carrier, who may add various postmarks to the
envelope to help deliver the message. The valuable content is within the envelope, hidden
from and not modified by the carrier. The analogy holds quite well, except that it is possible
for AMQP to make unlimited copies of the messages to deliver if required.

 5.3 Queues

Queues are the core concept in AMQP. Every message always ends up in a queue, even if it
is an in-memory private queue feeding a client directly. To extend the postal analogy, queues
are mailboxes at the final destination or intermediate holding areas in the sorting office.

Queues can store messages in memory or on disk. They can search and reorder messages,
and they may participate in transactions. The administrator can configure the service levels
they expect from the queues with regard to latency, durability, availability, etc. These are all
aspects of implementation and not defined by AMQP. This is one way commercial
implementations can differentiate themselves while remaining AMQP-compliant and
interoperable.

 5.4 Exchanges

Exchanges are the delivery service for messages. In the postal analogy, exchanges provide
sorting and delivery services. In the AMQP model, selecting a different carrier is how different
ways of delivering the message are selected. The exchange used by a publish operation
determines if the delivery will be direct or publish-and-subscribe, for example. The exchange
concept is how AMQP brings together and abstracts different middleware delivery models. It
is also the main extension point in the protocol.

A client chooses the exchange used to deliver each message as it is published. The
exchange looks at the information in the headers of a message and selects where they
should be transferred to. This is how AMQP brings the various messaging idioms together -
clients can select which exchange should route their messages.

Several exchanges must be supported by a compliant AMQP implementation:

 The fanout exchange will distribute messages to every queue. Any routing information
provided by the producer is ignored. See Figure 3.

 13
www.redhat.com

 The direct exchange will queue a message directly at a single queue, choosing the
queue on the basis of the "routing key" header in the message and matching it by
name. This is how a letter carrier delivers a message to a postal address. See Figure
4.

 The topic exchange will copy and queue the message to all clients that have ex-
pressed an interest based on a rapid pattern match with the routing key header. You
can think of the routing key as an address, but it is a more abstract concept useful to
several types of routing. See Figure 5.

 The headers exchange will examine all the headers in a message, evaluating them
against query predicates provided by interested clients using those predicates to select
the final queues, copying the message as necessary.

 In addition the implementation provides an additional exchange for XML routing. This
exchange allows for the routing of XML based messages using XQuery. The XML ex-
change has not been benchmarked in this report.

Throughout this process, exchanges never store messages, but they do retain binding
parameters supplied to them by the clients using them. These bindings are the arguments to
the exchange routing functions that enable the selection of one or more queues.

 www.redhat.com 14

Figure 3

 15
www.redhat.com

Figure 4

Figure 5

 5.5 Bindings

The arguments supplied to exchanges to enable the routing of messages are known as
bindings (see Figure 6). Bindings vary depending on the nature of the exchange; the direct
exchange requires less binding information than the headers exchange. Notably, it is not
always clear which entity should provide the binding information for a particular messaging
interaction. In the direct exchange, the sender is providing the association between a routing
key and the desired destination queue. This is the origin of the "destination" addressing idiom
so common to JMS and other queuing products.

Figure 6

In the topic exchange, it is the receiving client that provides the binding information, specifying
that when the topic exchange sees a message that matches any given client(s') binding(s),
the message should be delivered to all of them.

AMQP has no concept of a "destination" since it does not make sense for consumer-driven
messaging. It would limit its abstract routing capabilities. The concept of bindings and the
convention of using a routing key as the default addressing information overcome the artificial
divisions that have existed in many messaging products.

 www.redhat.com 16

 6 AMQP Communication Model

Provides a “Shared Queue Space” that is accessible to all interested applications:

• Messages are sent to an Exchange

• Each message has an associated Routing Key

• Brokers forward messages to one or more Queues based on the Routing Key

• Subscribers get messages from named Queues

• Only one subscriber can get a given message from each Queue

Figure 7

 17
www.redhat.com

 7 AMQP Object Model
Exchange – Receives messages and routes to a set of message queues

Queue – Stores messages until they can be processed by the application(s)

Binding – Routes messages between Exchange and Queue. Configured externally
to the application – Default binding maps routing-key to Queue name

Routing Key – label used by the exchange to route Content to the queues

Content – Encapsulates application data and provides the methods to send receive,
acknowledge, etc

 www.redhat.com 18

Figure 8

 Performance Testing Methodology
The performance tests simulate a 3-tier configuration where producers publish to the broker
and consumers subscribe to the broker.

 19
www.redhat.com

Figure 9

In the actual test setup, the Client System can run multiple instances of Publishers /
Subscribers. Further, each Publisher doubles as both a Publisher and a Subscriber. Thus, a
Publisher (in the Client System) generates messages which are sent to a Queue in the Broker
Server and then returned to the originating Publisher (in the originating Client System) which
also doubles as the Subscriber for that message.

 1 Test Harnesses
Red Hat Enterprise Linux MRG supplies AMQP test harnesses for throughput and latency
testing.

 1.1 Throughput (Perftest)
For throughput, qpid-perftest is used to drive the broker for this benchmark. This harness
is able to start up multiple producers and consumers in balanced (n:n) or unbalanced(x:y)
configurations.

What the test does:

- creates a control queue

- starts x:y producers and consumers

- waits for all processors to signal they are ready

- controller records a timestamp

 www.redhat.com 20

Figure 10

- producers reliably en-queues messages onto the broker as fast as they can

- consumers reliably de-queue messages from the broker as fast as they can

- once the last message is received, the controller is signaled

- controller waits for all complete signals, records timestamp and calculates rate

The throughput is the calculated as the total number of messages reliably transferred divided
by the time to transfer those messages.

 1.2 Latency (qpid-Latency-test)
For latency, qpid-latency-test is used to drive the broker for this benchmark. This harness
is able to produce messages at a specified rate or for a specified number of messages that
are timestamped, sent to the broker, looped back to client node. All the measurements are 2-
hop, from the client to the broker and back. The client will report the minimum, maximum, and
average time for a reporting interval when a rate is used, or for all the messages sent when a
count is used.

 2 Tuning & Parameter Settings
For the testing in this paper the systems were not used for any other purposes. Therefore, the
configuration and tuning that is detailed should be reviewed when other applications along
with MRG Messaging.

Fine tuning the throughput tests proved difficult since the results from one data collection to
another was fairly variable. This variability is a result of the fact that the test can start up a
number of processes and connections. Any tuning that did not produce a significant difference
compared to the variability could not be detected.

 21
www.redhat.com

 2.1 Processes
For the testing performed, the following were disabled (unless specified otherwise):

• SELinux
• cpuspeed
• irqbalance
• haldaemon
• yum-updatesd
• smartd
• setroubleshoot
• sendmail
• rpcgssd
• rpcidmapd
• rpcsvcgssd
• rhnsd
• pcscd
• mdmonitor
• mcstrans
• kdump
• isdn
• iptables
• ip6tables
• hplip
• hidd
• gpm
• cups
• bluetooth
• avahi-daemon
• restorecond
• auditd
• autofs
• certmonger
• cgred
• gfs2
• iscsi
• iscsid
• ksm
• ksmtuned
• libvirtd
• ntpd
• ntpdate
• tog-pegasus
• ebtables

 www.redhat.com 22

 2.2 SysCtl
The following kernel parameters were added to /etc/sysctl.conf.

fs.aio-max-nr 262144 The maximum number of allowable concurrent
requests.

net.ipv4.conf.default.arp_filter 1 The kernel only answers to an ARP request if it
matches its own IP address.

net.ipv4.conf.all.arp_filter 1 Enforce sanity checking, also called ingress
filtering or egress filtering. The point is to drop
a packet if the source and destination IP
addresses in the IP header do not make sense
when considered in light of the physical
interface on which it arrived.

Table 1

 23
www.redhat.com

 2.3 ethtool

Some of the options ethtool allows the operator to change relate to coalesce and offload
settings. However, during experimentation only changing the ring settings had noticeable
effect for throughput testing.

1Gb Network
ethtool -g eth0
Ring parameters for eth0:
Pre-set maximums:
RX: 4096
RX Mini: 0
RX Jumbo: 0
TX: 4096
Current hardware settings:
RX: 256
RX Mini: 0
RX Jumbo: 0
TX: 256

ethtool -G eth0 rx 4096 tx 4096
ethtool -g eth0
Ring parameters for eth0:
Pre-set maximums:
RX: 4096
RX Mini: 0
RX Jumbo: 0
TX: 4096
Current hardware settings:
RX: 4096
RX Mini: 0
RX Jumbo: 0
TX: 4096

10GigE Network

ethtool -g eth2
Ring parameters for eth2:
Pre-set maximums:
RX: 8192
RX Mini: 0
RX Jumbo: 0
TX: 8192
Current hardware settings:
RX: 1024
RX Mini: 0
RX Jumbo: 0
TX: 512

 # ethtool -G eth2 rx 8192 tx 8192

 www.redhat.com 24

ethtool -g eth2
Ring parameters for eth2:
Pre-set maximums:
RX: 8192
RX Mini: 0
RX Jumbo: 0
TX: 8192
Current hardware settings:
RX: 8192
RX Mini: 0
RX Jumbo: 0
TX: 8192

 2.4 dirty-ratio
Dirty-ratio was increased to match the default settings of RHEL5. The default settings
were determined to be too low for these workloads.

cat /proc/sys/vm/dirty_ratio
20
echo 40 > /proc/sys/vm/dirty_ratio
cat /proc/sys/vm/dirty_ratio
40
#

 2.5 CPU affinity
For latency testing, all interrupts from the cores of one CPU socket were reassigned to other
cores. The interrupts for the interconnect under test were assigned to cores of this vacated
socket. The processes related to the interconnect (e.g. ib_mad, ipoib) were then
scheduled to run on the vacated cores. The Qpid daemon was also scheduled to run on these
or a subset of the vacated cores. How qpid-latency-test was scheduled was determined
by the results of experiments limiting or not limiting the qpid-latency-test test process to
specific cores. Experiments with qpid-perftest show that typically the best performance
was achieved with the affinity settings after a boot without having been modified.
Interrupts can be re-assigned to specific cores or set of cores. /proc/interrupts can be queried
to identify the interrupts for devices and the number of times each CPU/core has handled
each interrupt. For each interrupt, a file named /proc/irq/<IRQ #>/smp_affinity contains a
hexadecimal mask that controls which cores can respond to specific interrupt. The contents of
these files can be queried or set.

Processes can be restricted to run on a specific set of CPUs/cores. taskset can be used to
define the list of CPUs/cores on which processes can be scheduled to execute. Also,numactl
can be used to define the list of Sockets on which processes can be scheduled to execute

 25
www.redhat.com

The MRG – Realtime product includes the application, tuna, which allows for easy setting of
affinity of interrupts and processes, via a GUI or command line.

 2.6 AMQP parameters
Qpid parameters can be specified on the command line, through environment variables or
through the Qpid configuration file.

The tests were executed with the following qpidd options:

--auth no disable connection authentication, makes setting the test environment
easier

--mgmt-enable no disable management data collection

--tcp-nodelay disable packet batching

--worker-threads <#> set the number of IO worker threads to <#>
This was used only for the latency tests, where the range used was
between 1 and the numbers of cores in a socket plus one.
The default, which was used for throughput, is one more than the
total number of active cores.

Table 2

Table 3 details the options specified for qpid-perftest. For all testing in this paper a count of
100000 was used. Experimentation was used to detect if setting tcp-nodelay was beneficial.
For each size reported, the npubs and nsubs were set equally from 1 to 8 by powers of 2
while qt was set from 1 to 8, also by powers of 2. The highest value for each size is reported.

--nsubs <#>
--npubs <#>

number of publishers/ subscribers per client

--count <#>
number of messages send per pub per qt,
so total messages = count * qt * (npub+nsub)

--qt <#> number of queues being used

--size <#> message size

--tcp-nodelay disable the batching of packets

--protocol <tcp| rdma> used to specify RDMA, default is TCP

Table 3

The parameters used for qpid-latency-test are listed in Table 4. A 10000 message rate was
chosen since all the test interconnects would be able to maintain this rate. When specified,
the max-frame-size was set to 120 more than the size. When a max-frame-size was specified,
bound-multiplier was set to 1.

 www.redhat.com 26

--rate <#> target message rate

--size <#> message size

--max-frame-size <#>
the maximum frame size to request,
only specified for ethernet interconnects

--bounds-multiplier <#>
bound size of write queue (as a multiple of the
max frame size),
only specified for ethernet interconnects

 --tcp-nodelay disable packet batching

--protocol <tcp| rdma> used to specify RDMA, default is TCP

Table 4

 Hardware/Software Versions

 1 Hardware

Client System

HP DL380 G56
Dual Socket, Quad Core (Total of 8 cores)
Intel Xeon X5570 @ 2.93GHz
24 GB RAM

Broker Server

Intel Westmere
Dual Socket,Six Core (Total of 12 cores)
Intel Xeon X5670 @ 2.93 GHz
24 GB RAM

Table 5

 2 Network
All load driver (client) systems have point-to-point connections to the system under test
(SUT). Network cards used during the sessions were:

1 GigE Adapter

DL380 - Embedded Broadcom Corporation NetXtreme II
BCM5709 Gigabit Ethernet
Westmere - Embedded Intel Corporation 82576 Gigabit
Network

10 GigE Adapters
Mellanox Technologies MT26448 [ConnectX EN 10GigE,
PCIe 2.0 5GT/s]
direct connect with SR Fibre

Infinband HCA
InfiniHost III Lx HCA – HCA.Cheetah-DDR.20
direct connect

Table 6

 27
www.redhat.com

 3 Software
Qpid 0.7.946106-7.el6

Red Hat Enterprise Linux 2.6.32-71.el6.test.x86_64

bnx2 2.0.8-j15

Igb 2.1.0-k2

mlx4_en 1.4.1.1

mthca 1.1.0

ofed/openib 1.4.1.1

Table 7

 Performance Results

 1 Latency
qpid-Latency-test, with specified options, reports the minimum, maximum, and average
latency for each 10,000 messages sent every second. The test runs performed collected 100
seconds of data for each size.

Each graph of latency results, plots 100 averages for each size tested. The legend on the
right side identifies the transfer size with the average of the 100 values in parenthesis.

 www.redhat.com 28

 1.1 1-GigE
As expected, the latency increases with on-board 1GigE with the transfer size.

 29
www.redhat.com

Figure 11

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

AMQP Latency - 1-GigE (Intel Igb)

8 Bytes (0.128)
16 bytes (0,129)
32 Bytes (0.130)
64 Bytes (0.134)
128 bytes (0.134)
256 Bytes (0.142)
512 Bytes (0.150)
1024 Bytes (0.274)
2048 Bytes (0.429)
4096 Bytes (0.591)

L
a

te
n

cy
 (

m
s)

 1.2 10-GigE
The latencies for Mellanox 10-GigE are lower than those of 1-GigE and IPoIB. This is the only
interface where the latencies do not consistently increase as the transfer size gets larger
using TCP/IP protocol.

 www.redhat.com 30

Figure 12

0.000

0.050

0.100

0.150

0.200

0.250

0.300

AMQP Latency - 10-GigE (Mellanox mlx4_en)

8 Bytes (0.112)
16 Bytes (0.113)
32 Bytes (0.0115)
64 Bytes (0.114)
128 Bytes (0.114)
256 Bytes (0.115)
512 Bytes (0.114)
1024 Bytes (0.123)
2048 Bytes (0.132)
4096 Bytes (0.141)
8192 Bytes (0.164)
16384 Bytes (0.180)

L
a

te
n

cy
 (

m
s)

1.1.3 Internet Protocol over InfiniBand (IPoIB)
The IPoIB data is grouped more closely except for the larger transfer sizes.

 31
www.redhat.com

Figure 13

0.000

0.050

0.100

0.150

0.200

0.250

0.300

AMQP Latency - IPoIB (Mellanox - mthca)

8 Bytes (0.109)
16 Bytes (0.112)
32 Bytes (0.114)
64 Bytes (0.117)
128 Bytes (0.113)
256 Bytes (0.115)
512 bytes (0.116)
1024 Bytes (0.117)
2048 Bytes (0.122)
4096 Bytes (0.155)
8192 Bytes (0.183)
16384 Bytes (0.270)

L
a

te
n

cy
 (

m
s)

1.14 Remote Direct Memory Access (RDMA) with Mellanox 10Gig E
The Mellanox 10GigE with RDMA over Converged Ethernet (RoCE), results are the lowest
and most closely grouped of all the latency measurements.

 www.redhat.com 32

Figure 14

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

AMQP Latency - RDMA (Mellanox 10GigE mlx4_en)

8 Bytes (0.069)
16 Bytes (0.069)
32 Bytes (0.070)
64 Bytes (0.069)
128 Bytes (0.070)
256 Bytes (0.071)
512 Bytes (0.073)
1024 Bytes (0.078)
2048 Bytes (0.081)
4096 Bytes (0.086)
8192 Bytes (0.096)
16384 Bytes (0.113)

L
a

te
n

cy
 (

m
s)

1.1.5 Remote Direct Memory Access (RDMA) with Mellanox Infiniband
The Mellanox Infiniband with RDMA results show the same performance as with RHEL5 and
that it continues to be a good alterative for low latency messaging.

Figure 15

 33
www.redhat.com

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

AMQP Latency - RDMA (Mellanox Infiniband mthca)

8 Bytes (0.080)
16 Bytes (0.079)
32 Bytes (0.079)
64 Bytes (0.079)
128 Bytes (0.080)
256 Bytes (0.081)
512 Bytes (0.085)
1024 Bytes (0.089)
2048 Bytes (0.096)
4096 Bytes (0.104)
8192 Bytes (0.138)
16384 Bytes (0.202)

L
a

te
n

cy
 (

m
s)

Figure 1

 1.3 5.16 Comparisons
The averages for three commonly used message sizes are plotted for each of the
interconnects/protocols. For each of the plots, 1-GigE has the highest latency. Considerably
less, but consistently second, is IPoIB. The 10 GigE results follow next. The 10GigE and IB
RDMA results are considerably quick, providing the lowest latency.

 www.redhat.com 34

Figure 16

1-GigE IpoIB 10GigE IB RMDA 10GigE RDMA

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

64-Byte Latency

L
a

te
n

cy
 (

m
s)

 35
www.redhat.com

 www.redhat.com 36

Figure 17

1-GigE IpoIB 10GigE IB RMDA 10GigE RDMA

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

256-Byte Latency
L

a
te

n
cy

 (
m

s)

 37
www.redhat.com

Figure 18

1-GigE IpoIB 10GigE IB RMDA 10GigE RDMA

0.000

0.050

0.100

0.150

0.200

0.250

0.300

1024-Bytes Latency

L
a

te
n

cy
 (

m
s)

 2 Throughput
The following bar graphs present the best throughput results for each transfer size for each of
the interconnects/protocols. The blue bars represent the number of transfers per second and
use the left sided y-axis scale of 1000 transfers per second. The red bars illustrate the
corresponding MB/s and use the rigth sided y-axis scale. The scales are consistent for all the
interconnects/protocols.

In general, smaller transfer sizes were limited by the number of transfers the network stack
could perform, however the larger results are limited by the line capacity of the interconnect.

Higher thoughput may be achieved using multiple interfaces simultaneously.

 www.redhat.com 38

 2.1 1-GigE
The maximum transfers per second, 547466, occur using the 32-byte transfer size. The
maximum throughput tops out at 213 MB/s.

 39
www.redhat.com

Figure 19

16 32 64 128 256 512 1024 2048 4096

100

200

300

400

500

600

0

200

400

600

800

1000

1200

8 17
31

57

128

185
200 208 213

AMQP Throughput - 1GigE (Broadcom - bnx2)

trans/s
MB/s

transfer size

10
00

tr
an

sf
e r

s/
s

 2.2 10-GigE
The higher line capacity of 10-GigE yeilds 1,225,493 8-byte transfers per second and tops out
at 2003 MB/s.

 www.redhat.com 40

Figure 20

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

200

400

600

800

1000

1200

1400

0

500

1000

1500

2000

2500

9 18 37
71

132

243

478

815

1411

1788

1918

2003

AMQP Throughput - 10-GigE (Mellanox mlx4_en)

Trans/sec
MB/Sec

Transfer Size

1
0

0
0

 T
ra

n
sf

e
rs

/S
e

c

 2.3 IPoIB
The 16-byte tranfsers again prove to yield the highest transfer rate, 1,132,544. The
throughput peaks at 351 MB/s.

 41
www.redhat.com

Figure 21

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

200

400

600

800

1000

1200

0

50

100

150

200

250

300

350

400

9
17

34

65

124

234

300

332

347 351 349 348

AMQP Throughput - IPoIB (Mellanox - mthca)

Trans/Sec
MB/Sec

Transfer Size

1
0

0
0

 T
ra

n
sf

e
r/

S
e

c

 2.4 10-Gig-E RDMA

Using 10-GigE with RDMA improves the large transfer throughput rate producing the overall
highest rate of 2068 MB/s. The most transfers,1,11218, were for 16-bytes.

 www.redhat.com 42

Figure 22

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

200

400

600

800

1000

1200

500

1000

1500

2000

2500

8 17 33
63

118

224

418

679

897

1590

1947

2068

AMQP Throughput - RDMA (Mellanox mlx4_en)

Trans/Sec
MB/Sec

Transfer Size

1
0

0
0

 T
ra

n
sf

e
r/

S
e

c

 2.5 IB RDMA
For RDMA the 8-byte transfers/s slight beat out the 16-byte results at 1,092,358. The
throughput tops out at 489 MB/s.

 43
www.redhat.com

Figure 23

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

200

400

600

800

1000

1200

0

100

200

300

400

500

600

8
16

32

59

105

177

266

332

402

449

473

489

AMQP Throughput - RDMA (Mellanox mthca)

Transfers/Sec
MB/Sec

Transfer Size

1
0

0
0

 T
ra

n
sf

e
rs

/S
e

c

 2.6 Comparisons

Charting the throughput of the same common transfer sizes for the various
interconnects/protocols show the results are consistent with the latency results.For the 64-
byte transfer, 10-GigE performs best, followed by 1-GigE, IPoIB, 10-GigE RDMA, then IB
RDMA.

The order changes for 256-byte transfers. 10-GigE wins with 1-GigE less than a 1 MB/s
behind. IPoIB, 10-GigE RDMA, IB RDMA finish out the order.

 www.redhat.com 44

Figure 24

1-GigE 10-GigE IPoIB 10-GigE RDMA IB RDMA

0

10

20

30

40

50

60

70

80

64-Byte Throughput

M
B

/S
e

c

 45
www.redhat.com

Figure 25

1-GigE 10-GigE IPoIB 10-GigE RDMA IB RDMA

0

50

100

150

200

250

300

256-Byte Throughput
M

B
/S

e
c

Using a 1K-byte transfer, 10-GigE wins, followed by 10-GigE RDMA, IB RDMA, IPoIB, then 1-
GigE.

 www.redhat.com 46

Figure 26

1-GigE 10-GigE IpoIB 10-GigE RDMA IB RDMA

0

100

200

300

400

500

600

700

800

900

1K-Byte Throughput

M
B

/S
e

c

 3 System Metrics
This section presents various system metrics that were collected during 64-byte throughput
tests for the various interconnects/protocols.

The first is Memory Usage. IB RDMA uses a significant amount of memory compared to the
other options. 10 GigE and IPoIB uses the least.

 47
www.redhat.com

Figure 27

1GB 10-GigE IpoIB 10-GigE RDMA IB RDMA

22

22

23

23

23

23

23

24

24

Throughput Memory Usage

cache
buff
free

 www.redhat.com 48

IB RDMA and 10Gig-E uses the least percentage of the available CPU's while 10-GigE uses
the most.

 49
www.redhat.com

Figure 28

1GB 10-GigE IpoIB 10-GigE RDMA IB RDMA

0

10

20

30

40

50

60

70

80

90

100

Throughput CPU Usage

idle
system
usr

10Gig-E RDMA and IB RDMA processed a significantly larger amount of interrupts than the
other protocols while 10 Gig-E had the least.

 www.redhat.com 50

Figure 29

1GB 10-GigE IpoIB 10-GigE RDMA IB RDMA

10

20

30

40

50

60

Throughput Interrupts

1
0

0
0

 In
te

rr
u

p
ts

/S
e

c

The plotted rate of context switches illustrates that IPoIB was significantly less than the
others.

 51
www.redhat.com

Figure 30

1GB 10-GigE IpoIB 10-GigE RDMA IB RDMA

50

100

150

200

250

300

350

Throughput Context Switches

1
0

0
0

 S
w

itc
h

e
s /

S
e

c

 Conclusions
This study demonstrates Red Hat Enterprise Linux 6 High Performance Network Add-on used
for Mellonox 10Gbit-E showed running MRG had significant improvement in latency using
RDMA over Converged Ethernet (RoCE) compared to Mellonox 10Gbit-IB. Messaging
provides a high throughput, low latency messaging infrastructure that can meet the needs of
high-performance computing, SOA deployments, and platform services customers.

Furthermore, the reader can use the results to assist in determining configurations which
meet their needs. The results show that 10Gig-E provides overall lower-latency and higher
throughput than the other interconnects studied. Infiniband 10Gbit is also quite effective, and
can be expanded to 20-40 Gbit cards in the future. 1-GigE is a commodity interconnect and
could be used for a respectable deployment especially for smaller transfer sizes or with
multiple adapters for larger transfers.

 Appendix A: Memlock configuration
The default values for memlock limits were too small and generated error messages related
to memory. One way to increase the limit is by adding entries to /etc/security/limits.conf
similar to the following.

* hard memlock unlimited
* soft memlock 262144

 www.redhat.com 52

	Goals & Executive Summary
	 1 Goals
	 2 Executive Summary

	Red Hat MRG Messaging – Introduction & Architecture
	 1 The Basis of MRG Messaging
	 1.1 Advanced Message Queuing Protocol
	 1.2 Apache Qpid
	 1.3 Red Hat Enterprise MRG Messaging

	 2 How MRG Messaging Operates
	 3 The Basis of MRG Messaging
	 3.1 Advanced Message Queuing Protocol
	 3.2 Apache Qpid
	 3.3 Red Hat Enterprise MRG Messaging

	 4 How MRG Messaging Operates
	 5 Red Hat MRG Messaging (AMQP) Architecture
	 5.1 Main Features
	 5.2 Messages
	 5.3 Queues
	 5.4 Exchanges
	 5.5 Bindings

	 6 AMQP Communication Model
	 7 AMQP Object Model

	Performance Testing Methodology
	 1 Test Harnesses
	 1.1 Throughput (Perftest)
	 1.2 Latency (qpid-Latency-test)

	 2 Tuning & Parameter Settings
	 2.1 Processes
	 2.2 SysCtl
	 2.3 ethtool
	 2.4 dirty-ratio
	 2.5 CPU affinity
	 2.6 AMQP parameters

	Hardware/Software Versions
	 1 Hardware
	 2 Network
	 3 Software

	Performance Results
	 1 Latency
	 1.1 1-GigE
	 1.2 10-GigE
	1.1.3 Internet Protocol over InfiniBand (IPoIB)
	1.14 Remote Direct Memory Access (RDMA) with Mellanox 10Gig E
	1.1.5 Remote Direct Memory Access (RDMA) with Mellanox Infiniband
	 1.3 5.16 Comparisons

	 2 Throughput
	 2.1 1-GigE
	 2.2 10-GigE
	 2.3 IPoIB
	 2.4 10-Gig-E RDMA
	 2.5 IB RDMA
	 2.6 Comparisons
	Charting the throughput of the same common transfer sizes for the various interconnects/protocols show the results are consistent with the latency results.For the 64-byte transfer, 10-GigE performs best, followed by 1-GigE, IPoIB, 10-GigE RDMA, then IB RDMA.

	 3 System Metrics

	Conclusions
	 Appendix A: Memlock configuration

