
No. 08-964

WILSON-EPES PRINTING CO., INC. – (202) 789-0096 – WASHINGTON, D. C. 20002

IN THE

Supreme Court of the United States

————

BERNARD L. BILSKI AND RAND A. WARSAW,
Petitioners,

v.

DAVID J. KAPPOS, UNDER SECRETARY OF COMMERCE
FOR INTELLECTUAL PROPERTY AND DIRECTOR,

PATENT AND TRADEMARK OFFICE,
Respondent.

————

On Writ of Certiorari to the
United States Court of Appeals

for the Federal Circuit

————

BRIEF AMICUS CURIAE OF RED HAT, INC.
IN SUPPORT OF AFFIRMANCE

————

 ROBERT H. TILLER
Counsel of Record

RED HAT, INC.
1801 Varsity Drive
Raleigh, NC 27606
(919) 754-4232

Counsel for Amicus Curiae

(i)

TABLE OF CONTENTS

Page

TABLE OF AUTHORITIES ii

STATEMENT OF INTEREST OF AMICUS
CURIAE RED HAT, INC. 1

SUMMARY OF ARGUMENT 4

ARGUMENT .. 6

 I. THE COURT BELOW CORRECTLY
APPLIED THIS COURT'S PRIOR
DECISIONS ESTABLISHING THAT
ABSTRACT IDEAS ARE NOT PA-
TENTABLE, AND ITS MACHINE-OR-
TRANSFORMATION TEST IS CON-
SISTENT WITH THOSE DECISIONS 6

 II. THE FEDERAL CIRCUIT CORRECT-
LY ABANDONED A MISINTERPRE-
TATION OF STATUTORY SCOPE
THAT HAS CAUSED DRAMATIC
HARM TO THE INNOVATION PRO-
CESS IN SOFTWARE 9

 A. Software Innovation Long Predated
Software Patents 9

 B. The Proliferation of Software Patents
Has Resulted in New Risks that
Discourage Innovation 12

 III. AN ABSTRACT IDEA DOES NOT
BECOME PATENTABLE MERELY BY
IMPLEMENTING IT IN COMPUTER
SOFTWARE .. 19

CONCLUSION .. 22

ii

TABLE OF AUTHORITIES

CASES Page

In re Allapat, 33 F.3d 1526 (Fed. Cir.
1994) .. 7, 8

In re Bilski, 545 F.3d 943 (Fed. Cir. 2008) .. 8
Dealertrack, Inc. v. Huber, No. 06-2335,

2009 WL 2020761 (C.D. Cal. Jul. 7,
2009) .. 20

Diamond v. Diehr, 450 U.S. 175 (1981) passim
Gottschalk v. Benson, 409 U.S. 63 (1972) ... passim
Oreilly v. Morse, 56 U.S. 62 (1853) 6
Parker v. Flook, 437 U.S. 584 (1978) 7, 8, 20-21
State Street Bank & Trust Co. v. Signature

Fin. Group Inc., 149 F.3d 1368 (Fed. Cir.
1998), cert. denied, 525 U.S. 1093 (1999) . 7, 8

WMS Gaming Inc. v. Int’l Game Tech., 184
F.3d 1339 (Fed. Cir. 1999) 20

BPAI CASES

Ex parte Cornea-Hasegan, No. 2008-4742
(BPAI Jan. 13, 2009) 20

Ex parte Daughtrey, No. 2008-0202 (April
8, 2009) .. 20

Ex parte Enenkel, No. 2008-2239 (April 6,
2009) .. 20

Ex parte Forman, No. 2008-005348 (BPAI
Aug. 17, 2009) ... 20

Ex parte Goud, No. 2008-003121 (BPAI
July 20, 2009) .. 20

Ex parte Gutta, No. 2008-3000 (BPAI Jan.
15, 2009) .. 20

Ex parte Halligan, No. 2008-2823 (BPAI
April 8, 2008)... 20

Ex parte Myr, No. 2009-005949 (BPAI Sept.
16, 2009) .. 20

iii

TABLE OF AUTHORITIES—Continued
 Page

Ex parte Nawathe, No. 2007-3360 (BPAI
Feb. 9, 2009) .. 20

CONSTITUTION AND STATUTES

35 U.S.C. § 101 (2006) 6, 7, 8, 21
U.S. Const. art. I, § 8 11

OTHER AUTHORITIES

AMERICAN INTELLECTUAL PROPERTY LAW
ASSOCIATION, REPORT OF THE ECONOMIC
SURVEY (2009) ... 16

JAMES BESSEN & MICHAEL J. MEURER,
PATENT FAILURE: HOW JUDGES, BUREAU-
CRATS, AND LAWYERS PUT INNOVATORS AT
RISK (2008) 12, 13, 14, 15, 16

James Bessen & Robert Hunt, An
Empirical Look at Software Patents, 16
J. ECON. & MGMT. STRATEGY 157 (2007) ... 12

DAN L. BURK & MARK A. LEMLEY, THE
PATENT CRISIS AND HOW THE COURTS
CAN SOLVE IT (2009)........... 11, 13, 14, 15, 16, 17

COMM. ON INTELLECTUAL PROP. RIGHTS IN
THE KNOWLEDGE-BASED ECON., NAT’L
RESEARCH COUNCIL, PATENTS IN THE
KNOWLEDGE-BASED ECONOMY (Wesley
M. Cohen & Stephen A. Merrill eds.,
2003) .. 12

CLAYTON M. CHRISTENSEN, THE INNOVA-
TOR’S DILEMMA (2006) 18

Amit Deshpande & Dirk Riehle, The Total
Growth of Open Source, in PROCEEDINGS
OF THE FOURTH CONFERENCE ON OPEN
SOURCE SYSTEMS, 197-209 (Springer
Verlag, 2008) ... 2

iv

TABLE OF AUTHORITIES—Continued
 Page

ERIC VON HIPPEL, DEMOCRATIZING INNOVA-
TION (2005) .. 4

BEN KLEMENS, MATH YOU CAN’T USE –
PATENTS, COPYRIGHT, AND SOFTWARE
(2006) .. 15, 16, 17, 19

Ben Klemens, The Rise of the Information
Processing Patent, 14 B.U. J. SCI. & TECH.
L. 1 (2008) .. 15, 18

Donald E. Knuth, Letter to Commissioner
of Patents and Trademarks (Feb. 23,
1994) .. 13, 15

Mark Lemley, Ignoring Patents, 2008
MICH. ST. L. REV. 19 (Spring 2008) 16

Michael J. Meurer, Controlling Oppor-
tunistic and Anti-competitive Intellectual
Property Litigation, 44 B.C. L. REV. 509
(2003) .. 14, 17, 18

To Promote Innovation: The Proper Bal-
ance of Competition and Patent Law and
Policy, Report of the U.S. Federal Trade
Commission, ch. 3 § V (2003) passim

Kirk Rowe, Why Pay for What’s Free?:
Minimizing the Patent Threat to Free and
Open Source Software, 7 J. MARSHALL
REV. INTELL. PROP. L. 595 (2008) 13

RICHARD M. STALLMAN, FREE SOFTWARE,
FREE SOCIETY: SELECTED ESSAYS OF
RICHARD M. STALLMAN (Joshua Gay, ed.,
2002) .. 17

Andrew W. Torrance & Bill Tomlinson,
Patents and the Regress of Useful Arts,
10 COLUM. SCI. & TECH. L. REV. 130
(2009) ... 12

v

TABLE OF AUTHORITIES—Continued

 Page

STEVEN WEBER, THE SUCCESS OF OPEN
SOURCE (2004) ... 10

IN THE

Supreme Court of the United States
————

No. 08-964
————

BERNARD L. BILSKI AND RAND A. WARSAW,
Petitioners,

v.
DAVID J. KAPPOS, UNDER SECRETARY OF COMMERCE

FOR INTELLECTUAL PROPERTY AND DIRECTOR,
PATENT AND TRADEMARK OFFICE,

Respondent.
————

On Writ of Certiorari to the
United States Court of Appeals

for the Federal Circuit
————

BRIEF AMICUS CURIAE OF RED HAT, INC.
IN SUPPORT OF AFFIRMANCE

————
STATEMENT OF INTEREST OF

AMICUS CURIAE RED HAT, INC.

Red Hat, Inc. is the world’s leading provider of
open source software and related services to enter-
prise customers.1

1 No counsel for a party authored this brief in whole or in

part, and no such counsel made a monetary contribution
intended to fund the preparation or submission of this brief. No
person other than amicus curiae, its members, or its counsel
made a monetary contribution to its preparation or submission.
Petitioners and Respondents have consented to the filing of this
brief through blanket letters of consent filed with the Clerk’s
Office.

 Its software products are used by

2
Wall Street investment firms, hundreds of Fortune
500 companies, and the United States government.
Headquartered in Raleigh, North Carolina, Red Hat
has offices in 28 countries.

Red Hat’s interest in this proceeding is based on its
experience in the software industry and its commit-
ment to the free and open source software commu-
nity. Open source software is growing at an exponen-
tial rate,2

The open source model produces software innova-
tion through a mechanism of collaborative develop-
ment that relies on free communication of ideas
among large numbers of independent individuals and
companies. To understand open source, it is helpful
to understand generally how software is made. Soft-
ware begins as plain text “source code.” Program-
mers write and edit source code in human-readable
programming languages that allow specification of
software features and behavior at a high level of
abstraction. Source code is typically translated by a

 and is already of strategic economic
importance. It provides the technological backbone of
many large corporations and supports essential func-
tions of many national and regional governments. It
is used daily by millions of individuals for such
activities as web searching, email, on-line shopping,
and banking. It is found in devices as varied as
mainframe computers, desktop computers, cellular
phones, camcorders, medical devices, automobiles,
and warships.

2 The amount of open source code doubles every fourteen

months. Amit Deshpande & Dirk Riehle, The Total Growth of
Open Source, in PROCEEDINGS OF THE FOURTH CONFERENCE ON
OPEN SOURCE SYSTEMS, 197-209 (Springer Verlag, 2008), http://
dirkriehle.com/wp-content/uploads/2008/03/oss-2008-total-growth-
final-web.pdf.

3
program called a compiler into “object code” form,
which basically consists of a series of instructions to
be executed on a computer. Since object code consists
of unintelligible strings of 1s and 0s, software is effec-
tively unmodifiable without access to its source code.
Open source software permits such modification by
making the source code available to the user.

Open source software is the product of collabora-
tive development that uses a combination of technol-
ogical and legal means. Typically, an open source
program originates as a community-based project
whose members work together using Internet tools
such as email, mailing lists, Internet relay chat, bug
reporting systems, wikis, and source code version
control systems. These tools enable rapid communi-
cation among geographically dispersed software de-
velopers, and make it possible for large numbers of
developers from many different backgrounds and
organizations to work collaboratively. A community
project makes its software publicly available in
source code form, under licensing terms that grant
very broad, royalty-free copyright permissions allow-
ing further use, copying, modification and distribu-
tion.

In making source code available and conferring
broad copyright permissions, open source differs
significantly from traditional proprietary software. A
vendor of proprietary software generally develops the
software in-house and provides only object code to the
user subject to restrictive licenses that allow no
rights to copy, modify, or redistribute that code. Such
vendors retain the source code as a trade secret.

The open source development model has proven to
be highly effective in producing software of superior

4
quality.3 Because there are many developers working
as collaborators in a distributed fashion, innovation
happens rapidly.4

The scope of patentable subject matter is an issue
of critical importance to the future development of all
software, including open source. Because open source
innovation depends on sharing source code and free
collaboration, open source community members do
not generally seek to prohibit or control use of open
source software through patents, and most open
source software developers view software patents as
hindering innovation. Red Hat respectfully submits
that this Court should evaluate the issues at bar with
a view to the importance of open source software and
the bright promise of future open source innovation.

 Because of the many who volun-
teer their time, and the availability of the source code
under royalty-free licenses granting generous mod-
ification and distribution rights, the cost of producing
and improving software is low. Software bugs and
security problems are quickly identified and reme-
died. Moreover, because users have access to the
source code, those users can diagnose problems and
customize the software to suit their particular needs.

SUMMARY OF ARGUMENT

In the decision below, the Federal Circuit issued a
course correction. Beginning in the mid-1990’s, that
court disregarded the guideposts established by this

3 There are numerous widely used open source software pro-
grams, including the Linux operating system kernel, the Apache
web server, the Firefox web browser, the MySQL database
management system, and the GCC compiler collection.

4 See, e.g., ERIC VON HIPPEL, DEMOCRATIZING INNOVATION 93-
106 (2005), available at http://web.mit.edu/evhippel/www/books.
htm.

5
Court on the limits of patentable subject matter and
issued a series of decisions that opened the floodgates
for patents on certain kinds of abstract ideas. As a
result, there are now hundreds of thousands of pa-
tents on abstract subject matter, and tens of thou-
sands of new patents are now granted each year for
software and business methods that were previously
excluded from patentable subject matter.

Far from encouraging innovation, this proliferation
of patents has seriously encumbered innovation in
the software industry. Software is an abstract
technology, and translating software functions into
patent language generally results in patents with
vague and uncertain boundaries. Software products
are often highly complex, created by combining
hundreds or thousands of discrete (and potentially
novel) elements in a cumulative process. Because the
boundaries of software patents are exceedingly vague
and the numbers of issued software patents is now
enormous, it is virtually impossible to rule out the
possibility that a new software product may arguably
infringe some patent.

Thus, under the Federal Circuit’s previous errone-
ous approach, the risk of going forward with a new
software product now always entails an unavoidable
risk of a lawsuit that may cost many millions of
dollars in legal fees, as well as actual damages, treble
damages, and an injunction that terminates a busi-
ness. Only those with an unusually high tolerance
for risk will participate in such a market. The more
risk averse, no matter how great their business or
technical gifts and innovative potential, are likely
to avoid such a market and seek their fortunes
elsewhere.

6
This case offers an opportunity to restore the

historical and well-founded boundaries for patentable
subject matter that exclude abstract ideas from
patent eligibility. It also offers an opportunity to
reaffirm the rule, supported both by case law and by
sound policy, that computer software is among the
types of abstract subject matter that are not
patentable under 35 U.S.C. § 101. The machine-or-
transformation test set forth in the decision below is
fully consistent with this Court’s prior case law
regarding the patenting of abstract ideas. The Court
should adopt this test and make clear that it excludes
software from patenting.

ARGUMENT

I. THE COURT BELOW CORRECTLY AP-
PLIED THIS COURT’S PRIOR DECI-
SIONS ESTABLISHING THAT ABSTRACT
IDEAS ARE NOT PATENTABLE, AND ITS
MACHINE-OR-TRANSFORMATION TEST
IS CONSISTENT WITH THOSE DECI-
SIONS

This Court has long recognized that patents have
costs as well as benefits. See Gottschalk v. Benson,
409 U.S. 63, 68 (1972) (explaining Oreilly v. Morse,
56 U.S. 62 (1853)). Patents do not always promote
innovation, and they may substantially hinder it. See
id. A patent on a process excludes others from using
that process. If the patent is too broad or vague, it
may block or discourage technological progress.
Therefore defining the proper subject matter limits of
process patents under 35 U.S.C. § 101 is of critical
importance. This requires distinguishing between a
patentable “process” within the meaning of Section
101, and abstract intellectual concepts.

7
Thus this Court has determined that “[p]henomena

of nature, though just discovered, mental processes,
and abstract intellectual concepts are not patentable,
as they are the basic tools of scientific and technologi-
cal work.” Benson, 409 U.S. at 67. It runs directly
counter to the objective of fostering innovation to
allow patents that impede scientific and technological
progress. A patent on an algorithm or other abstract
idea, as opposed to a specific tangible process, blocks
innovation. Id. at 68.

To be sure, “[t]he line between a patentable
‘process’ and an unpatentable ‘principle’ is not always
clear.” Parker v. Flook, 437 U.S. 584, 589 (1978).
This Court has repeatedly faced this line-drawing
problem in the context of computer-related patents,
and has consistently articulated the guideposts to
be used. It has affirmed and reaffirmed that
“[t]ransformation and reduction of an article ‘to a
different state or thing’ is the clue to patentability of
a process claim that does not include particular
machines.” Benson, 409 U.S. at 70. Accord Diamond
v. Diehr, 450 U.S. 175, 192 (1981); Flook, 437 U.S. at
589.

In the mid-1990s, however, the Federal Circuit
took an approach at odds with this Court’s teachings
in Flook, Benson, and Diehr. In the leading cases of
In re Allapat, 33 F.3d 1526 (Fed. Cir. 1994), and State
Street Bank & Trust Co. v. Signature Fin. Group Inc.,
149 F.3d 1368 (Fed. Cir. 1998), cert. denied, 525 U.S.
1093 (1999), the Federal Circuit significantly broad-
ened the standards for patentable subject matter.
These and subsequent Federal Circuit cases ignored
the risks of granting patents on abstract ideas, and
instead held that usefulness (“a useful, concrete and
tangible result”) was sufficient to satisfy Section 101.

8
State Street, 149 F.3d at 1373; Allapat, 33 F.3d at
1544.

As explained in the next section, this departure
from this Court’s teachings caused enormous damage
to the patent system in general and the software
industry in particular. In the decision below, the en
banc court of appeals acknowledged that its “useful,
concrete and tangible result” test was problematic.
In re Bilski, 545 F.3d 943, 959-60 (Fed. Cir. 2008). It
carefully reexamined this Court’s decisions in Flook,
Benson, and Diehr, acknowledged the importance of
not extending patentable subject matter so far as to
impede technological innovation, and articulated a
test that is entirely consistent with those decisions.

Using language from Flook, Benson, and Diehr, the
Federal Circuit’s test distinguishes a patentable
process from an abstract idea by considering whether
“(1) it is tied to a particular machine or apparatus, or
(2) it transforms a particular article into a different
state or thing.” Id. at 954. The appeals court ex-
plained that “the use of a specific machine or
transformation of an article must impose meaningful
limits on the claim’s scope to impart patent-eligibil-
ity.” Id. at 961. In addition, the court explained that
“the involvement of the machine or transformation in
the claimed process must not merely be insignificant
extra-solution activity.” Id. at 962 (citing Flook, 437
U.S. at 590).

The decision below thereby corrected the erroneous
approach that the Federal Circuit took to Section 101
in the mid-1990s. The Federal Circuit’s machine-or-
transformation test is in full accord with this Court’s
prior decisions in Flook, Benson, and Diehr.

9
II. THE FEDERAL CIRCUIT CORRECTLY

ABANDONED A MISINTERPRETATION
OF STATUTORY SCOPE THAT HAS
CAUSED DRAMATIC HARM TO THE
INNOVATION PROCESS IN SOFTWARE

The decision below did not purport to address in
categorical terms the patenting of either business
methods or software. It is obvious, however, that the
machine-or-transformation test (or any other replace-
ment test considered by this Court) will govern
attempts to patent these and other abstract ideas.
Patenting of software has been particularly contro-
versial, and presents in a clear form the challenge of
separating abstract ideas from patentable processes.
The creation and expansion of the field of software
patents therefore is worth considering both as an
example of the larger problem posed by abstract
patents and a problem in its own right.

A. Software Innovation Long Predated
Software Patents

The importance of the software industry to the
United States economy is well recognized. What is
less well recognized is that major innovations and
economic successes in the software industry occurred
prior to the Federal Circuit’s decisions in the mid-
1990s encouraging software patents. Such enorm-
ously successful software products as Microsoft Word,
Oracle Database, Lotus 1-2-3, the Unix operating
system, and the GNU C compiler all date from the
1980s or earlier—well before the proliferation of
software patents. Market forces, rather than pa-
tents, spurred development of these products. See To
Promote Innovation: The Proper Balance of Competi-
tion and Patent Law and Policy, Report of the U.S.
Federal Trade Commission, ch. 3 § V, at 46 (2003),

10
available at http://www2.ftc.gov/os/2003/10/innova
tionrpt.pdf (hereinafter “FTC Innovation Report”).5

Indeed, in the 1972 Benson decision, this Court
took note of the exclusion of software from patenting,
of problems caused by attempts to patent software,
and of the industry’s impressive growth without
patents. “Direct attempts to patent [software] pro-
grams have been rejected on the ground of non-
statutory subject matter.” 409 U.S. at 72 (quoting
‘To Promote the Progress of . . . Useful Arts,’ The
President’s Commission on the Patent System 13
(1966)). “Indirect attempts to obtain patents and
avoid the rejection, by drafting claims as a process, or
a machine or components thereof programmed in a
given manner, rather than as a program itself, have
confused the issue further and should not be
permitted.” Id.

The Benson Court, quoting the President’s Com-
mission, also noted the inability of the Patent Office
to examine adequately software patent applications.
409 U.S. at 72. At the same time, the Court noted
“that the creation of programs has undergone sub-
stantial and satisfactory growth in the absence of
patent protection and that copyright protection for
programs is presently available.” Id.

5 The profit motive is, of course, an important incentive for

software development, but it is not the only one. Open source
software developers generally work for open source projects on a
voluntary basis. See STEVEN WEBER, THE SUCCESS OF OPEN
SOURCE 129 (2004). Some of the motivations for their contribu-
tions include improving the functioning of a product for business
or personal use, enhancing programming skills, reputation,
philosophical commitment to free software, and personal
enjoyment. Id. at 134-36.

11
Thus the software industry began and reached

maturity without the benefit of extensive patent
monopolies. This is not to say there was no legal
protection for software products. As the Benson
Court noted, copyright law provided (and it still pro-
vides) substantial protection for software products.6

This recent history, by itself, calls into serious
question whether software patents serve the primary
purpose of the patent system of encouraging
innovation. See U.S. Const. art. I, § 8. Many of the
world’s most successful software companies and soft-
ware products originated and grew strong without
incentives from patents. Instead, these successes
arose from the dynamics of the competitive market
place. FTC Innovation Report, ch. 3, § V at 46. That
is, prior to the expansion of patentability for software
in the mid-1990s, survival in the market place for
software depended primarily on the ability to inno-
vate better and more quickly than competitors. Com-
petition, without patent monopolies, resulted in a
remarkably dynamic software industry with an
impressive record of innovation.

7

6 Copyright protects authors against the copying of their

software. Patents, of course, block independent invention of
patented technology. Although some patent advocates use the
rhetoric of “theft” of ideas to support their arguments, there is
evidence that the great majority of patent lawsuits are not
against defendants who copied inventions but rather against
independent inventors. DAN L. BURK & MARK A. LEMLEY, THE
PATENT CRISIS AND HOW THE COURTS CAN SOLVE IT 28 (2009)
(hereinafter “THE PATENT CRISIS”).

7 Although it is frequently assumed that patents encourage
technological innovation, there is little empirical evidence sup-
porting this view. In a 2003 report “Patents in the Knowledge-
Based Economy,” the National Academies undertook a com-
prehensive review of the United States patent system, and

12
B. The Proliferation of Software Patents

Has Resulted in New Risks that
Discourage Innovation

Since the mid-1990s, there is one respect in which
software patents have been successful as a species:
they have proliferated. At present in the United
States there are at least 200,000 issued software
patents. See JAMES BESSEN & MICHAEL J. MEURER,
PATENT FAILURE: HOW JUDGES, BUREAUCRATS, AND
LAWYERS PUT INNOVATORS AT RISK 22 (2008)
(hereinafter “PATENT FAILURE”), available in part
at http://researchoninnovation.org/dopatentswork/.
They continue to increase at the rate of approx-
imately 20,000 per year. See James Bessen & Robert
Hunt, An Empirical Look at Software Patents, 16 J.
ECON. & MGMT. STRATEGY 157, 158 (2007). This
proliferation has raised significant risks for software
developers.

For years, far-sighted industry leaders, scholars,
and software developers have warned of these risks
and opposed software patents. See PATENT FAILURE
at 189. These include Bill Gates, co-founder of
Microsoft. In 1991, Mr. Gates stated, “If people had
understood how patents would be granted when most

concluded that “[t]here are theoretical as well as empirical
reasons to question whether patent rights advance innovation in
a substantial way in most industries.” COMM. ON INTELLECTUAL
PROP. RIGHTS IN THE KNOWLEDGE-BASED ECON., NAT’L RESEARCH
COUNCIL, PATENTS IN THE KNOWLEDGE-BASED ECONOMY 2
(Wesley M. Cohen & Stephen A. Merrill eds., 2003), available
at http://www.nap.edu/catalog.php?record_id=10770. Scholarly
studies have called into question the basic assumption that
patent protection in general spurs innovation. Andrew W.
Torrance & Bill Tomlinson, Patents and the Regress of Useful
Arts, 10 COLUM. SCI. & TECH. L. REV. 130, 133-34 (2009).

13
of today’s ideas were invented and had taken out
patents, the industry would be at a complete
standstill today.” Kirk Rowe, Why Pay for What’s
Free?: Minimizing the Patent Threat to Free and
Open Source Software, 7 J. MARSHALL REV. INTELL.
PROP. L. 595, 595 (2008).

Similar, Donald E. Knuth, Professor Emeritus at
Stanford University and one of the world’s most
respected computer scientists, wrote in 1994, “When I
think of the computer programs I require daily to get
my own work done, I cannot help but realize that
none of them would exist today if software patents
had been prevalent in the 1960s and 1970s.” Donald
E. Knuth, Letter to Commissioner of Patents and
Trademarks 2 (Feb. 23, 1994), available at http://
documents.epo.org/projects/babylon/eponet.nsf/0/5294
C4422611FE7BC12575B6006414D2/$File/G3-08_ami
cus_curiae_brief_Knuth_en.pdf. Dr. Knuth also
stated, “I strongly believe that the recent trend to
patenting algorithms is of benefit only to a very small
number of attorneys and inventors, while it is
seriously harmful to the vast majority of people who
want to do useful things with computers.” Id.

The views of Mr. Gates and Dr. Knuth were shared
by many firms and developers in the 1990s. PATENT
FAILURE at 189. The risk that they articulated—that
patents tend to hinder software innovation—relates
to at least two different aspects of software: the
incremental nature of software development and the
near impossibility of establishing clear boundaries for
software patents.

In general, software innovation is cumulative in
nature—that is, new products typically build on prod-
ucts built previously. See FTC Innovation Report, ch.
3, § V at 44-45; THE PATENT CRISIS at 47. Innovation

14
is rapid and product cycles are short.8

It is, however, practically impossible to know with
reasonable certainty whether a new software product
could be said to infringe some prior software patent.
Patents are conventionally referred to as intellectual
property. However, as James Bessen and Michael
Meurer have explained in detail, patents differ
substantially from tangible property in that their
boundaries are often fuzzy and unpredictable.
PATENT FAILURE at 46-72. If patents do not give clear
notice of their limits, they create a risk of inadvertent
infringement. Vague patents also enable
opportunistic behavior. For example, a patentee
may, based on vague language, claim ownership of a
technology unknown to the inventor, but instead first
conceived by someone else. Id. at 199.

 Major soft-
ware products are complex, involving many
thousands or even millions of lines of code and many
different components. Components are normally
developed using many earlier-developed sub-compo-
nents. Some software products contain thousands of
distinguishable components, any number of which
could (in view of erroneous patenting practices)
already be patented. See FTC Innovation Report, ch.
3 § V at 52; THE PATENT CRISIS at 53-54.

9

8 Because of rapid product cycles, it is difficult for a software

inventor to use a patent productively to enforce legitimate
rights. A patent lawsuit is likely to take longer to resolve than a
product cycle, and may even take several product cycles. See
THE PATENT CRISIS at 57.

9 For example, a plaintiff may argue that a pre-internet pa-
tent covers some use of internet technology. Michael J. Meurer,
Controlling Opportunistic and Anti-competitive Intellectual
Property Litigation, 44 B.C. L. REV. 509, 542 (2003).

15
This problem of uncertain patent boundaries is

particularly acute with software patents. Software is
an abstract technology.10

This difficulty is multiplied hundreds or thousands
of times with regard to a complex software product
combining hundreds or thousands of discrete compo-
nents. A separate but related problem faces all
software developers—that of the impossibility of
patent clearance, or determining whether there are
existing patents that may be said to read on a new
product. There is no reliable, economical method for

 Software algorithms can be
represented in numerous different ways, and even
computer scientists sometimes disagree over whether
two software technologies are equivalent. See
PATENT FAILURE at 22, 203. Thus it is not surprising
that software patents are typically framed in abstract
language with uncertain boundaries. See PATENT
FAILURE at 23, 203; THE PATENT CRISIS at 27, 58.
As a result, a software developer, when shown a
software patent, often cannot be sure whether the
patent reads on newly developed code.

10 Computer software is abstract because it is, in essence,

nothing more than a set of mathematical algorithms, expressed
in a particular programming or machine language. An algorithm
is a mathematical construct, consisting of a series of steps for
solving a problem. See BEN KLEMENS, MATH YOU CAN’T USE –
PATENTS, COPYRIGHT, AND SOFTWARE 48-51 (2006) (hereinafter
“MATH YOU CAN’T USE”). Computer scientists view software as
consisting entirely of algorithms. See Ben Klemens, The Rise of
the Information Processing Patent, 14 B.U. J. SCI. & TECH. L. 1,
9-11 (2008). As Donald Knuth has explained, “[It is not] possible
to distinguish between ‘numerical’ and ‘nonnumerical’ algo-
rithms, as if numbers were somehow different from other kinds
of precise information.” See Letter to Commissioner of Patents
and Trademarks at 1. This Court has held that algorithms are
not patentable. Benson, 409 U.S. at 72.

16
searching the hundreds of thousands of existing
software patents.11

Thus, simply by virtue of producing and marketing
an innovative software product, a software developer
assumes the risk of a costly patent infringement
lawsuit.

 PATENT FAILURE at 50, 69-70.
See also MATH YOU CAN’T USE at 79-80. The clear-
ance problem is made even worse by the existence of
tens of thousands of applications that for eighteen
months after filing are unpublished.

12

11 The unreliability of indexing for software patents also

means that software patents are of little use in advancing
innovation by disclosing new technology. From a software
developer’s point of view, it is completely impractical to seek new
ideas in patents, and few if any do so. Most avoid reading
patents, for fear that a chance encounter may increase the risk
that they will one day be accused of willful infringement. See
THE PATENT CRISIS at 32; Mark Lemley, Ignoring Patents, 2008
MICH. ST. L. REV. 19, 21 (Spring 2008).

 See FTC Innovation Report, ch. 3. § V at
53-54, 56. In the U.S., software patents are more
than twice as likely to be the subject of a lawsuit
than other patents and account for one quarter of all
patent lawsuits. PATENT FAILURE at 22, 192. The cost
of defending a patent lawsuit frequently amounts
to several million dollars. AMERICAN INTELLECTUAL
PROPERTY LAW ASSOCIATION, REPORT OF THE ECO-
NOMIC SURVEY I-128-29 (2009). Such lawsuits involve
technical issues that are difficult for judges and
juries to understand, and so even with a strong
defense the outcome is usually far from certain. If

12 A further indication of the ineffectiveness of the patent
system for software is that there is little patent licensing prior
to development and distribution of products. See THE PATENT
CRISIS at 59. Because of vague patent boundaries and unrelia-
ble search methods, it is not possible to determine all possible
rights at issue and strike bargains as to those rights.

17
there is a judgment of infringement, the penalty may
be an injunction ending further production and
enormous monetary damages. Defense costs and
litigation risks are so large that in most cases
defendants agree to some payment to settle such
cases. Even when claims appear to have no valid
basis, targets frequently agree to pay for licenses
based on the mere threat of litigation. Michael
J. Meurer, Controlling Opportunistic and Anti-
competitive Intellectual Property Litigation, 44 B.C.
L. REV. at 542.

Some large technology companies have addressed
the risk of inadvertent infringement of patents by
seeking as many patents as possible, on the theory
that a large patent portfolio signals the possibility of
a countersuit and thus will deter other companies
from bringing a patent lawsuit.13

While such defensive measures are understandable
from an individual enterprise’s perspective, they are

 See FTC
Innovation Report, ch. 3 § V at 56; THE PATENT CRISIS
at 55. Companies with such portfolios often enter into
cross-licensing agreements with other large
companies that have their own patent portfolios in an
attempt to obtain a modicum of patent peace. Id. at
52. See RICHARD M. STALLMAN, FREE SOFTWARE,
FREE SOCIETY: SELECTED ESSAYS OF RICHARD M.
STALLMAN 101-103 (Joshua Gay, ed., 2002); MATH
YOU CAN’T USE at 83-85.

13 Red Hat, like some of its competitors, has built a patent

portfolio. This portfolio is designed to be used only for the
purpose of defending against patent aggression. Red Hat has
extended a public Patent Promise under which it pledges not to
enforce its patents against parties that infringe those patents
through their use of software covered by designated open source
licenses. See https://www.redhat.com/legal/patent_policy.html.

18
far from optimal. They create a vicious cycle: to
defend against a multitude of vague patents, compa-
nies obtain still more vague patents. Resources
expended on this strategy are, of course, unavailable
for research and development or for other more
productive purposes. FTC Innovation Report, ch. 3
§ V at 52. Moreover, although established companies
may be able to bear the cost of this deterrence
strategy, small companies and potential new competi-
tors generally lack the resources to do so. Thus the
system discourages new entry into the market, and
thereby hinders innovation. See id. at 51-52. See
also CLAYTON M. CHRISTENSEN, THE INNOVATOR’S
DILEMMA 26, 52 (2006) (showing that small firms
generally lead in new technologies).

Moreover, even for companies with the financial
resources to build patent portfolios, the deterrence
approach is not always effective. With the prolifera-
tion of software patents has come the expansion of a
class of businesses created expressly for the purpose
of exploiting vague patents. See Ben Klemens, The
Rise of the Information Processing Patent, 14 B.U. J.
SCI. & TECH. L. at 27-31; Meurer, supra. These are
sometimes referred to as non-practicing entities or,
less politely, as patent trolls. These entities acquire
vague patents at low cost with a view to threatening
or bringing lawsuits against operating businesses.
They frequently conceal their identities and holdings
until the companies that are their targets, which
have no knowledge of the relevant patents, are locked
in to a product and business strategy. Then they
demand ransom. Because such entities produce no
products, they are not deterred by the possibility of a
countersuit.

19
In sum, all software companies, developers, and

users face substantial risks from software patents.
These risks include whether an unknown patent may
cover newly written code or some other preexisting
code in a complex product, whether such a patent
could be the basis of a lawsuit, whether a relevant
patent is in the hands of an aggressive party
dedicated to bringing patent lawsuits, and whether a
trial may result in an injunction or damages award.

These risks have obviously not brought the soft-
ware industry to a standstill. Established companies
are protected to some extent by their patent portfo-
lios and war chests. But for them and even more for
new players, software innovation, like sky diving,
requires a high tolerance for risk. See MATH YOU
CAN’T USE at 91. Developers without a high risk
tolerance are likely to find the threat of ruinous
lawsuits to be discouraging, and to use their talents
and energy in less hazardous endeavors. Thus soft-
ware patents discourage new entries into the market-
place and new software innovation.

III. AN ABSTRACT IDEA DOES NOT BE-
COME PATENTABLE MERELY BY
IMPLEMENTING IT IN COMPUTER
SOFTWARE

In connection with addressing the test for exclud-
ing abstract ideas from patenting, this Court it
should also clarify the application of that test in the
context of computer programs that run on general
purpose computers. Lower court case law and com-
mentary since the Federal Circuit’s en banc decision
shows that this issue is an important one on which
this Court’s guidance is needed.

20
The basic question is whether an otherwise unpa-

tentable idea becomes “tied to a particular machine”
when it is implemented in software for execution on a
general purpose computer. Prior to the decision
below, the Federal Circuit gave credence to the idea
that a general purpose computer could be trans-
formed into a particular machine by executing
software. WMS Gaming Inc. v. Int’l Game Tech., 184
F.3d 1339, 1348 (Fed. Cir. 1999). On the other hand,
this view was recently rejected in Dealertrack, Inc. v.
Huber, No. 06-2335, 2009 WL 2020761, at *4 (C.D.
Cal. Jul. 7, 2009). Moreover, it has been recently
repeatedly rejected by the Board of Patent Appeals
and Interferences. See, e.g. Ex parte Myr, No. 2009-
005949 (BPAI Sept. 16, 2009); Ex parte Forman, No.
2008-005348 (BPAI Aug. 17, 2009); Ex parte Goud,
No. 2008-003121 (BPAI July 20, 2009); Ex parte
Daughtrey, No. 2008-0202 (April 8, 2009); Ex parte
Halligan, No. 2008-2823 (BPAI April 8, 2008); Ex
parte Enenkel, No. 2008-2239 (April 6, 2009); Ex
parte Nawathe, No. 2007-3360 (BPAI Feb. 9, 2009);
Ex parte Gutta, No. 2008-3000 (BPAI Jan. 15, 2009);
Ex parte Cornea-Hasegan, No. 2008-4742 (BPAI Jan.
13, 2009). This Court’s decisions in Benson and
Diehr signal that the mere fact that otherwise
unpatentable software is executable on a general
purpose computer should not convert such software
into a patentable invention.

This is not to say that software may not be part of
a patentable process or machine. As Diehr recog-
nized, an algorithm that is plainly unpatentable by
itself may be a part of a process that is patentable
when it involves a physical transformation of the sort
that has traditionally been considered patentable,
such as an industrial process for curing rubber. 450
U.S. at 184-88. See also Parker v. Flook, 437 U.S. at

21
589-94. The Court has also recognized that an
otherwise abstract idea may be patentable when “tied
to a particular apparatus.” Flook, 437 U.S. at 588,
n.9.

In Benson, the patent application covered “a
method of programming a general-purpose digital
computer to convert signals from binary-coded
decimal to pure binary form.” 409 U.S. at 65. The
Court found that the procedure at issue was a
mathematical algorithm, and amounted to an unpa-
tentable abstract idea. Id. at 65-66. It is important
to note, however, that the algorithm had “no substan-
tial practical application except in connection with
a digital computer.” Id. at 71. The claims were
intended to “cover any use of the claimed method in a
general-purpose digital computer of any type.” Id. at
64.

Thus the algorithm claimed in Benson could have
been viewed as “tied to a machine,” inasmuch as it
was functionally tied to a digital computer. Never-
theless, this Court held that the claims were abstract
ideas outside the scope of Section 101. Thus Benson
precludes an interpretation of Section 101 that views
abstract ideas as patentable based on their imple-
mentation in software running on a general purpose
computer.

The more recent decision in Diehr is consistent
with this understanding. The rubber curing process
in Diehr involved an algorithm and a computer,
but this Court’s analysis of subject matter turned on
the claim as a whole, which concerned the physical
transformation of the rubber—not the implementa-
tion of the algorithm in a computer program. 450
U.S. at 184-85. Diehr explained that use of the
computer did not render the process unpatentable,

22
but the decision makes clear, by its focus on the
transformation of rubber, that use of the computer
alone does not suffice to make the process patentable.
See id. at 187.

The Diehr Court cautioned against allowing the
prohibition on patenting of abstract formulas to “be
circumvented by attempting to limit the use of the
formula to a particular technological environment.”
450 U.S. at 191. “To hold otherwise would allow a
competent draftsman to evade the recognized limita-
tions on the type of subject matter eligible for patent
protection.” Id. at 192. In view of this caution, this
Court should make clear that the test for patentable
subject matter cannot be satisfied by the mere draft-
ing device of adding a general purpose computer as
an element in a claim that is otherwise directed to an
unpatentable algorithm.

CONCLUSION

The judgment of the Federal Circuit should be
affirmed.

Respectfully submitted.

 ROBERT H. TILLER
Counsel of Record

RED HAT, INC.
1801 Varsity Drive
Raleigh, NC 27606
(919) 754-4232

Counsel for Amicus Curiae

	cover
	In The

	Tables
	Brief
	In The

