
Maximizing RAS with RHEL 7 beta
DKU & Other Best Practices
Christoph Doerbeck
Principal Solutions Architect, Red Hat Inc.

Karl Abbott
Senior Technical Account Manager, Red Hat Inc.

Linda Wang
Senior Software Engineering Manager, Red Hat Inc

Christoph Doerbeck covers “General Best Practices”

logs & monitoring
more monitoring agents (smartd, mcelog, etc...)
dm multipath & nic bonding
cgroups & selinux
sysrq trigger

Karl Abbott covers Optimizing You Interactions with CEE

sosreports
Kexec / Kdump & VMCore Analysis
ABRT
BOMGAR & redhat-support-tool

Linda Wang covers Dynamic Kernel Update (DKU)

Avoiding Common Outages

Proactive – Before Something Fails

–Monitor, Detect & Repair

–Resource Constraints: cpu load, memory consumption, disk capacity, etc...

–Recoverable HW failures: cpu, memory, disk i/o, network, power, fans, etc...

•Hardware with built in Redundancy, Error Correction, etc...

–Standard Builds: are the proper tools installed & configured correctly everywhere?

–Automation

Reactive – After Something Fails

–Software Failures: Out of Resources, Bugs

–Non-Recoverable HW Failures

–Collect Evidence & Engage Support: if you weren't proactive, chances are you're
missing key evidence to help us identify root-cause

Logs with rsyslogd

Synopsis
–rsyslogd (syslog) is the system logging service which collects & writes log
messages based on defined parameters (facility + level)

–facility names: auth, authpriv (for security information of a sensitive nature),
cron, daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, and local0-7

–level names: alert, crit, debug, emerg, errinfo, notice, warning
–Provides simple configuration & customization for services & applications

–Can be centralized

Enablement
–chkconfig rsyslog on; service rsyslogd start

–configuration: /etc/rsyslogd.conf & /etc/rsyslog.d/*.conf

Logs with rsyslogd

Example
–Use logger to properly log messages from CLI or shell scripts

Additional References
–Rotate the logs with logrotate

•config: /etc/logrotate.conf & /etc/logrotate.d

mcelog, edac, hwpoison & ras-utils

Synopsis
–mcelog – extracts Machine Check Events from kernel ring buffer and writes to a
human readable file (/var/log/mcelog).

–Newer AMD processors do not support mcelog daemon

•mcelog-1.0pre3_20110718-0.14.el6 (RHEL 6.3) properly reports error on
newer AMD processors. See enablement below.

–Intel Ivy Bridge & Haswell support in RHEL 6.5

–hwpoison: gracefully survive certain memory failures

Enablement
–Intel: chkconfig mcelog on ; service mcelog start

–AMD: lsmod | grep edac_mce_amd

DON'T IGNORE THESE

MESSAGES

mcelog, edac, hwpoison & ras-utils

Example
–load kernel module with modprobe mce-inject

–simulate MCE with mce-inject

•WARNING – simulating a panic event, will panic your host

Additional Resources
–LWN article on HWPoison: https://lwn.net/Articles/348886/

–mcelog can also keep stats or trigger shell scripts on specific events

–Install ras-utils rpm (from “RHEL Server Optional”) for development & testing

•mce-inject, aer-inject

–http://www.mcelog.org

http://www.mcelog.org/

smartd

Synopsis
–smartd is a daemon that monitors the Self-Monitoring, Analysis and Reporting
Technology (SMART) system built into many ATA-3 and later ATA, IDE and
SCSI-3 hard drives

–polls devices every 30 minutes (configurable), logging SMART errors and
changes of SMART Attributes via the SYSLOG interface.

Enablement
–yum install smartmonutils

–chkconfig smartd on; service smartd start

–configuration: /etc/smartd.conf
DON'T IGNORE THESE

MESSAGES

smartd[6157]: Device: /dev/sdf [SAT], opened
smartd[6157]: Device: /dev/sdf [SAT], ST2000DM001-1CH164, S/N:S1E0T9VM, WWN:5-0
smartd[6157]: Device: /dev/sdf [SAT], found in smartd database: Seagate Barracu
smartd[6157]: Device: /dev/sdf [SAT], is SMART capable. Adding to "monitor" lis
smartd[6157]: Monitoring 6 ATA and 0 SCSI devices
smartd[6157]: Device: /dev/sdf [SAT], 88 Currently unreadable (pending) sectors
smartd[6157]: Sending warning via mail to root ...
smartd[6157]: Warning via mail to root: successful

smartd[6169]: Device: /dev/sdf [SAT], 88 Currently unreadable (pending) sectors
smartd[6169]: Device: /dev/sdf [SAT], 88 Offline uncorrectable sectors

smartd

Examples
–View a summary of information:

•smartctl -Ai /dev/sda

–View the error log:

•smartctl -l error /dev/sda

–Start the SMART short & long test

•smartctl -t short /dev/sda

•smartctl -t long /dev/sda

Monitoring Logs

Synopsis
–Get alerted & react when bad things happen

–Opensource Options: logwatch, Nagios, Zabbix, plenty more...

–Well established 3rd party tools: BMC Patrol, HP OpenView, IBM Tivoli, etc...

Additional References
–Don't forget to rotate additional log files with logrotate

•config: /etc/logrotate.conf & /etc/logrotate.d

 --------------------- Smartd Begin ------------------------
 Currently unreadable (pending) sectors detected:
 /dev/sdf [SAT] - 9 Time(s)
 88 unreadable sectors detected
 Offline uncorrectable sectors detected:
 /dev/sdf [SAT] - 9 Time(s)
 88 offline uncorrectable sectors detected
 Warnings:

Sending warning via mail to root ... - 2 Time(s)
 Warning via mail to root: successful - 2 Time(s)

dm-multipath

Synopsis
–Storage I/O redundancy and/or increased throughput

–Discovers & configures multiple I/O paths between
server & storage arrays

–“Paths” include separate cables, switches & controllers

–Creates a new device with the aggregated paths

Enablement
–yum install device-mapper-multipath

–mpathconf --enable --with_multipathd y

–service multipathd start

–Configuration File: /etc/multipath.conf

dm-multipath

Some Things to Know
–Modifying config after daemon is started requires 'service multipath reload'

–Some Key Configuration Options

•blacklist devices to exclude them from multipath detection

•find_multipaths (RHEL 6) intelligent device discovery (/etc/multipath/wwids)

•user_friendly_names

•path_selector :

–round-robin: loops thru every path in path group
–queue-length: path with least number of outstanding I/O requests.
–service-time: path with shortest service time

•path_grouping_policy & prio : assigns priority to paths (ex: Clariion)

dm-multipath

Additional Resources
–Quick Guide:

https://access.redhat.com/site/solutions/3689

–Comprehensive Guide:
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/DM_Multipath/index.html

–Configuration Details:
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/DM_Multipath/config_file_defaults.html#tb-config_defaults

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/DM_Multipath/index.html

channel (nic) bonding

Synopsis
–Combines two or more network interfaces
to form a single "bonded" interface

–Redundancy and/or
Increased throughput

Enablement
–Configure the bonded interface

–Configure network interfaces

../network-scripts/ifcfg-bond0

DEVICE=bond0
IPADDR=192.168.0.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=none
USERCTL=no
BONDING_OPTS="bonding params"
NM_CONTROLLED=no

../network-scripts/ifcfg-ethN

DEVICE=ethN
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no

channel (nic) bonding

Example
–Modes (all provide fault tolerance):

0 : balance-rr : sequential xmit of packets from first to last available slave
1 : active-backup : only one slave is active at a time
2 : balance-xor : xmits based on the selected xmit_hash_policy policy
3 : broadcast :transmits everything on all slave interfaces.
4 : 802.3ad :uses all slaves in active aggregator (802.3ad spec)
5 : balance-tlb : distributed according to the current load on each slave
6 : balance-alb : balance-tlb & receive load balancing (rlb) for IPv4 traffic

Additional Resources
–Red Hat Enterprise Linux 6 Deployment Guide

• https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

–How do I configure bonding device on Red Hat Enterprise Linux (RHEL)?
• https://access.redhat.com/site/articles/172483#Bonding_modes_on_Red_Hat_Enterprise_Linux

Load
Balance

CGroups

Synopsis
–Introduced in RHEL 6

–Dynamic allocation of resources
•processes, memory, storage & network

Enablement
–yum install libcgroup

–chkconfig cgconfig on

–service cgconfig start

10 subsystems that cgroups can leverage (RHEL 6.5)

blkio : limits i/o access to & from block devices (ie: disks, ssd,
 USB, etc...)

cpu : uses scheduler to provide cgroup access

cpuacct : generate reports on CPU resrouces used by tasks

cpuset : assigns individual CPUs & memory nodes

devices : allows or denies access to devices

freezer : suspends or resumes tasks

memory : sets limits & reports on memory use by task

net_cls : tags network packets within a classid (for use with tc)

net_prio : set priority of network traffic per nic interface

ns : namespace subsystem

CGroups

Example
–create: cgcreate -g blkio:/grpfoo

–config: cgset -r blkio.throttle.read_iops_device="252:0 100" /grpfoo

–test: cgexec -g blkio:grpfoo tar cf /dev/null --totals /usr

Additional Resources
–Red Hat Enterprise Linux 6.5 Resource Management Guide

• https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/

major,minor #
for /dev/vda = 252,0

nr_IO_per_second

SELinux

Synopsis
–Mandatory Access Control (ACL) mechanism in the Linux kernel

–Allows operations after checking standard discretionary access controls

–Reduced vulnerability to privilege escalation attacks

–Decisions based on all available information, such as an SELinux user,
role, type, and optionally a level

Enablement
–config: /etc/sysconfig/selinux

–modes: enforcing, permissive, disabled

–types: targeted, mls (multi-level-security)

SELinux

Example
–run sestatus to determine if SELinux is enabled

–run ls -Z filename to view SELinux context of a file / directory

–if enabled, auditd logs messages (denials) to /var/log/audit/audit.log

Additional Resources
–Security-Enhanced Linux User Guide

• https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/

–http://danwalsh.livejournal.com/20931.html

–Tools to diagnose SELinux problems: setroubleshoot
•also logs to syslog (/var/log/messages)

SYSRQ Trigger

Synopsis
–best (sometimes only) way to determine what a machine is really doing

–sends signal requesting diagnostic information to kernel

–system appears "hung" or diagnosing elusive, transient kernel-related problems

Enablement
–/etc/sysctl.conf and modify “kernel.sysrq = 1”

–sysctl -w kernel.sysrq=1

–additional config for remote management cards (ex: ilo, drac, etc...)

SYSRQ Trigger

Example
–If system is reponsive

•echo 'm' > /proc/sysrq-trigger

–If system is not responsive (appears hung)

•on system console issue “SysRq m”

–Output is written to the kernel ring buffer & system console

–Normally logged via syslog to /var/log/messages.

Additional References
–https://access.redhat.com/site/articles/231663

m dump information about memory allocation

t dump thread state information

p dump current CPU registers and flags

c intentionally crash the system
(useful for forcing a disk or netdump)

s immediately sync all mounted filesystems

u immediately remount all filesystems read-only

b immediately reboot the machine

o immediately power off the machine
(if configured and supported)

f start the Out Of Memory Killer (OOM)

w dumps tasks in uninterruptable (blocked) state
[Introduced with kernel 2.6.32]

SUPPORTING SUCCESS.
EXCEEDING EXPECTATIONS.
Optimizing your interactions with CEE

DRAFT V1 – DO NOT USE - INTERNAL ONLY | PRESENTER NAME23

WHAT TO INSTALL BEFORE IT BREAKS

Software to have installed for a smoother support experience.

sosreport

kexec/kdump

spacewalk-debug

crash

redhat-support-tool

subscribe to the debuginfo channel!

RECOMMENDATIONS BY ANDREAS

Putting the Customer Portal to work for you!

Open a new case and Andreas gets to work.

RECOMMENDATIONS BY ANDREAS

RECOMMENDATIONS BY ANDREAS

See a suggestion that works for you? How did we know?

KCS (Knowledge Centered Support) articles power Andreas.

REMOTE SUPPORT SESSIONS WITH BOMGAR

Remote support capability.

Red Hat can see your screen and work with you over the phone!

For more information, see
– https://access.redhat.com/site/solutions/412473

– https://access.redhat.com/site/articles/255443

https://access.redhat.com/site/solutions/412473
https://access.redhat.com/site/articles/255443

REMOTE SUPPORT SESSIONS WITH BOMGAR

PLEASE PROVIDE A SOSREPORT

Uses of sosreport

Gather most commonly requested data points.

Very important for understanding the context of an issue.

For more information, see:
–https://access.redhat.com/site/solutions/3592

https://access.redhat.com/site/solutions/3592

SPACEWALK-DEBUG

Satellite's equivalent of a sosreport

Spacewalk-debug provides Satellite specific information.

For more information, see:
–https://access.redhat.com/site/solutions/11047

https://access.redhat.com/site/solutions/11047

ABRT

Detect and report problems as they happen.

Automatic Bug Reporting Tool.

Captures application crashes.

Better integration with Satellite and Customer Portal in the future.

For more info, see:
–https://access.redhat.com/site/articles/642323

–https://access.redhat.com/site/articles/718083

https://access.redhat.com/site/articles/642323
https://access.redhat.com/site/articles/718083

ABRT

Detect and report problems as they happen.

Automatic Bug Reporting Tool.

Captures application crashes.

Better integration with Satellite and Customer Portal in the future.

For more info, see:
–https://access.redhat.com/site/articles/642323

–https://access.redhat.com/site/articles/718083

https://access.redhat.com/site/articles/642323
https://access.redhat.com/site/articles/718083

KEXEC / KDUMP

RHEL 5, 6, and 7 use KDUMP to capture vmcores.

Setting up kdump requires:
–Grub parameter 'crashkernel'.

–Configuration file '/etc/kdump.conf'.

–Disk space to dump to.

–Can compress with “-d 31” on the core_collector line of kdump.conf.

–For more information: https://access.redhat.com/site/solutions/6038

https://access.redhat.com/site/solutions/6038

VMCORE

A snapshot of memory at the time your box panicked!

Gives us the details of what happened.

Increases the chance we will get a root cause.

VMCORE

But my box has 4 TB of RAM!

vmcore files are large. They can be up to the size of the RAM of
the box that crashed.

Upload via ftp or work with Support to ship a drive.

VMCORE

How to get answers fast!

Find the RIP and search the Customer Portal with it.

No matches? Provide that to Red Hat Support!

RAS – Reliability - Analysis

Dynamic kernel updates

– Analysis of the code changes - Building

• Object level comparison of kernel objects (ELF relocatable files)
• How:

–Compiled using the -ffunction-sections and -fdata-sections GCC flags.

• Advantages:
–There is a one-to-one relationship between function/object symbols and the
sections that contain their data. This allows precise cherry picking of the
code and data segments that need to be included in the output object.

– This also allows for a simple memory comparison (memcmp) of the
section to determine if a particular function or object has changed.

 2

RAS – Reliability - Analysis

Dynamic kernel updates

– Analysis of the code changes - Building

• Advantages:
– Second, it isolates each text/rela section pair that corresponds to a
particular function from changes in other functions. If each function is not in
its own section, a change to one function can cause the entire shared text
section to shift, resulting in “changes” to the shared text and rela regions in
other functions.

– Using -ffunction-sections avoids this unpleasantness by starting each
function at offset 0 in its own section

 2

RAS – Reliability - Analysis

Dynamic kernel updates

– Analysis of the code changes – Object Comparison

• Per-object file comparison

• Two object files being compared: the “base” version and the “patched” version

• Each object file is opened and parse into structure represent elements:
sections and symbols

• Then a correlation comparison between the structures: a comparison of
section header and a memcmp of the section data

• This process produces a preliminary set of changed elements that need to be
included in the output object

 2

RAS – Reliability - Analysis

Dynamic kernel updates

– Analysis of the code changes – Reachability Test

• Once all of the changed and dependency sections have been marked, a
“reachability” test is performed.

• To confirm that all changed sections are reachable from a changed function

– i.e. Cases such as modifications to statically declared data structures are
caught by this test.

• If the reachability test passes, we are now ready to generate the output object.

 2

RAS – Reliability - Conversion

Dynamic kernel updates

– Analysis of the code changes – kpatchTransformation

• Once we generated the output objects, two additional sections need to be
added

– __kpatch_patches and .rela__kpatch_patches
– In these text sections, after linking done by the kernel module loader, will
contain one entry for each function that needs to be patched

– Each entry contains the address of the base function in the running kernel
and the address of the patched function in the hot-patch kernel module.

• The static linking of non-exported symbols in the symbol table

– If not in the symbol table of the output object, for each global entry that
isn't exported by the kernel, the symbol is looked up in vmlinux and add in.

 2

RAS – Reliability - Patching

Dynamic kernel updates

– Insertion of the changed object file

• Quiscing the system to idle CPU’s, verify activeness safety
• Registered a trampoline function with ftrace
• When ftrace hits the target function, trampoline function is called
by ftrace immediately before the traget’s original code is
executed.
• The the trampoline function then modifies the return instruction
pointer (IP) address on the stack and return to ftrace, then restore
the original function arguments and stack and continue on with
the new function.

 2

RAS - How it works:

Original
Function

ftrace kpatch

Replacement
Function

call

return

return

no op

Original
Function

noop

Original
Function

call no op

Original
Function

call

Before
patching:

After
patching:

call

return

call

RAS - Servicability

Dynamic kernel updates

– Functional Support

•Kexec Kdump/Crash will continue to work
•A taint flag to identify the kenel that contains DKU modules
•Tracepoint, perf, ftrace continue to work
•Systemtap modules
•Sosreport & ABRT will integrate

–System state will be preserved across reboot for presistancy

 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

