USING APACHE SPARK FOR ANALYTICS IN THE CLOUD

William C. Benton
Principal Software Engineer
Red Hat Emerging Technology
June 24, 2015
ABOUT ME

- Distributed systems and data science in Red Hat's Emerging Technology group
- Active open-source and Fedora developer
- Before Red Hat: programming language research
FORECAST

- Distributed data processing: history and mythology
- Data processing in the cloud
- Introducing Apache Spark
- How we use Spark for data science at Red Hat
DATA PROCESSING
Recent history & persistent mythology
CHALLENGES

What makes distributed data processing difficult?
MAPREDUCE (2004)

- A novel application of some very old functional programming ideas to distributed computing
- All data are modeled as key-value pairs
- Mappers transform pairs; reducers merge several pairs with the same key into one new pair
- Runtime system shuffles data to improve locality
WORD COUNT

"a b" "c e" "a b" "d a" "d b"
MAPPED INPUTS

(a, 1) (c, 1) (a, 1) (d, 1) (d, 1) (b, 1) (e, 1) (b, 1) (a, 1) (b, 1)
SHUFFLED RECORDS

(a, 1) (b, 1) (c, 1) (d, 1) (e, 1)
(a, 1) (b, 1) (d, 1)
(a, 1) (b, 1)
REDUCED RECORDS

(a, 3) (b, 3) (c, 1) (d, 2) (e, 1)
HADOOP (2005)

- Open-source implementation of MapReduce, a distributed filesystem, and more
- Inexpensive way to store and process data with scale-out on commodity hardware
- Motivates many of the default assumptions we make about “big data” today
“FACTS”

- You need an architecture that will scale out to many nodes to handle real-world data analytics.
- Your network and disks probably aren't fast enough.
- Locality is everything: you need to be able to run compute jobs on the nodes storing your data.
“FACTS”

- You need an architecture that will scale out to many nodes to handle real-world data analytics
- Your network and disks probably aren't fast enough
- Locality is everything: you need to be able to run compute jobs on the nodes storing your data
...at least two analytics production clusters (at Microsoft and Yahoo) have median job input sizes under 14 GB and 90% of jobs on a Facebook cluster have input sizes under 100 GB.

Takeaway #1: you may need petascale storage, but you probably don't even need terascale compute.
Takeaway #2: moderately sized workloads benefit more from \textit{scale-up} than \textit{scale out}.
“FACTS”

- You need an architecture that will scale out to many nodes to handle real-world data analytics.
- Your network and disks probably aren't fast enough.
- Locality is everything: you need to be able to run compute jobs on the nodes storing your data.
Contrary to our expectations … CPU (and not I/O) is often the bottleneck [and] improving network performance can improve job completion time by a median of at most 2%

Takeaway #3: I/O is not the bottleneck (especially in moderately-sized jobs); focus on CPU performance.
“FACTS”

- You need an architecture that will scale out to many nodes to handle real-world data analytics.
- Your network and disks probably aren't fast enough.
- Locality is everything: you need to be able to run compute jobs on the nodes storing your data.
Takeaway #4: collocated data and compute was a sensible choice for petascale jobs in 2005, but shouldn't necessarily be the default today.
FACTS (REVISED)

- You probably don't need an architecture that will scale out to many nodes to handle real-world data analytics (and might be better served by scaling up)
- Your network and disks probably aren't the problem
- You have enormous flexibility to choose the best technologies for storage and compute
HADOOP IN 2015

- MapReduce is low-level, verbose, and not an obvious fit for many interesting problems
- No unified abstractions: Hive or Pig for query, Giraph for graph, Mahout for machine learning, etc.
- Fundamental architectural assumptions need to be revisited along with the “facts” motivating them
DATA PROCESSING IN THE CLOUD

How our assumptions should change
COLLOCA TED DATA AND COMPUTE
DISTINCT STORAGE AND COMPUTE

Combine the best storage system for your application with elastic compute resources.
INTRODUCING SPARK
Apache Spark is a framework for distributed computing based on a high-level, expressive abstraction.
Query ML Graph Streaming

Spark core
Language bindings for Scala, Java, Python, and R

Query | ML | Graph | Streaming
Spark core

Access data from JDBC, Gluster, HDFS, S3, and more
A resilient distributed dataset is a partitioned, immutable, lazy collection.
A resilient distributed dataset is a partitioned, immutable, lazy collection.
A resilient distributed dataset is a partitioned, immutable, lazy collection.

The PARTITIONS making up an RDD can be distributed across multiple machines.
A resilient distributed dataset is a partitioned, immutable, lazy collection.

TRANSFORMATIONS create new (lazy) collections; ACTIONS force computations and return results.
CREATING AN RDD

* from an in-memory collection
spark.parallelize(range(1, 1000))

* from the lines of a text file
spark.textFile("hamlet.txt")

* from a Hadoop-format binary file
spark.hadoopFile("...")
spark.sequenceFile("...")
spark.objectFile("...")
TRANSFORMING RDDS

transform each element independently
numbers.map(lambda x: x + 1)

turn each element into zero or more elements
lines.flatMap(lambda s: s.split(" "))

reject elements that don’t satisfy a predicate
vowels = ['a', 'e', 'i', 'o', 'u']
words.filter(lambda s: s[0] in vowels)

keep only one copy of duplicate elements
words.distinct()
TRANSFORMING RDDs

* return an RDD of key-value pairs, sorted by
 the keys of each

 \[\text{pairs.sortByKey()}\]

* combine every two pairs having the same key, using the given reduce function

 \[\text{pairs.reduceByKey}(\lambda x, y: \text{max}(x, y))\]

* join together two RDDs of pairs so that

 \[\text{[(a, b)] join [(a, c)] == [(a, (b, c))]}\]

 \[\text{pairs.join(other_pairs)}\]
CACHING RESULTS

tell Spark to cache this RDD in cluster memory after we compute it
sorted_pairs = pairs.sortByKey()
sorted_pairs.cache()

as above, except also store a copy on disk
sorted_pairs.persist(MEMORY_AND_DISK)

uncache and free this result
sorted_pairs.unpersist()
COMPUTING RESULTS

- compute this RDD and return a count of elements

  ```scala
  numbers.count()
  ```

- compute this RDD and materialize it as a local collection

  ```scala
  counts.collect()
  ```

- compute this RDD and write each partition to stable storage

  ```scala
  words.saveAsTextFile("...")
  ```
create an RDD backed by the lines of a file
f = spark.textFile("...")

...mapping from lines of text to words
words = f.flatMap(lambda line: line.split(" "))

...mapping from words to occurrences
occs = words.map(lambda word: (word, 1))

...reducing occurrences to counts
counts = occs.reduceByKey(lambda a, b: a + b)

POP QUIZ: what have we computed so far?
counts.saveAsTextFile("...")
PETASCALE STORAGE, IN-MEMORY COMPUTE

compute-only nodes, which primarily operate on cached post-ETL data

storage/compute nodes
DATA SCIENCE AT RED HAT
THE EMERGING TECH DATA SCIENCE TEAM

- Engineers with distributed systems, data science, and scientific computing expertise
- Goal: help internal customers solve data problems and make data-driven decisions
- Principles: identify best practices, question outdated assumptions, use best-of-breed technology
DEVELOPMENT

- Six compute-only nodes
- Two nodes for Gluster storage
- Apache Spark running under Apache Mesos
- Open-source “notebook” interfaces to analyses
DATA SOURCES

FTP
S3
SQL
MongoDB
ElasticSearch
INTERACTIVE QUERY

```scala
val some_ints = sc.parallelize(1 to 10000)
some_ints: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:23
```

Took 26 seconds

```scala
some_ints.count()  
res1: Long = 10000
```

Took 1 seconds
ROLE ANALYSIS

- Data source: historical configuration and telemetry data for internal machines from ElasticSearch
- Data size: hundreds of GB
- Analysis: identify machine roles based on the packages each has installed
BUDGET FORECASTING

- Data sources: operational log data for OpenShift Online (from MariaDB), actual costs incurred by OpenShift
- Data size: over 120 GB
- Analysis: identify operational metrics most strongly correlated with operating expenses; model daily operating expense as a function of these metrics

Aggregating performance metrics:
17 hours in MariaDB, 15 minutes in Spark!
NEXT STEPS
DEMO VIDEO

See a video demo of Continuum Analytics, PySpark, and Red Hat Storage: h.264 or Ogg Theora
WHERE FROM HERE

- Check out the Emerging Technology Data Science team's library to help build your own data-driven applications: https://github.com/willb/silex/
- See my blog for articles about open source data science: http://chapeau.freevariable.com
- Questions?
THANKS