
SL44232: OpenShift for Operators 

Presenters: 
● N. Harrison Ripps, Manager, Software Engineering, Atomic / OpenShift Team 
● Erik Jacobs, Principal Technical Marketing Manager, OpenShift Enterprise 
● Siamak Sadeghianfar, Senior Product Marketing Manager, OpenShift Enterprise 
● Bob Kozdemba, Principal Solution Architect, Red Hat Public Sector 

 
 
This series of self­guided labs is targeted towards the people who will deploy and manage a Red 
Hat OpenShift Enterprise environment. Over the next two hours, we will walk through a number 
of scenarios that will be helpful to operators deploying OpenShift on private or public clouds. 
 
 

 
 

Lab 1: Deployment 
Your lab environment consists of three hosts configured to run as a Red Hat OpenShift Enterprise 
cluster. But what if you are starting from scratch? Let’s a look at how we would configure and run a 
deployment of our own. 

1.1 Host Access 
From your lab machine you have SSH access to the three virtual hosts that make up the cluster: 
 

● ose3­master.example.com 
● ose3­node1.example.com 
● ose3­node2.example.com 

 
During the following labs you will be directed to connect to these hosts either directly or indirectly 
as documented. The login credentials for all three hosts are: 
 
 
Username: ​root 
Password: ​redhat1! 
 
And your SSH commands will be of the form: 

 



 

SL44232: OpenShift for Operators 

 

 
$ ssh root@ose3­master.example.com 

 
Now let’s see how we would configure and deploy software packages on these hosts if they 
weren’t already set up… 

1.2 Configuring and Installing OpenShift with Ansible 
Ansible is a configuration and deployment tool that is similar to Puppet and Chef. It is ​agentless​, 
meaning that it does not require special software to be installed target host systems in order to do 
its work. 
 
By using one of the freely distributed Ansible ​playbooks​ to configure your cluster, your list of 
prerequisites for each target host is pretty small: 
 

● RHEL 7.1 
● An appropriate RHEL subscription 
● SSH access to a privileged user account 

 
Ansible was used in the initial deployment of the OpenShift cluster on your lab system. However, 
we’ve cleaned out the Ansible configuration so that you can set up the configuration yourself and 
then check your work. 
 
To begin, from a terminal on your lab system, log into the master host. Remember that the 
password is ‘redhat1!’: 
 
$ ssh root@ose3­master.example.com 

 
Once connected, Ansible’s inventory of hosts lives at ​/etc/ansible/hosts​. Have a look at the 
inventory on the master: 
 
   

 
2 



 

SL44232: OpenShift for Operators 

 

[root@ose3­master ~]# less /etc/ansible/hosts 

# This is the default ansible 'hosts' file. 

# 

# It should live in /etc/ansible/hosts 

# 

#   ­ Comments begin with the '#' character 

#   ­ Blank lines are ignored 

#   ­ Groups of hosts are delimited by [header] elements 

#   ­ You can enter hostnames or ip addresses 

#   ­ A hostname/ip can be a member of multiple groups 

 
# Ex 1: Ungrouped hosts, specify before any group headers. 

 
green.example.com 

blue.example.com 

192.168.100.1 

192.168.100.10 

 
# Ex 2: A collection of hosts belonging to the 'webservers' group 

 
[webservers] 

alpha.example.org 

beta.example.org 

192.168.1.100 

192.168.1.110 

 
# If you have multiple hosts following a pattern you can specify 

# them like this: 

 
www[001:006].example.com 

 
# Ex 3: A collection of database servers in the 'dbservers' group 

 
[dbservers] 

 
db01.intranet.mydomain.net 

db02.intranet.mydomain.net 

10.25.1.56 

10.25.1.57 

 
# Here's another example of host ranges, this time there are no 

# leading 0s: 

db­[99:101]­node.example.com 

 
3 



 

SL44232: OpenShift for Operators 

 

This is the default hosts file, and it shows us a number of different ways of defining hosts and 
groups of hosts. 
 
The OpenShift Ansible playbook defines some groupings that make it very easy to configure and 
deploy an initial cluster, and then to extend that cluster later on. 
 
We’re going to configure Ansible as though we were setting up our three­host cluster from scratch. 
 

1. Move ​/etc/ansible/hosts​ to ​/etc/ansible/hosts.orig​ just in case you need to 
go back and start over. 
 

2. Next, copy ​/root/ansible.hosts.ose.example​ to ​/etc/ansible/hosts​. 

1.2.1 Initial Setup 

To begin, open the newly placed ​/etc/ansible/hosts​ file in an editor and have a look at the 
contents of the file. Note that the ​OSEv3:children​ group starting on line 4 contains four 
subgroups: 
 

● masters ­ hosts in this group will run the cluster master processes, which include the API 
server and controller manager server. 

● nodes ­ hosts in this group actually run containerized payloads and the services to support 
those payloads, including docker, the kubelet, and the Kubernetes service proxy. 

● etcd ­ Kubernetes leverages ​etcd​ for configuration management, and ​etcd​ itself can run 
as a multi­instance cluster. This group is optional. 

● lb ­ This load balancer group is used when you are installing multiple masters, and you 
would like Ansible to deploy and configure an ​unsupported/non­production ​HAProxy load 
balancer that is designed to handle the traffic routed to those masters. This group is also 
optional. 

 
Comment out (prepend with ‘#’) the ​etcd​ and ​lb​ lines in this section. We are doing a 
single­master deployment and so we will not use these groups. 

 

 
4 



 

SL44232: OpenShift for Operators 

 

1.2.2 Masters and Nodes 
Next, we’ll fill out the groups that we ​will​ use by adding our master and node hosts to the file. 
 

1. Search on “​[masters]​” in the file. You should only find one result at around line 259. 
 

2. Modify or replace the hostname in this list to read: ​ose3­master.example.com 
 

3. Below the masters group, comment out the ​[etcd]​ and ​[lb]​ groups and their contents 
by adding a hash symbol (#) to the beginning of each of those lines. These groups are 
valuable for multi­master clusters, but our lab deployment is only using one master. In a 
single master situation, we don’t need the load balancer at all, and without an explicit entry 
in the ​[etcd]​ group, the etcd server will be added to the single master. 
 

4. Finally, jump down a few lines further to the ​[nodes]​ group. The note that precedes this 
group mentions that master hosts must also be included in the nodes list, but that you can 
prevent them from being targeted for running containers with the 
openshift_schedulable=False​ setting. For our lab we’re actually going to use the 
master as a node, but we are going to tag it with a specific label so that it is only used for 
supporting services and not application deployment. 
 
Replace the existing multi­master host line (right below the ​[nodes]​ heading) with an entry 
for our single master host. Use the ​openshift_node_labels​ argument to indicate that the 
master should be treated as an ‘infra’ environment node, and the ​openshift_schedulable 
argument to specifically indicate that we want to use our master host for some container 
payloads: 
ose3­master.example.com 

openshift_node_labels="{'region':'tatooine','zone':'na','env':'in

fra'}" openshift_schedulable=True 

 

5. Now replace the existing multi­node host line with individual lines for each of our nodes. 
This time use the ​openshift_node_labels​ argument to specify ‘user’ environment nodes, 
but don’t worry about providing ​openshift_schedulable​ because non­master hosts are 
schedulable by default: 
 

 
5 



 

SL44232: OpenShift for Operators 

 

 
 
ose3­node1.example.com openshift_node_labels="{'region': 

'tatooine', 'zone': 'cantina','env':'user'}" 

ose3­node2.example.com openshift_node_labels="{'region': 

'tatooine', 'zone': 'farm','env':'user'}" 

 
Be aware that the ‘env’ labels that we are using to distinguish between the master and nodes are 
completely arbitrary​; we could have used practically any key/value pair to distinguish them. That 
said, while the specific label is arbitrary, the importance of having some way to distinguish between 
master hosts and node hosts is not, as you will see later on. 
 
That’s it for masters and nodes. Keep the hosts file open in your editor because next we’re on to 
adding an LDAP server for identity management. 

1.2.3 IDM Setup, Part 1 

In our lab environment, we’ve already configured an LDAP server that is reachable at: 
 

ose3­ldap.example.com 

 
There are two primary steps to using LDAP with an OpenShift cluster: 
 

1. Configure the cluster hosts with necessary information to communicate with the LDAP 
server. 
 

2. Map LDAP users and groups to permissions within the cluster. 
 
The first step is handled now, at cluster deployment time, with the Ansible playbooks. We’ll cover 
step two in the following lab. 
 
To configure the ansible playbook to set up LDAP, we’ll make the following changes to the 
/etc/ansible/hosts​ file: 
 

1. By default, the hosts file will configure the cluster to use basic htpasswd­based 
authentication. The cluster only supports the use of a single IDM provider per deployment, 

 
6 



 

SL44232: OpenShift for Operators 

 

so we need to disable this default before enabling LDAP. Search on ‘​htpasswd auth​’ in the 
hosts file and comment out the line immediately below it (this should be line 84) that begins 
with “​openshift_master_identity_providers​” 
 

2. Now we need to enable LDAP. Search on “LDAP auth”, which is about 5 lines down from 
where you just commented out the htpasswd config. Uncomment and update the next line 
to identify the LDAP server that we’re going to use with this information: 
 
openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 

'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes': 

{'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername': 

['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com', 

'bindPassword': 'r3dh4t1!', 'ca': '/etc/origin/master/ipa­ca.crt', 

'insecure': 'false', 'url': 

'ldap://ose3­ldap.example.com/cn=users,cn=accounts,dc=example,dc=com?uid?sub

?(memberOf=cn=ose­users,cn=groups,cn=accounts,dc=example,dc=com)'}] 
 

Make sure there are no line breaks in this. Also note that this configuration refers to a 
certificate authority (CA) cert that lives at ​/etc/origin/master/ipa­ca.crt​. This cert 
file has already been copied from the LDAP server host to all of the hosts in the cluster, but 
if you were setting things up from scratch, you would need to do this manually. 
 

3. Save the file, but leave it open ­ we’ve got one last change to make. 

1.2.4 Default Node Selector 

Finally we will establish a system­wide default to let OpenShift know which nodes should be the 
default targets for user workloads. Back in section 1.2.2, recall that we assigned the ​env=user 
label to both of our node hosts, but not to our master host. By doing this, we can now specify that 
label as a default node selector. Unless we specifically override the default, our containers will 
always end up on one of the nodes with this label. 
 
To establish the default, search on ‘default project’; you should end up around line 141 in the file. 
Uncomment the setting line below it and modify it to read: 
 
osm_default_node_selector='env=user' 

 
7 



 

SL44232: OpenShift for Operators 

 

 
That’s it! Save the hosts file and let’s test it out. 

1.2.5 Test Your Setup 

In our lab environment, the cluster that you are working in has already been deployed with the 
exact settings that you’ve configured in the steps outlined in this section. So, rather than rerunning 
the deployment playbook, instead run the following Ansible­based validation utility to confirm your 
settings: 
 

ansible­playbook /root/configchecker.yml 

 
If the Ansible playbook exits with “FATAL”: 
 

● During our instructor­led lab, raise your hand and have an instructor/proctor assist you. We 
can help, and we don’t you to get too hung up on this ­ there’s a lot of other content to 
cover! 
 

● If you are taking this lab at a self­paced kiosk, you can work on debugging this, or start with 
a fresh copy of the /root/ansible.hosts.ose.example file, or just move on to the next section; 
the cluster is already deployed so you don’t need to worry about being blocked by this step. 

 
If the Ansible run looks successful, you know that deploying this configuration would result in the 
exact cluster configuration that you are currently using. Head on to the next lab. 

   

 
8 



 

SL44232: OpenShift for Operators 

 

Lab 2: User and Project Administration 
In this lab, we’ll pick up with the cluster at the point where an Ansible playbook deployment will 
have completed. We’ll finish setting up LDAP­based authentication, deploy a few containers that 
are used by the cluster, and get our hands dirty with some project setups. 

2.1 IDM Setup, Part 2 
The next step in configuring your OpenShift cluster work with an external IDM like LDAP is to map 
groups defined within the IDM to groups within OpenShift. 
 
After the Ansible deployment, it should already be possible to authenticate against the LDAP 
server. You can test this by logging in to the cluster master at ose3­master.example.com and then 
running the oc login command: 
 
$ oc login ­u andrew 

 
When prompted, use the password ​r3dh4t1! 
 
You should see output like: 
 
Login successful. 

 
You don't have any projects. You can try to create a new project, by 

running 

 
   $ oc new­project <projectname> 

 
If that doesn’t work, “Houston, we have a problem!” Please let a proctor know, because the LDAP 
server that we’re using in these labs is centrally located for all machines in the lab environment. 
 
 
 

2.1.1 Group Sync Configuration 

 
9 



 

SL44232: OpenShift for Operators 

 

So now on to group mappings. Users on the lab LDAP server are organized into the following 
groups: 
 

Group  Description 

ose­users  Users with access to OpenShift Enterprise 

portalapp  Portal App project developers 

paymentapp  Payment App project developers 

ose­production  Administrators and operations team with access to modify production 
projects 

ose­platform  Users with full cluster administration control 

 
To map these groups to something within OpenShift, we’ll start by creating a group sync file. 
 
On the ose3­master host, start a file at ​/etc/origin/master/groupsync.yaml​ with this 
boilerplate: 
 
[root@ose3­master ~]# cat << EOF > /etc/origin/master/groupsync.yaml 

kind: LDAPSyncConfig 

apiVersion: v1 

url: "ldap://ose3­ldap.example.com" 

insecure: false 

ca: "/etc/origin/master/ipa­ca.crt" 

bindDn: "uid=admin,cn=users,cn=accounts,dc=example,dc=com" 

bindPassword: "r3dh4t1!" 

rfc2307: 

   groupsQuery: 

       baseDN: "cn=groups,cn=accounts,dc=example,dc=com" 

       scope: sub 

       derefAliases: never 

       filter: (&(!(objectClass=mepManagedEntry))(!(cn=trust 

admins))(!(cn=groups))(!(cn=admins))(!(cn=ipausers))(!(cn=editors))(!(cn=ose­users

))(!(cn=evmgroup*))(!(cn=ipac*))) 

   groupUIDAttribute: dn 

   groupNameAttributes: [ cn ] 

 
10 



 

SL44232: OpenShift for Operators 

 

   groupMembershipAttributes: [ member ] 

   usersQuery: 

       baseDN: "cn=users,cn=accounts,dc=example,dc=com" 

       scope: sub 

       derefAliases: never 

       filter: (memberOf=cn=ose­users,cn=groups,cn=accounts,dc=example,dc=com) 

   userUIDAttribute: dn 

   userNameAttributes: [ uid ] 

 
EOF 

 

Next, open the new file in an editor and add the mapping section, which will look like this: 
 
groupUIDNameMapping: 

 "cn=portalapp,cn=groups,cn=accounts,dc=example,dc=com": "portalapp" 

 "cn=paymentapp,cn=groups,cn=accounts,dc=example,dc=com": "paymentapp" 

 "cn=ose­production,cn=groups,cn=accounts,dc=example,dc=com": "ose­production" 

 "cn=ose­platform,cn=groups,cn=accounts,dc=example,dc=com": "PlatformAdmins" 

 

Remember that this is a YAML file, so indenting is important! The groupUIDNameMapping key 
should be at the same depth as the userNameAttributes key, and the subsequent mapping entries 
should be one level deeper. 

2.1.2 Test and Deploy 

Before we continue, make sure you are logged in to the cluster as a cluster administrator. For now 
we’ll use the built­in ‘system:admin’ account. Note that you can only authenticate as 
‘system:admin’ if you are logged into one of the master hosts as the root user: 
 
[root@ose3­master ~]# oc login ­u system:admin 

 

Now, to validate the groupsync file and test the synchronization without making changes to the 
cluster, run the sync­groups command: 
 
[root@ose3­master ~]# openshift ex sync­groups \ 

­­sync­config=/etc/origin/master/groupsync.yaml 

 

You should see YAML output for each of the groups; it will be similar to: 

 
11 



 

SL44232: OpenShift for Operators 

 

 
apiVersion: v1 

items: 

­ apiVersion: v1 

 kind: Group 

 metadata: 

   annotations: 

     openshift.io/ldap.sync­time: 2016­03­18T02:46:26­0400 

     openshift.io/ldap.uid: cn=paymentapp,cn=groups,cn=accounts,dc=example,dc=com 

     openshift.io/ldap.url: idm.example.com:389 

   creationTimestamp: null 

   labels: 

     openshift.io/ldap.host: idm.example.com 

   name: paymentapp 

 users: 

 ­ andrew 

 ­ payment1 

 ­ payment2 

... 

 

Assuming that worked correctly, you can now re­run the sync and actually apply the settings by 
executing the previous command and adding the ­­confirm flag: 
 
[root@ose3­master ~]# openshift ex sync­groups 

­­sync­config=/etc/origin/master/groupsync.yaml ­­confirm 

 

You will see output like: 
 
group/portalapp 

group/paymentapp 

group/ose­production 

group/ose­platform 

 

Finally, to verify that the groups were created: 
 
[root@ose3­master ~]# oc get groups 

 

Should return output like: 

 
12 



 

SL44232: OpenShift for Operators 

 

 
NAME             USERS 

ose­platform     david, admin1, admin2 

ose­production   karla, prod1, prod2 

paymentapp       marina, payment1, payment2 

portalapp        andrew, portal1, portal2 

2.1.3 Policy Bindings 

With IDM­to­OpenShift mapping completed, the last step is to actually elevate the permissions of 
those groups on the cluster. We’ll set up most of the groups later, but for now, run the following 
command to set the privileges of the ​ose­platform​ group: 
 
[~]# oadm policy add­cluster­role­to­group cluster­admin ose­platform 

 

Simply put, this grants the cluster­admin role to the ose­platform group. Having done that, now you 
can switch from the built­in ​system:admin​ user to an LDAP­managed user with the same 
privileges. This is equivalent to working on a Linux system as a user with superuser privileges 
rather than running directly as root. Remember the ​admin1​ password is ‘​r3dh4t1!​’: 
 
[root@ose3­master ~]# oc login ­u admin1 

Authentication required for https://ose3­master.example.com:8443 (openshift) 

Username: admin1 

Password: 

Login successful. 

 
You have access to the following projects and can switch between them with 'oc 

project <projectname>': 

 
 * default (current) 

 * management­infra 

 * openshift 

 * openshift­infra 

 
Using project "default". 

 

The project list above is identical to what is available to ​system:admin​. 

 
13 



 

SL44232: OpenShift for Operators 

 

2.2 ‘default’ Project Configuration 
The ‘default’ project on an OpenShift cluster is the reserved project namespace for cluster 
management assets that are ​not​ part of user­owned projects. To say it another way, it is the 
namespace that contains pods and services that make the cluster work, rather than a namespace 
where users would deploy applications. 
 
During the first lab, we noted that we want to use the master host as the landing place for 
infrastructure objects. However, we also configured the cluster with an 
osm_default_node_selector​ value of ‘env=user’. As you will see, this may present a 
problem. 
 
Have a look at the current node configuration: 
 
[root@ose3­master ~]# oc get nodes 

 

Recall that we configured the node hosts with the ‘env=user’ label, but not the master host: 
 
NAME                      LABELS         STATUS    AGE 

ose3­master.example.com   env=infra,...  Ready     1h 

ose3­node1.example.com    env=user,...   Ready     1h 

ose3­node2.example.com    env=user,...   Ready     1h 

 

Because of this, if we start deploying cluster assets to the ‘default’ project, they are going to end up 
running on one of the nodes with a label of ‘env=user’. That’s not what we want, because those 
nodes are meant for user payloads, and we want our cluster assets to go to the master node. 
 
In order to solve this problem, we need to specifically associate the ‘default’ project with the master 
node. We can accomplish this with an ​annotation​ that links the ‘default’ namespace to the 
‘env=infra’ node label. 
 
To do this, we’ll modify the ‘default’ namespace with the ​oc edit​ command: 
 
[root@ose3­master ~]# oc edit namespace/default 

 

 
14 



 

SL44232: OpenShift for Operators 

 

When you run this, you are dropped into an editor with a YAML representation of the ‘default’ 
namespace: 
 
# Please edit the object below. Lines beginning with a '#' will be ignored, 

# and an empty file will abort the edit. If an error occurs while saving this file 

will be 

# reopened with the relevant failures. 

# 

 
apiVersion: v1 

kind: Namespace 

metadata: 

 annotations: 

   openshift.io/sa.initialized­roles: "true" 

   openshift.io/sa.scc.mcs: s0:c3,c2 

   openshift.io/sa.scc.supplemental­groups: 1000010000/10000 

   openshift.io/sa.scc.uid­range: 1000010000/10000 

 creationTimestamp: 2016­05­19T14:00:20Z 

 name: default 

 resourceVersion: "2685" 

 selfLink: /api/v1/namespaces/default 

 uid: 063e1563­1dca­11e6­b6ec­525400b33d1d 

spec: 

 finalizers: 

 ­ kubernetes 

 ­ openshift.io/origin 

status: 

 phase: Active 

 

Now let’s walk through the change we want to make: 
 

1. We’re going to add a new annotation that names a node­selector. The new line will look like 
this: 
openshift.io/node­selector: env=infra 

 

2. Copy this line into the editor, adding it to the top of the annotations list. Again, this is a 
YAML file so be sure to use proper indentation, and take care not to change any other 
lines! The ​oc edit​ command is very powerful, but accidentally modifying something like 

 
15 



 

SL44232: OpenShift for Operators 

 

the project UID can land you in trouble. 
 

3. Finally, save and exit from the editor. 
 
If everything went well, you’ll see a line like this and be returned to the terminal prompt: 
 
namespaces/default 

 

If you had an error, you will find yourself back in the editor. In the commented (#) field above the 
‘default’ namespace object, you will see an error message about what went wrong. 
 
When everything looks good, we can proceed to deploy some cluster management assets. 

2.3 Registry Setup 
OpenShift can build Docker images from your source code, deploy them, and manage their 
lifecycle. To enable this, OpenShift provides an internal, integrated Docker registry that can be 
deployed in your OpenShift environment to locally manage images. 
 
To deploy the integrated Docker registry, use the ​oadm registry​ command as a user with cluster 
administrator privileges. You are currently authenticated as user admin1, which has the 
appropriate permissions: 
 
[root@ose3­master ~]# oadm registry \ 

­­config=/etc/origin/master/admin.kubeconfig \ 

­­credentials=/etc/origin/master/openshift­registry.kubeconfig \ 

­­images='registry.access.redhat.com/openshift3/ose­${component}:${version}' 

 

You can confirm that the registry has deployed by checking out a few of the objects that the oadm 
registry command creates: 
 
[root@ose3­master ~]# oc get pods 

NAME                      READY     STATUS    RESTARTS   AGE 

docker­registry­1­kvfls   1/1       Running   0          12m 

 
 

 

 
16 



 

SL44232: OpenShift for Operators 

 

[root@ose3­master ~]# oc get services 

NAME            CLUSTER_IP   EXTERNAL_IP PORT(S)               SELECTOR 

docker­registry 172.30.23.43 <none>      5000/TCP              docker­regist... 

kubernetes      172.30.0.1   <none>      443/TCP,53/UDP,53/TCP <none>   

 
[root@ose3­master ~]# oc get rc 

CONTROLLER        CONTAINER(S) IMAGE(S)           SELECTOR 

docker­registry­1 registry     registry.access... deployment=docker­registry... 

 

The last item in this list is a replication controller. If you are not familiar with how Kubernetes works, 
it is helpful to know that the replication controller is a mechanism that will automatically restart the 
docker registry in the event that the running pod terminates or is destroyed. 
 
Once the registry pod (from ​oc get pods​) status is ‘Running’, you should be able to run: 
 
[root@ose3­master ~]# oadm registry ­­dry­run 

 

And get the following output: 
 
Docker registry "docker­registry" service exists 

 

you can move on to the next step. 

2.4 Router Setup 
The OpenShift router is the ingress point for all external traffic destined for services in your 
OpenShift installation. OpenShift provides and supports the following two router plug­ins: 
 

● The ​HAProxy​ template router is the default plug­in. It uses the 
openshift3/ose­haproxy­router​ image to run an HAProxy instance alongside the 
template router plug­in inside a container on OpenShift. It currently supports HTTP(S) traffic 
and TLS­enabled traffic via SNI. The router’s container listens on the host network 
interface, unlike most containers that listen only on private IPs. The router proxies external 
requests for route names to the IPs of actual pods identified by the service associated with 
the route. 
 

 
17 



 

SL44232: OpenShift for Operators 

 

● The ​F5​ router integrates with an existing F5 BIG­IP® system in your environment to 
synchronize routes. F5 BIG­IP® version 11.4 or newer is required in order to have the F5 
iControl REST API. 

 
In our lab environment, we’ll deploy the default HAProxy template router. Similar to the ​oadm 
registry​ command that enables us to deploy a registry on the cluster, there is an ​oadm router 
command that we can use here. 

2.4.1 The Router Service Account 

Before deploying an OpenShift cluster, you must have a service account for the router. However, in 
OpenShift Enterprise 3.1 and above, a router service account is automatically created during a 
quick or advanced installation (previously, this required manual creation). This service account, 
called ​router​, has permissions to a security context constraint (SCC) that allows it to specify host 
ports. 
 
To verify that the router service account has been created, you can do a dry­run naming the 
‘router’ account in the command: 
 
[root@ose3­master ~]# oadm router ­­dry­run \ 

­­credentials='/etc/origin/master/openshift­router.kubeconfig' \ 

­­service­account=router 

 

This will exit with an error like: 
 
error: router "router" does not exist (no service) 

 

That’s fine; the credentials worked but there is no deployed router yet. Head on to the next section. 

2.4.2 Router Deployment 

Having confirmed the existence of the router account, let’s proceed with deployment. Multiple 
instances of the router can be deployed, but in our lab environment we’ll deploy a single instance 
with the name ‘router’. To do so, run the following command: 
 
 
[root@ose3­master ~]# oadm router router ­­replicas=1 \ 

 
18 



 

SL44232: OpenShift for Operators 

 

­­credentials='/etc/origin/master/openshift­router.kubeconfig' \ 

­­service­account=router 

 
You should see output like: 
 
password for stats user admin has been set to SDVZgCzySU 

DeploymentConfig "router" created 

Service "router" created 

 

And oc get pods should reveal (eventually) a router pod in ‘Running’ status: 
 
[root@ose3­master ~]# oc get pods 

NAME                      READY     STATUS    RESTARTS   AGE 

docker­registry­1­kvfls   1/1       Running   0          1h 

router­1­ajbs1            1/1       Running   0          3m 

 

At this point, if you run: 
 
[root@ose3­master ~]# oadm router router ­­dry­run 

 

You should see: 
 
Router "router" service exists 

 

Looking good? On to the next section. 

 

   

 
19 



 

SL44232: OpenShift for Operators 

 

2.4 Managing Projects 
Next let’s look at some of the ways that administrators can manage user projects. ​Projects​ are the 
namespaces in which users define and deploy cluster assets (pods, services, etc.). 

2.5.1 Creating Projects 

To start, we’ll create a number of projects using the ​oadm new­project​ command: 
 
export APPNAME=portalapp 

export APPTEXT="Portal App" 

oadm new­project ${APPNAME}­dev ­­display­name="${APPTEXT} Development" 

oadm new­project ${APPNAME}­test ­­display­name="${APPTEXT} Testing" 

oadm new­project ${APPNAME}­prod ­­display­name="${APPTEXT} Production" 

 
export APPNAME=paymentapp 

export APPTEXT="Payment App" 

oadm new­project ${APPNAME}­dev ­­display­name="${APPTEXT} Development" 

oadm new­project ${APPNAME}­test ­­display­name="${APPTEXT} Testing" 

oadm new­project ${APPNAME}­prod ­­display­name="${APPTEXT} Production" 

 

When you have created these, you can confirm them by running: 
 
[root@ose3­master ~]# oc get projects 

 

You should see output like: 
 
NAME               DISPLAY NAME              STATUS 

management­infra                             Active 

openshift                                    Active 

openshift­infra                              Active 

paymentapp­dev     Payment App Development   Active 

portalapp­dev      Portal App Development    Active 

portalapp­test     Portal App Testing        Active 

paymentapp­prod    Payment App Production    Active 

paymentapp­test    Payment App Testing       Active 

portalapp­prod     Portal App Production     Active 

 
20 



 

SL44232: OpenShift for Operators 

 

2.5.2 Setting Group Access Through Policies 

Right now, if you were to login in as the payment1 user, you would have no projects associated 
with your account (as a reminder, the password is ‘r3dh4t1!’): 
 
[root@ose3­master ~]# oc login ­u payment1 

Authentication required for https://ose3­master.example.com:8443 (openshift) 

Username: payment1 

Password: 

Login successful. 

 
You don't have any projects. You can try to create a new project, by running 

 
   $ oc new­project <projectname> 

 

In order to fix this, you will associate the ​paymentapp​ user group with a few of the paymentapp­* 
projects that we’ve just created. 
 
As the admin1 user: 
 
[root@ose3­master ~]# oc login ­u admin1 

 

Run the oadm policy command to grant the paymentapp user group with administrative rights on 
the paymentapp­dev and paymentapp­test projects: 
 
oadm policy add­role­to­group admin paymentapp ­n paymentapp­dev 

oadm policy add­role­to­group admin paymentapp ­n paymentapp­test 

 

And while we’re at it, let’s do the same for the portalapp user group and the portalapp­dev and 
portalapp­test projects: 
 
oadm policy add­role­to­group admin portalapp ­n portalapp­dev 

oadm policy add­role­to­group admin portalapp ­n portalapp­test 

 

And finally, let’s grant the ose­production group with admin priveleges on the production versions 
of those two applications: 
 
 

 
21 



 

SL44232: OpenShift for Operators 

 

oadm policy add­role­to­group admin ose­production ­n portalapp­prod 

oadm policy add­role­to­group admin ose­production ­n paymentapp­prod 

 

To check our work, we’ll use the ​oc describe​ command on the per­project policy bindings. In the 
output of each of the following commands, look under the section titled “​RoleBinding[admin]​”. 
You should see a “​Groups:​“ line that contains the expected user group for each project. 
 
[root@ose3­master ~]# oc describe policybindings :default ­n paymentapp­dev 

[root@ose3­master ~]# oc describe policybindings :default ­n paymentapp­test 

[root@ose3­master ~]# oc describe policybindings :default ­n paymentapp­prod 

[root@ose3­master ~]# oc describe policybindings :default ­n portalapp­dev 

[root@ose3­master ~]# oc describe policybindings :default ­n portalapp­test 

[root@ose3­master ~]# oc describe policybindings :default ­n portalapp­prod 

 

If everything looks good, head on to the next section. 

2.5.3 Setting Quotas 

At this point we are ready to apply some control over the amount of resources that will be available 
to the projects running on this cluster. Quotas describe how much of a resource is available across 
an entire project, while Limits describe the minimums and maximums for individual pods and 
containers. 
 
The quota system in OpenShift is fairly granular and offers control over a number of resources: 
 

● cpu 
● memory 
● pods 
● replicationcontrollers 
● resourcequotas 
● services 
● secrets 
● persistentvolumeclaims 

 
 
 
 

 
22 



 

SL44232: OpenShift for Operators 

 

A few quick notes on this list: 
 

● CPU units: CPU is measured in units called ​millicores​. Each node in the cluster introspects 
the operating system to determine the amount of CPU cores on the node and then 
multiples that value by 1000 to express its total capacity. For example, if a node has 2 
cores, the node’s CPU capacity would be represented as 2000m. If you wanted to use a 
1/10 of a single core, you would represent that as 100m. 
 

● Memory: memory is measured in bytes. In addition, it may be used with SI suffices (E, P, T, 
G, M, K, m) or their power­of­two­equivalents (Ei, Pi, Ti, Gi, Mi, Ki). 
 

● The CPU and memory quotas are measured across ​all containers​ running within a project. 
The rest of the resource quotas and limits are expressed as straight counts of those 
resources within the project. 

 
To define and apply quotas to the non­production projects that we’ve created, we will first create a 
JSON file with our desired limits. 
 
Create a file called ​resource­quotas­non­prod.json​ and save the following contents to it: 
 
{ 

 "apiVersion": "v1", 

 "kind": "ResourceQuota", 

 "metadata": { 

   "name": "quota" 

 }, 

 "spec": { 

   "hard": { 

     "cpu": "400m", 

     "memory": "200M", 

     "pods": "2", 

     "services": "1", 

     "replicationcontrollers":"1", 

     "resourcequotas":"1" 

   } 

 } 

} 

 
23 



 

SL44232: OpenShift for Operators 

 

Any projects that this quota configuration is applied to will be limited to 2 pods that will share 400 
total millicores of CPU and 200MB of memory. That’s not very much, but this lab ​is​ running on a 
laptop with limited resources. 
 
To apply the quotas to our non­production laptops, we’ll run the ​oc create​ command: 
 
[ose3­master ~]# oc create ­f resource­quotas­non­prod.json ­n portalapp­dev 

[ose3­master ~]# oc create ­f resource­quotas­non­prod.json ­n portalapp­test 

[ose3­master ~]# oc create ­f resource­quotas­non­prod.json ­n paymentapp­dev 

[ose3­master ~]# oc create ­f resource­quotas­non­prod.json ­n paymentapp­test 

 

And we can check to make sure that the quota was applied by running the ​oc describe 
command: 
 
[root@ose3­master ~]# oc describe quota ­n paymentapp­dev 

Name:                   quota 

Namespace:              paymentapp­dev 

Resource                Used  Hard 

­­­­­­­­                ­­­­  ­­­­ 

cpu                     0     400m 

memory                  0     200M 

pods                    0     2 

replicationcontrollers  0     1 

resourcequotas          1     1 

services                0     1 

 

Note that the resourcequotas limit of 1 is already used up. In order to apply additional resource 
quotas we would first need to remove the quota definition that was just applied. 

2.5.4 Setting Limits 

Similar to the manner in which we set quotas, we will begin to set limits by creating a file called 
resource­limits­non­prod.yaml​ and populate it as follows: 
 
 

 

 

 

 
24 



 

SL44232: OpenShift for Operators 

 

apiVersion: "v1" 

kind: "LimitRange" 

metadata: 

 name: "limits" 

spec: 

 limits: 

   ­ 

     type: "Pod" 

     max: 

       cpu: "400m" 

       memory: "200M" 

     min: 

       cpu: "100m" 

       memory: "50M" 

   ­ 

     type: "Container" 

     max: 

       cpu: "200m" 

       memory: "100M" 

     min: 

       cpu: "50m" 

       memory: "10M" 

     default: 

       cpu: "200m" 

       memory: "100M" 

     defaultRequest: 

       cpu: "200m" 

       memory: "100M" 

     maxLimitRequestRatio: 

       cpu: "4" 

 

This Limits configuration establishes minimum, maximum and default quanitites of CPU and 
memory resources. If a quota has been defined for a given project, the quota values will overrule 
any limits set here. For instance, if a quota of 100 millicores of CPU was set for the entire project, 
then the 200 millicore default stated in this Limits configuration would be too high for a simple 
deployment. 
 

 
25 



 

SL44232: OpenShift for Operators 

 

Once you have created the limits template, you can apply it to the various projects with an ​oc 
create​ command: 
 
[ose3­master ~]# oc create ­f resource­limits­non­prod.yaml ­n paymentapp­dev 

[ose3­master ~]# oc create ­f resource­limits­non­prod.yaml ­n paymentapp­test 

[ose3­master ~]# oc create ­f resource­limits­non­prod.yaml ­n portalapp­dev 

[ose3­master ~]# oc create ­f resource­limits­non­prod.yaml ­n portalapp­test 

 

And you can verify the limits settings with the ​oc describe​ command: 
 
[root@ose3­master ~]# oc describe limits ­n paymentapp­dev 

Name: limits 

Namespace: paymentapp­dev 

Type Resource Min Max Request  Limit  Limit/Request 

­­­­ ­­­­­­­­ ­­­ ­­­ ­­­­­­­  ­­­­­  ­­­­­­­­­­­­­ 

Pod memory 50M 200M ­    ­     ­ 

Pod cpu 100m 400m ­    ­     ­ 

Container memory 10M 100M 100M    100M   ­ 

Container cpu 50m 200m 200m    200m   4 

2.5.5 Deploying Applications 

As a final step, we will deploy a “Hello World” application into each of the projects using the ​oc 
new­app​ command. 
 
When quotas are defined in a project, we must specify the needed amounts of any resources 
governed by the quota. However, because our limits definition included default request sizes for 
CPU and memory, we can skip the complexities of requesting these resources at creation time and 
simply run an ​oc new­app​ command for each project: 
 
[~]# oc new­app docker.io/openshift/hello­openshift:v1.1.6 ­n paymentapp­dev 

[~]# oc new­app docker.io/openshift/hello­openshift:v1.1.6 ­n paymentapp­test 

[~]# oc new­app docker.io/openshift/hello­openshift:v1.1.6 ­n portalapp­dev 

[~]# oc new­app docker.io/openshift/hello­openshift:v1.1.6 ­n portalapp­test 

 

Each should provide output similar to: 
 

 
26 



 

SL44232: OpenShift for Operators 

 

­­> Found Docker image 4cc2d04 (6 weeks old) from Docker Hub for 

"openshift/hello­openshift:v1.1.6" 

   * An image stream will be created as "hello­openshift:v1.1.6" that will track 

this image 

   * This image will be deployed in deployment config "hello­openshift" 

   * [WARNING] Image "hello­openshift" runs as the 'root' user which may not be 

permitted by your cluster administrator 

   * Ports 8080/tcp, 8888/tcp will be load balanced by service "hello­openshift" 

­­> Creating resources with label app=hello­openshift ... 

   ImageStream "hello­openshift" created 

   DeploymentConfig "hello­openshift" created 

   Service "hello­openshift" created 

­­> Success 

   Run 'oc status' to view your app. 

 

After a few moments, you can check on each project’s status with the ​oc status​ command: 
 
[root@ose3­master ~]# oc status ­n paymentapp­dev 

In project Payment App Development (paymentapp­dev) on server 

https://ose3­master.example.com:8443 

 
svc/hello­openshift ­ 172.30.56.197 ports 8080, 8888 

 dc/hello­openshift deploys imagestreamtag/hello­openshift:v1.1.6 

   #1 deployed 43 seconds ago ­ 1 pod 

 
View details with 'oc describe <resource>/<name>' or list everything with 'oc get 

all'. 

 

Finally, you can test that the app is available by curling one of the svc/hello­openshift IP and port 
combinations. Note that the exact IP addresses used may be different in your lab environment: 
 
[root@ose3­master ~]# curl 172.30.56.197:8888 

Hello OpenShift! 

 

Now that we’ve got apps running in the cluster, on to the next lab! 

 

 
27 



 

SL44232: OpenShift for Operators 

 

Lab 3: Node Management 
So far we’ve focused almost entirely on user and group administration tasks, along with some 
basic project management exercises. In this lab, we move our focus to managing the cluster itself. 
 
To begin, let’s have a look at what we’ve deployed so far. Run the following command to see all of 
the pods currently deployed under any project on the cluster: 
 
[root@ose3­master ~]# oc get pods ­­all­namespaces ­o wide 

 

The complete output is too wide to show on this page, but here are the fields of interest: 
 
NAMESPACE         NAME                      NODE 

default           docker­registry­1­7l4p8   ose3­master.example.com 

default           router­1­iz4br            ose3­master.example.com 

paymentapp­dev    hello­openshift­1­ilz6t   ose3­node2.example.com 

paymentapp­test   hello­openshift­1­7ax8d   ose3­node2.example.com 

portalapp­dev     hello­openshift­1­4lw82   ose3­node1.example.com 

portalapp­test    hello­openshift­1­p9pox   ose3­node1.example.com 

 

The exact names and node locations will vary in your deployment. Note that the registry and router 
pods, which are part of the ‘default’ namespace, both ended up on the master, while the project 
pods that we’ve deployed have been evenly distributed across all available node hosts. That is due 
to the work we did in setting up a default node selector for apps (‘env=usr’, which is associated the 
the node1 & node2 node hosts) and then overriding that default for cluster assets (mapping the 
‘default’ namespace to ‘env=infra’, which is assocated with the master node host). 

 

 

 

 
28 



 

SL44232: OpenShift for Operators 

 

3.1 Reducing the Cluster Size 
Now let’s walk through a very common cluster management scenario: migrating pods away from a 
Node so that we can take it out of the cluster. 

3.1.1 Node Maintenance Mode 

The first step in preparing to take a node offline is to ensure that new pods are not deployed to it. 
We accomplish this by flagging the node as ​unschedulable​. 
 
To see the current state of the nodes, run: 
 
[root@ose3­master ~]# oc get nodes 

 

You should see output like: 
 
NAME                      LABELS         STATUS    AGE 

ose3­master.example.com   env=infra,...  Ready     3h 

ose3­node1.example.com    env=user,...   Ready     3h 

ose3­node2.example.com    env=user,...   Ready     3h 

 

The status of all three node hosts is ‘ready’, meaning they are available to take on more 
containers. 
 
Now we are going to change Node 2 to be unschedulable by running the following command: 
 
[ose3­master ~]# oadm manage­node ose3­node2.example.com ­­schedulable=false 

 

If you rerun the ​oc get nodes​ command, the change should be reflected there: 
 
NAME                      LABELS         STATUS                     AGE 

ose3­master.example.com   env=infra,...  Ready                      3h 

ose3­node1.example.com    env=user,...   Ready                      3h 

ose3­node2.example.com    env=user,...   Ready,SchedulingDisabled   3h 

 

Now, to see only those pods that are running on Node 2 (and to confirm that they are still running 
even though the Node was marked as unschedulable), run the following: 
 

 
29 



 

SL44232: OpenShift for Operators 

 

[root@ose3­master ~]# oadm manage­node ose3­node2.example.com ­­list­pods 

 

You should see the pods from the beginning of the exercise that were deployed on Node 2: 
 
Listing matched pods on node: ose3­node2.example.com 

 
NAME                      READY     STATUS    RESTARTS   AGE 

hello­openshift­1­dlljm   1/1       Running   0          27m 

hello­openshift­1­iaofb   1/1       Running   0          27m 

On to the next step... 

3.1.2 Migrating Containers 

With Node 2 marked as unschedulable, now it is time to move the pods that are running there to 
other nodes on the cluster. This process is called ​evacuation​. To perform an evacuation, we run 
another ​oadm manage­node​ command. 
 
The ​­­dry­run​ version of the command enables us to preview and confirm the results before 
making changes to the cluster: 
 
[ose3­master ~]# oadm manage­node ose3­node2.example.com ­­evacuate ­­dry­run 

 
Listing matched pods on node: ose3­node2.example.com 

 
NAME                      READY     STATUS    RESTARTS   AGE 

hello­openshift­1­dlljm   1/1       Running   0          32m 

hello­openshift­1­iaofb   1/1       Running   0          31m 

 

And then we can run it again without the ​­­dry­run​ flag for effect: 
 
[root@ose3­master ~]# oadm manage­node ose3­node2.example.com ­­evacuate 

 
Migrating these pods on node: ose3­node2.example.com 

 
NAME                      READY     STATUS    RESTARTS   AGE 

hello­openshift­1­dlljm   1/1       Running   0          34m 

hello­openshift­1­iaofb   1/1       Running   0          34m 

 

 
30 



 

SL44232: OpenShift for Operators 

 

After a moment, we can confirm that the pods were redistributed by rerunning the ​oc get pods 
command (again, the output has been limited to the fields of interest): 
 
[root@ose3­master ~]# oc get pods ­­all­namespaces ­o wide 

NAMESPACE         NAME                      NODE 

default           docker­registry­1­7l4p8   ose3­master.example.com 

default           router­1­iz4br            ose3­master.example.com 

paymentapp­dev    hello­openshift­1­88i53   ose3­node1.example.com 

paymentapp­test   hello­openshift­1­ywou3   ose3­node1.example.com 

portalapp­dev     hello­openshift­1­4lw82   ose3­node1.example.com 

portalapp­test    hello­openshift­1­p9pox   ose3­node1.example.com 

 

At this point, we are ready for the final step, which would be to delete the Node 2 host from the list 
of nodes known to the system. However! ​We’re not going to do that in this lab environment​. Adding 
a new node, or re­adding one that has been deleted, would require us to rerun the Ansible 
playbook. That runs a risk of failure in a network­isolated place like our lab environment. 
 
That said, we’ve gone far enough along that we can now look at reversing the process to increase 
the cluster size. 

3.2 Increasing the Cluster Size 
In a normal deployment, we would begin the process of adding a node by entering information 
about it into the Ansible manifest file at ​/etc/ansible/hosts​ and the rerunning our playbook. 
However, in this lab, Node 2 is already known to the cluster. 
 
In our lab environment, we’ll bring Node 2 back into the fold by making it schedulable again: 
 
[ose3­master ~]# oadm manage­node ose3­node2.example.com ­­schedulable=true 

 

We confirm that the node is now schedulable with ​oc get nodes​: 
 
[root@ose3­master ~]# oc get nodes 

NAME                      LABELS         STATUS    AGE 

ose3­master.example.com   env=infra,...  Ready     1h 

ose3­node1.example.com    env=user,...   Ready     1h 

ose3­node2.example.com    env=user,...   Ready     1h 

 
31 



 

SL44232: OpenShift for Operators 

 

 

This is the same state that we would be in if we were to rerun the Ansible playbook in a normal 
(non­lab) environment, after adding an additional node to the ​/etc/ansible/hosts​ file. 

3.3 Super­Secret Bonus Exercise 
How did you find this carefully concealed bonus exercise? No matter ­ we’re going to play a 
mini­game called “whack­a­pod”. 
 
Since you’ve evacuated and then re­added Node 2, have a look again at the pods running on this 
cluster: 
 
[root@ose3­master ~]# oc get pods ­­all­namespaces ­o wide 

NAMESPACE         NAME                      NODE 

default           docker­registry­1­7l4p8   ose3­master.example.com 

default           router­1­iz4br            ose3­master.example.com 

paymentapp­dev    hello­openshift­1­88i53   ose3­node1.example.com 

paymentapp­test   hello­openshift­1­ywou3   ose3­node1.example.com 

portalapp­dev     hello­openshift­1­4lw82   ose3­node1.example.com 

portalapp­test    hello­openshift­1­p9pox   ose3­node1.example.com 

 

They are all still running on Node 1! But why didn’t they get evenly distributed between Node 1 and 
Node 2? Because Node 1 is not overloaded, the cluster is not going to automatically redistribute 
pods to other hosts. However, if any of these pods fails, crashes, or otherwise exits out, the cluster 
will detect that and launch a new copy. At that point, pods will start ending up on Node 2 again. 
 
So, on to the game: 
 
Cluster administrators can manually delete pods on the cluster with the command: 
 
[root@ose3­master ~]# oc delete pod/<pod_name> ­n <project_name> 

 

Try it with the pod associated with the paymentapp­dev project and then re­list the pods: 
 
 

 

[root@ose3­master ~]# oc get pods ­­all­namespaces ­o wide 

NAMESPACE         NAME                      NODE 

 
32 



 

SL44232: OpenShift for Operators 

 

default           docker­registry­1­lq17i   ose3­master.example.com 

default           router­1­9h34w            ose3­master.example.com 

paymentapp­dev    hello­openshift­1­njjyd   ose3­node2.example.com 

paymentapp­test   hello­openshift­1­fllav   ose3­node1.example.com 

portalapp­dev     hello­openshift­1­ozble   ose3­node1.example.com 

portalapp­test    hello­openshift­1­5ej70   ose3­node1.example.com 

 

A couple of points here: 
 

● Surprise! You thought you deleted the pod, but it’s back with a different name. 
● There’s no guarantee that it will end up on Node 2, but it is ​likely​ to do so. 

 
You can keep trying this with other pods on Node 1. Eventually, you ​may​ only have pods running 
on Node 2, or they end up distributed between the two Nodes. 
 
What’s important to understand is the “self healing” nature of applications running on OpenShift. 
When you create applications with ​oc new­app​, OpenShift creates a ​replication controller​ (RC) on 
the cluster, and it is the RC’s job to make sure that your requested number of instances is always 
available. 
 
For more on that, check out some of the great developer materials available for people who want 
to deploy apps on OpenShift. 

 

   

 
33 



 

SL44232: OpenShift for Operators 

 

Lab 4: OpenShift UI 
Up to this point we’ve been focused entirely on what you can accomplish using the command line 
tools. Now let’s take a tour of the web console. 
 
Start by opening this URL in your browser: 
 
https://ose3­master.example.com:8443/ 
 
(Sometimes that won’t work in a lab environment where DNS is not working, so you can also try 
https://192.168.133.2:8443/​) 
 
And log in with the admin1 credentials we’ve been using: admin1 / r3dh4t1! 
 
You should see a list of all of the projects that you’ve created, plus the built­in projects that all 
OpenShift deployments contain. 

4.1 Creating a New Project 
From the UI, create a new project namespace by pressing the blue New Project button at the top of 
the Projects list: 
 

 

 
 
Next, give the project a system name and a display name, like web­project / Web Project: 

 
34 

https://ose3-master.example.com:8443/
https://ose3-master.example.com:8443/
https://192.168.133.2:8443/


 

SL44232: OpenShift for Operators 

 

 

 

 
On the next page, you will see a wide variety of options for starting off your application. 
Unfortunately, we won’t get very far without access to the internet, but we can still build out a 
simple application with images that are already available in our lab environment. With that in mind, 
instead of selecting one of the images that are listed, head to the top left corner of the page and 
click on the name of your project: 
 

 

 
35 



 

SL44232: OpenShift for Operators 

 

 
You should see an empty project summary space like this: 
 

 

 
At this point you could either proceed from the command line or (network allowing) the internet to 
continue building out your app. 

4.2 Quota and Limits 
On the left side of the project Overview page, click on the Settings tab. Note that the project that 
you’ve created has no associated quotas or limits: 
 

 
36 



 

SL44232: OpenShift for Operators 

 

 

 
 
   

 
37 



 

SL44232: OpenShift for Operators 

 

Now, from the Projects selection list at the top left of the page, select one of the projects that you 
created earlier, like the Payment App Development project: 
 

 

 
 
   

 
38 



 

SL44232: OpenShift for Operators 

 

Click on the Settings tab again to see the quotas and limits that you applied there: 
 

 

 

 

   

 
39 



 

SL44232: OpenShift for Operators 

 

4.3 Scaling Applications 
From the settings page, you can see that the application is running at half of its allowed capacity. 
This means that there’s enough room for us to manually scale the app. 
 
Head back to the Overview page, where you can see the Service, Deployment, and Container that 
make up this application: 
 

 

 
 
   

 
40 



 

SL44232: OpenShift for Operators 

 

Next to the blue circle indicating the current pod count, press the upward pointing arrow to 
manually scale the application, and then click on the Topology View tab to see how this affects the 
application: 
 

 

 
 
   

 
41 



 

SL44232: OpenShift for Operators 

 

You should see a second instance of the hello­world pod pop into existence: 
 

 

 
 
   

 
42 



 

SL44232: OpenShift for Operators 

 

However, if you pop back to the Tile View and attempt to scale the app to 3 pods, it will never 
succeed. This is our limits definition in action: 
 

 

 

 

   

 
43 



 

SL44232: OpenShift for Operators 

 

4.4 Other Details 
When you mouse over the Browse tab on the left side of the screen, you will see several 
sub­items: 
 

 

 
 
These are the various objects that make up your application. Click through to see which items were 
created for you when you ran the ​oc new­app​ command. 

 

   

 
44 



 

SL44232: OpenShift for Operators 

 

OpenShift for Operators: Lab Summary 
Over the course of this lab we: 

● Set up an Ansible configuration to deploy an OpenShift cluster 
● Configured the cluster to use an external IDM system for user authentication 
● Mapped groups from the IDM system to roles and projects within the cluster 
● Created projects and applications 
● Set quotas and limits 
● Shrunk and grew the cluster 
● Took a tour of the OpenShift web console 

 
But in two hours, we’ve really only scratched the surface of what is possible with OpenShift. 

Where to Learn More 
There are several resources available to you: 
 

● Red Hat Training​ offers a course for​ ​OpenShift Administration 
● OpenShift Enterprise documentation​ is available online 
● OpenShift gurus hang out on the​ ​#openshift channel on FreeNode 
● You can join and ask questions on the​ ​OpenShift Users​ mailing list 

 
And if you are interested in development resources, you can also check out 
developers.openshift.com​! 

Thank You! 
We really appreciate your interest in this lab! Loved it? Hated it? Either way, please leave your 
feedback so that we can keep improving our training offerings. 
 
 
 
 
 
 
 

 
45 

https://www.redhat.com/en/services/training
https://www.redhat.com/en/services/training/do280-openshift-enterprise-administration
https://www.redhat.com/en/services/training/do280-openshift-enterprise-administration
https://docs.openshift.com/enterprise/latest/
http://webchat.freenode.net/?randomnick=1&channels=openshift&uio=d4
http://webchat.freenode.net/?randomnick=1&channels=openshift&uio=d4
http://lists.openshift.redhat.com/openshiftmm/listinfo/users
http://lists.openshift.redhat.com/openshiftmm/listinfo/users
https://developers.openshift.com/
https://developers.openshift.com/

