SL44232: OpenShift for Operators

RED HAT

SUMMIT

=8 Presenters:

PENSHIF
CONTAINER PLATFORM

N. Harrison Ripps, Manager, Software Engineering, Atomic / OpenShift Team
Erik Jacobs, Principal Technical Marketing Manager, OpenShift Enterprise
Siamak Sadeghianfar, Senior Product Marketing Manager, OpenShift Enterprise
Bob Kozdemba, Principal Solution Architect, Red Hat Public Sector

This series of self-guided labs is targeted towards the people who will deploy and manage a Red
Hat OpenShift Enterprise environment. Over the next two hours, we will walk through a number
of scenarios that will be helpful to operators deploying OpenShift on private or public clouds.

Lab 1: Deployment

Your lab environment consists of three hosts configured to run as a Red Hat OpenShift Enterprise
cluster. But what if you are starting from scratch? Let’s a look at how we would configure and run a

deployment of our own.

1.1 Host Access

From your lab machine you have SSH access to the three virtual hosts that make up the cluster:

e ose3-master.example.com
e 0se3-nodel.example.com
e 0se3-node2.example.com

During the following labs you will be directed to connect to these hosts either directly or indirectly
as documented. The login credentials for all three hosts are:

Username: root
Password: redhatl!

And your SSH commands will be of the form:

$ ssh root@ose3-master.example.com

Now let’s see how we would configure and deploy software packages on these hosts if they

weren’t already set up...

1.2 Configuring and Installing OpenShift with Ansible

Ansible is a configuration and deployment tool that is similar to Puppet and Chef. It is agentless,
meaning that it does not require special software to be installed target host systems in order to do
its work.

By using one of the freely distributed Ansible playbooks to configure your cluster, your list of
prerequisites for each target host is pretty small:

e RHEL7A1
e An appropriate RHEL subscription
e SSH access to a privileged user account

Ansible was used in the initial deployment of the OpenShift cluster on your lab system. However,
we've cleaned out the Ansible configuration so that you can set up the configuration yourself and
then check your work.

To begin, from a terminal on your lab system, log into the master host. Remember that the
password is ‘redhat1!”:

$ ssh root@ose3-master.example.com

Once connected, Ansible’s inventory of hosts lives at /etc/ansible/hosts. Have a look at the
inventory on the master:

SL44232: OpenShift for Operators

[root@Rose3-master ~1# less /etc/ansible/hosts

This is the default ansible 'hosts' file.

It should live in /etc/ansible/hosts

#
#
#
#
- Comments begin with the '#' character
Blank lines are ignored

- Groups of hosts are delimited by [header] elements
- You can enter hostnames or ip addresses

#

- A hostname/ip can be a member of multiple groups
Ex 1: Ungrouped hosts, specify before any group headers.

green.example.com
blue.example.com
192.168.100.1
192.168.100.10

Ex 2: A collection of hosts belonging to the 'webservers' group

[webservers]
alpha.example.org
beta.example.org
192.168.1.100
192.168.1.110

If you have multiple hosts following a pattern you can specify

them like this:

www[001:006] .example.com

Ex 3: A collection of database servers in the 'dbservers' group
[dbservers]

db0Ol.intranet.mydomain.net
db02.intranet.mydomain.net
10.25.1.56
10.25.1.57

Here's another example of host ranges, this time there are no
leading Os:
db-[99:101] -node.example.com

This is the default hosts file, and it shows us a number of different ways of defining hosts and

groups of hosts.

The OpenShift Ansible playbook defines some groupings that make it very easy to configure and
deploy an initial cluster, and then to extend that cluster later on.

We’'re going to configure Ansible as though we were setting up our three-host cluster from scratch.

1. Move /etc/ansible/hosts to /etc/ansible/hosts.orig justin case you need to
go back and start over.

2. Next, copy /root/ansible.hosts.ose.example to /etc/ansible/hosts.

1.2.1 Initial Setup

To begin, open the newly placed /etc/ansible/hosts file in an editor and have a look at the
contents of the file. Note that the 0SEv3:children group starting on line 4 contains four

subgroups:

e masters - hosts in this group will run the cluster master processes, which include the API
server and controller manager server.

e nodes - hosts in this group actually run containerized payloads and the services to support
those payloads, including docker, the kubelet, and the Kubernetes service proxy.

e etcd - Kubernetes leverages etcd for configuration management, and etcd itself can run
as a multi-instance cluster. This group is optional.

e |b - This load balancer group is used when you are installing multiple masters, and you
would like Ansible to deploy and configure an unsupported/non-production HAProxy load
balancer that is designed to handle the traffic routed to those masters. This group is also
optional.

Comment out (prepend with ‘#) the etcd and 1b lines in this section. We are doing a
single-master deployment and so we will not use these groups.

1.2.2 Masters and Nodes

Next, we'll fill out the groups that we will use by adding our master and node hosts to the file.

1. Search on “[masters]” in the file. You should only find one result at around line 259.

2. Modify or replace the hostname in this list to read: ose3-master.example.com

3. Below the masters group, comment out the [etcd] and [1b] groups and their contents
by adding a hash symbol (#) to the beginning of each of those lines. These groups are
valuable for multi-master clusters, but our lab deployment is only using one master. In a
single master situation, we don’t need the load balancer at all, and without an explicit entry

in the [etcd] group, the etcd server will be added to the single master.

4. Finally, jump down a few lines further to the [nodes] group. The note that precedes this
group mentions that master hosts must also be included in the nodes list, but that you can
prevent them from being targeted for running containers with the
openshift schedulable=False setting. For our lab we're actually going to use the
master as a node, but we are going to tag it with a specific label so that it is only used for

supporting services and not application deployment.

Replace the existing multi-master host line (right below the [nodes] heading) with an entry
for our single master host. Use the openshift node labels argument to indicate that the
master should be treated as an ‘infra’ environment node, and the openshift schedulable
argument to specifically indicate that we want to use our master host for some container
payloads:

ose3-master.example.com

openshift node labels="{'region':'tatooine',6 '"zone':'na','env':'in

fra'}" openshift schedulable=True

5. Now replace the existing multi-node host line with individual lines for each of our nodes.
This time use the openshift node labels argument to specify ‘user’ environment nodes,
but don’t worry about providing openshift schedulable because non-master hosts are
schedulable by default:

ose3-nodel.example.com openshift node labels="{'region':
'tatooine', 'zone': 'cantina', 'env':'user'}"
ose3-node2.example.com openshift node labels="{'region':

'tatooine', 'zone': 'farm', 'env':'user'}"

Be aware that the ‘env’ labels that we are using to distinguish between the master and nodes are
completely arbitrary; we could have used practically any key/value pair to distinguish them. That
said, while the specific label is arbitrary, the importance of having some way to distinguish between
master hosts and node hosts is not, as you will see later on.

That’s it for masters and nodes. Keep the hosts file open in your editor because next we’re on to

adding an LDAP server for identity management.

1.2.3 IDM Setup, Part 1

In our lab environment, we’ve already configured an LDAP server that is reachable at:
ose3-ldap.example.com
There are two primary steps to using LDAP with an OpenShift cluster:

1. Configure the cluster hosts with necessary information to communicate with the LDAP
server.

2. Map LDAP users and groups to permissions within the cluster.

The first step is handled now, at cluster deployment time, with the Ansible playbooks. We'll cover
step two in the following lab.

To configure the ansible playbook to set up LDAP, we’ll make the following changes to the
/etc/ansible/hosts file:

1. By default, the hosts file will configure the cluster to use basic htpasswd-based
authentication. The cluster only supports the use of a single IDM provider per deployment,

so we need to disable this default before enabling LDAP. Search on ‘htpasswd auth’in the
hosts file and comment out the line immediately below it (this should be line 84) that begins

with “openshift master identity providers”

2. Now we need to enable LDAP. Search on “LDAP auth”, which is about 5 lines down from
where you just commented out the htpasswd config. Uncomment and update the next line

to identify the LDAP server that we’re going to use with this information:

openshift master identity providers=[{'name': 'idm', 'challenge': 'true',
'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes':
{'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername':
['uid']}, 'bindDN': 'uid=admin, cn=users,cn=accounts,dc=example,dc=com’,
'bindPassword': 'r3dh4tl!', 'ca': '/etc/origin/master/ipa-ca.crt',
'insecure': 'false', 'url':

'ldap://ose3-1ldap.example.com/cn=users, cn=accounts, dc=example, dc=com?uid?sub

? (memberOf=cn=o0se-users, cn=groups, cn=accounts, dc=example, dc=com) '}]

Make sure there are no line breaks in this. Also note that this configuration refers to a
certificate authority (CA) cert that lives at /etc/origin/master/ipa-ca.crt. This cert
file has already been copied from the LDAP server host to all of the hosts in the cluster, but

if you were setting things up from scratch, you would need to do this manually.

3. Save the file, but leave it open - we've got one last change to make.

1.2.4 Default Node Selector

Finally we will establish a system-wide default to let OpenShift know which nodes should be the
default targets for user workloads. Back in section 1.2.2, recall that we assigned the env=user
label to both of our node hosts, but not to our master host. By doing this, we can now specify that
label as a default node selector. Unless we specifically override the default, our containers will
always end up on one of the nodes with this label.

To establish the default, search on ‘default project’; you should end up around line 141 in the file.
Uncomment the setting line below it and modify it to read:

osm_default node selector='env=user'

That's it! Save the hosts file and let’s test it out.

1.2.5 Test Your Setup

In our lab environment, the cluster that you are working in has already been deployed with the
exact settings that you’ve configured in the steps outlined in this section. So, rather than rerunning
the deployment playbook, instead run the following Ansible-based validation utility to confirm your
settings:

ansible-playbook /root/configchecker.yml

If the Ansible playbook exits with “FATAL”:

e During our instructor-led lab, raise your hand and have an instructor/proctor assist you. We
can help, and we don’t you to get too hung up on this - there’s a lot of other content to

cover!

e [f you are taking this lab at a self-paced kiosk, you can work on debugging this, or start with
a fresh copy of the /root/ansible.hosts.ose.example file, or just move on to the next section;
the cluster is already deployed so you don’t need to worry about being blocked by this step.

If the Ansible run looks successful, you know that deploying this configuration would result in the
exact cluster configuration that you are currently using. Head on to the next lab.

Lab 2: User and Project Administration

In this lab, we’ll pick up with the cluster at the point where an Ansible playbook deployment will
have completed. We'll finish setting up LDAP-based authentication, deploy a few containers that
are used by the cluster, and get our hands dirty with some project setups.

2.1 IDM Setup, Part 2

The next step in configuring your OpenShift cluster work with an external IDM like LDAP is to map
groups defined within the IDM to groups within OpenShift.

After the Ansible deployment, it should already be possible to authenticate against the LDAP
server. You can test this by logging in to the cluster master at ose3-master.example.com and then
running the oc login command:

$ oc login -u andrew

When prompted, use the password r3dh4t1!
You should see output like:

Login successful.

You don't have any projects. You can try to create a new project, by

running
$ oc new-project <projectname>

If that doesn’t work, “Houston, we have a problem!” Please let a proctor know, because the LDAP
server that we’re using in these labs is centrally located for all machines in the lab environment.

2.1.1 Group Sync Configuration

So now on to group mappings. Users on the lab LDAP server are organized into the following

groups:

Group Description
ose-users Users with access to OpenShift Enterprise
portalapp Portal App project developers
paymentapp Payment App project developers

ose-production | Administrators and operations team with access to modify production
projects

ose-platform Users with full cluster administration control

To map these groups to something within OpenShift, we'll start by creating a group sync file.

On the ose3-master host, start a file at /etc/origin/master/groupsync.yaml with this
boilerplate:

[root@ose3-master ~]# cat << EOF > /etc/origin/master/groupsync.yaml

kind: LDAPSyncConfig

apiVersion: vl

url: "ldap://ose3-ldap.example.com"

insecure: false

ca: "/etc/origin/master/ipa-ca.crt"

bindDn: "uid=admin,cn=users,cn=accounts,dc=example, dc=com"

bindPassword: "r3dh4tl!"

rfc2307:

groupsQuery:

baseDN: "cn=groups,cn=accounts,dc=example,dc=com"
scope: sub

derefAliases: never

filter: (& (! (objectClass=mepManagedEntry)) (! (cn=trust
admins)) (! (cn=groups)) (! (cn=admins)) (! (cn=ipausers)) (! (cn=editors)) (! (cn=ose-users
)) (! (cn=evmgroup*)) (! (cn=ipac*)))

groupUIDAttribute: dn

groupNameAttributes: [cn]

10

groupMembershipAttributes: [member]
usersQuery:

baseDN: "cn=users,cn=accounts,dc=example,dc=com"

scope: sub

derefAliases: never

filter: (memberOf=cn=ose-users,cn=groups,cn=accounts,dc=example,dc=com)
userUIDAttribute: dn

userNameAttributes: [uid]

EOF

Next, open the new file in an editor and add the mapping section, which will look like this:

groupUIDNameMapping:
"cn=portalapp, cn=groups, cn=accounts,dc=example,dc=com": "portalapp"
"cn=paymentapp, cn=groups, cn=accounts, dc=example,dc=com": "paymentapp"
"cn=ose-production, cn=groups, cn=accounts,dc=example,dc=com": "ose-production"

"cn=ose-platform, cn=groups, cn=accounts, dc=example,dc=com": "PlatformAdmins"

Remember that this is a YAML file, so indenting is important! The groupUIDNameMapping key
should be at the same depth as the userNameAttributes key, and the subsequent mapping entries
should be one level deeper.

2.1.2 Test and Deploy

Before we continue, make sure you are logged in to the cluster as a cluster administrator. For now
we’'ll use the built-in ‘system:admin’ account. Note that you can only authenticate as
‘system:admin’ if you are logged into one of the master hosts as the root user:

[root@ose3-master ~]# oc login -u system:admin

Now, to validate the groupsync file and test the synchronization without making changes to the

cluster, run the sync-groups command:

[root@ose3-master ~]# openshift ex sync-groups \

--sync-config=/etc/origin/master/groupsync.yaml

You should see YAML output for each of the groups; it will be similar to:

11

apiVersion: vl

items:

- apiVersion: vl
kind: Group
metadata:

annotations:

openshift.io/ldap.sync-time: 2016-03-18T02:46:26-0400

openshift.io/ldap.uid: cn=paymentapp,cn=groups,cn=accounts, dc=example,dc=com

openshift.io/ldap.url: idm.example.com:389
creationTimestamp: null
labels:
openshift.io/ldap.host: idm.example.com
name: paymentapp
users:
- andrew
- paymentl
- payment?2

Assuming that worked correctly, you can now re-run the sync and actually apply the settings by
executing the previous command and adding the --confirm flag:

[root@ose3-master ~]# openshift ex sync-groups

--sync-config=/etc/origin/master/groupsync.yaml —--confirm
You will see output like:

group/portalapp

group/paymentapp

group/ose-production

group/ose-platform

Finally, to verify that the groups were created:

[root@ose3-master ~]# oc get groups

Should return output like:

12

NAME USERS

ose-platform david, adminl, admin2
ose-production karla, prodl, prod2
paymentapp marina, paymentl, payment2

portalapp andrew, portall, portal2

2.1.3 Policy Bindings

With IDM-to-OpenShift mapping completed, the last step is to actually elevate the permissions of
those groups on the cluster. We’'ll set up most of the groups later, but for now, run the following
command to set the privileges of the ose-platform group:

[~]1# oadm policy add-cluster-role-to-group cluster-admin ose-platform

Simply put, this grants the cluster-admin role to the ose-platform group. Having done that, now you
can switch from the built-in system:admin user to an LDAP-managed user with the same
privileges. This is equivalent to working on a Linux system as a user with superuser privileges

rather than running directly as root. Remember the adminl password is ‘r3dh4t1!’:

[root@ose3-master ~]# oc login -u adminl

Authentication required for https://ose3-master.example.com:8443 (openshift)
Username: adminl

Password:

Login successful.

You have access to the following projects and can switch between them with 'oc

project <projectname>':

* default (current)
* management-infra
* openshift

* openshift-infra
Using project "default".

The project list above is identical to what is available t0 system:admin.

13

2.2 ‘default’ Project Configuration

The ‘default’ project on an OpenShift cluster is the reserved project namespace for cluster
management assets that are not part of user-owned projects. To say it another way, it is the
namespace that contains pods and services that make the cluster work, rather than a namespace
where users would deploy applications.

During the first lab, we noted that we want to use the master host as the landing place for
infrastructure objects. However, we also configured the cluster with an

osm default node selector value of ‘env=user’. As you will see, this may present a
problem.

Have a look at the current node configuration:
[root@ose3-master ~]# oc get nodes

Recall that we configured the node hosts with the ‘env=user’ label, but not the master host:

NAME LABELS STATUS AGE
ose3-master.example.com env=infra, ... Ready 1h
ose3-nodel .example.com env=user, ... Ready 1h
ose3-node2.example.com env=user, ... Ready 1h

Because of this, if we start deploying cluster assets to the ‘default’ project, they are going to end up
running on one of the nodes with a label of ‘env=user’. That's not what we want, because those
nodes are meant for user payloads, and we want our cluster assets to go to the master node.

In order to solve this problem, we need to specifically associate the ‘default’ project with the master
node. We can accomplish this with an annotation that links the ‘default’ namespace to the
‘env=infra’ node label.

To do this, we’'ll modify the ‘default’ namespace with the oc edit command:

[root@ose3-master ~]# oc edit namespace/default

14

When you run this, you are dropped into an editor with a YAML representation of the ‘default’

namespace:

Please edit the object below. Lines beginning with a '#' will be ignored,

and an empty file will abort the edit. If an error occurs while saving this file

will be

reopened with the relevant failures.

#

apiVersion: vl

kind: Namespace

metadata:
annotations:
openshift.
openshift.
openshift.
openshift.

creationTimestamp:

io/sa.
io/sa.
io/sa.

io/sa.

name: default

resourceVers

ion:

initialized-roles: "true"

scc.mcs: s0:c3,c2
scc.supplemental-groups: 1000010000/10000
scc.uid-range: 1000010000/10000
2016-05-19T14:00:202

"2685"

selflLink: /api/vl/namespaces/default

uid: 063el563-1dca-11le6-b6ec-525400b33d1d

spec:
finalizers:

- kubernetes

- openshift.io/origin

status:

phase: Active

Now let’s walk through the change we want to make:

1. We’re going to add a new annotation that names a node-selector. The new line will look like

this:

openshift.io/node-selector: env=infra

2. Copy this line into the editor, adding it to the top of the annotations list. Again, this is a

YAML file so be sure to use proper indentation, and take care not to change any other

lines! The oc edit command is very powerful, but accidentally modifying something like

15

the project UID can land you in trouble.

3. Finally, save and exit from the editor.
If everything went well, you'll see a line like this and be returned to the terminal prompt:

namespaces/default

If you had an error, you will find yourself back in the editor. In the commented (#) field above the

‘default’ namespace object, you will see an error message about what went wrong.

When everything looks good, we can proceed to deploy some cluster management assets.

2.3 Registry Setup

OpenShift can build Docker images from your source code, deploy them, and manage their
lifecycle. To enable this, OpenShift provides an internal, integrated Docker registry that can be
deployed in your OpenShift environment to locally manage images.

To deploy the integrated Docker registry, use the cadm registry command as a user with cluster
administrator privileges. You are currently authenticated as user admin1, which has the

appropriate permissions:

[rootRose3-master ~]# oadm registry \
--config=/etc/origin/master/admin. kubeconfig \
--credentials=/etc/origin/master/openshift-registry.kubeconfig \

--images='registry.access.redhat.com/openshift3/ose-${component}:${version}"

You can confirm that the registry has deployed by checking out a few of the objects that the oadm

registry command creates:
[root@ose3-master ~]# oc get pods

NAME READY STATUS RESTARTS AGE
docker-registry-1-kvfls 1/1 Running 0 12m

16

[root@ose3-master ~]# oc get services

NAME CLUSTER IP EXTERNAL IP PORT (S) SELECTOR
docker-registry 172.30.23.43 <none> 5000/TCP docker-regist...
kubernetes 172.30.0.1 <none> 443/TCP,53/UDP, 53/TCP <none>

[root@ose3-master ~]# oc get rc
CONTROLLER CONTAINER (S) IMAGE (S) SELECTOR

docker-registry-1 registry registry.access... deployment=docker-registry...

The last item in this list is a replication controller. If you are not familiar with how Kubernetes works,
it is helpful to know that the replication controller is a mechanism that will automatically restart the
docker registry in the event that the running pod terminates or is destroyed.

Once the registry pod (from oc get pods) status is ‘Running’, you should be able to run:
[root@ose3-master ~]# oadm registry --dry-run

And get the following output:

Docker registry "docker-registry" service exists

you can move on to the next step.

2.4 Router Setup

The OpenShift router is the ingress point for all external traffic destined for services in your
OpenShift installation. OpenShift provides and supports the following two router plug-ins:

e The HAProxy template router is the default plug-in. It uses the
openshift3/ose-haproxy-router image to run an HAProxy instance alongside the
template router plug-in inside a container on OpenShift. It currently supports HTTP(S) traffic
and TLS-enabled traffic via SNI. The router’s container listens on the host network
interface, unlike most containers that listen only on private IPs. The router proxies external
requests for route names to the IPs of actual pods identified by the service associated with
the route.

17

e The F5 router integrates with an existing F5 BIG-IP® system in your environment to
synchronize routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5
iControl REST API.

In our lab environment, we’ll deploy the default HAProxy template router. Similar to the cadm
registry command that enables us to deploy a registry on the cluster, there is an ocadm router

command that we can use here.

2.4.1 The Router Service Account

Before deploying an OpenShift cluster, you must have a service account for the router. However, in
OpenShift Enterprise 3.1 and above, a router service account is automatically created during a
quick or advanced installation (previously, this required manual creation). This service account,
called router, has permissions to a security context constraint (SCC) that allows it to specify host

ports.

To verify that the router service account has been created, you can do a dry-run naming the

‘router’ account in the command:

[rootQRose3-master ~]# oadm router --dry-run \
--credentials="'/etc/origin/master/openshift-router.kubeconfig' \

--service-account=router

This will exit with an error like:

error: router "router" does not exist (no service)

That'’s fine; the credentials worked but there is no deployed router yet. Head on to the next section.

2.4.2 Router Deployment

Having confirmed the existence of the router account, let’s proceed with deployment. Multiple
instances of the router can be deployed, but in our lab environment we’ll deploy a single instance

with the name ‘router’. To do so, run the following command:

[rootRose3-master ~]# oadm router router --replicas=1 \

18

--credentials="'/etc/origin/master/openshift-router.kubeconfig'

-—-service-account=router

You should see output like:

password for stats user admin has been set to SDVZgCzySU
DeploymentConfig "router" created

Service "router" created
And oc get pods should reveal (eventually) a router pod in ‘Running’ status:

[root@ose3-master ~]# oc get pods

NAME READY STATUS RESTARTS AGE
docker-registry-1-kvfls 1/1 Running 0 1h
router-1l-ajbsl 1/1 Running 0 3m

At this point, if you run:

[root@ose3-master ~]# oadm router router --dry-run
You should see:

Router "router" service exists

Looking good? On to the next section.

\

19

2.4 Managing Projects

Next let’s look at some of the ways that administrators can manage user projects. Projects are the

namespaces in which users define and deploy cluster assets (pods, services, etc.).

2.5.1 Creating Projects

To start, we’'ll create a number of projects using the cadm new-project command:

export APPNAME=portalapp

export APPTEXT="Portal App"

oadm new-project ${APPNAME}-dev --display-name="${APPTEXT} Development"
oadm new-project ${APPNAME}-test --display-name="${APPTEXT} Testing"
oadm new-project ${APPNAME}-prod --display-name="${APPTEXT} Production"

export APPNAME=paymentapp

export APPTEXT="Payment App"

oadm new-project ${APPNAME}-dev --display-name="${APPTEXT} Development"
oadm new-project ${APPNAME}-test --display-name="${APPTEXT} Testing"
oadm new-project ${APPNAME}-prod --display-name="${APPTEXT} Production"

When you have created these, you can confirm them by running:
[root@ose3-master ~]# oc get projects

You should see output like:

NAME DISPLAY NAME STATUS
management-infra Active
openshift Active
openshift-infra Active
paymentapp-dev Payment App Development Active
portalapp-dev Portal App Development Active
portalapp-test Portal App Testing Active
paymentapp-prod Payment App Production Active
paymentapp-test Payment App Testing Active
portalapp-prod Portal App Production Active

20

2.5.2 Setting Group Access Through Policies

Right now, if you were to login in as the payment1 user, you would have no projects associated
with your account (as a reminder, the password is ‘r3dh4t1!’):

[root@ose3-master ~]# oc login -u paymentl

Authentication required for https://ose3-master.example.com:8443 (openshift)
Username: paymentl

Password:

Login successful.
You don't have any projects. You can try to create a new project, by running
$ oc new-project <projectname>

In order to fix this, you will associate the paymentapp user group with a few of the paymentapp-*
projects that we’ve just created.

As the admin1 user:
[root@ose3-master ~]# oc login -u adminl

Run the oadm policy command to grant the paymentapp user group with administrative rights on
the paymentapp-dev and paymentapp-test projects:

oadm policy add-role-to-group admin paymentapp -n paymentapp-dev
oadm policy add-role-to-group admin paymentapp -n paymentapp-test

And while we’re at it, let’s do the same for the portalapp user group and the portalapp-dev and

portalapp-test projects:

oadm policy add-role-to-group admin portalapp -n portalapp-dev
oadm policy add-role-to-group admin portalapp -n portalapp-test

And finally, let’s grant the ose-production group with admin priveleges on the production versions
of those two applications:

21

oadm policy add-role-to-group admin ose-production -n portalapp-prod

oadm policy add-role-to-group admin ose-production -n paymentapp-prod

To check our work, we'll use the oc describe command on the per-project policy bindings. In the
output of each of the following commands, look under the section titled “RoleBinding[admin]”.
You should see a “Groups:“ line that contains the expected user group for each project.

[root@ose3-master ~]# oc describe policybindings :default -n paymentapp-dev
[root@ose3-master ~]# oc describe policybindings :default -n paymentapp-test
[root@ose3-master ~]# oc describe policybindings :default -n paymentapp-prod
[root@ose3-master ~]# oc describe policybindings :default -n portalapp-dev
[root@ose3-master ~]# oc describe policybindings :default -n portalapp-test

[root@ose3-master ~]1# oc describe policybindings :default -n portalapp-prod

If everything looks good, head on to the next section.

2.5.3 Setting Quotas

At this point we are ready to apply some control over the amount of resources that will be available
to the projects running on this cluster. Quotas describe how much of a resource is available across
an entire project, while Limits describe the minimums and maximums for individual pods and

containers.

The quota system in OpenShift is fairly granular and offers control over a number of resources:

e cpu
e memory
e pods

e replicationcontrollers
® resourcequotas

e services

e secrets

e persistentvolumeclaims

22

A few quick notes on this list:

e CPU units: CPU is measured in units called millicores. Each node in the cluster introspects
the operating system to determine the amount of CPU cores on the node and then
multiples that value by 1000 to express its total capacity. For example, if a node has 2
cores, the node’s CPU capacity would be represented as 2000m. If you wanted to use a
1/10 of a single core, you would represent that as 100m.

e Memory: memory is measured in bytes. In addition, it may be used with Sl suffices (E, P, T,
G, M, K, m) or their power-of-two-equivalents (Ei, Pi, Ti, Gi, Mi, Ki).

e The CPU and memory quotas are measured across all containers running within a project.
The rest of the resource quotas and limits are expressed as straight counts of those
resources within the project.

To define and apply quotas to the non-production projects that we’ve created, we will first create a
JSON file with our desired limits.

Create a file called resource-quotas-non-prod. json and save the following contents to it:

{
"apiVersion": "v1",
"kind": "ResourceQuota',
"metadata": {
"name": "quota"
s
"spec": {
"hard": {
"cpu": "400m",
"memory": "200M",
"pods": "2",
"services": "1",
"replicationcontrollers":"1",

"resourcequotas":"1"

23

Any projects that this quota configuration is applied to will be limited to 2 pods that will share 400
total millicores of CPU and 200MB of memory. That’s not very much, but this lab is running on a

laptop with limited resources.

To apply the quotas to our non-production laptops, we’ll run the oc create command:

[ose3-master ~]# oc create —-f resource-quotas-non-prod.json -n portalapp-dev
[ose3-master ~]# oc create -f resource-quotas-non-prod.json -n portalapp-test
[ose3-master ~]# oc create -f resource-quotas-non-prod.json -n paymentapp-dev

[ose3-master ~]# oc create -f resource-quotas-non-prod.json -n paymentapp-test

And we can check to make sure that the quota was applied by running the oc describe
command:

[root@ose3-master ~]# oc describe quota -n paymentapp-dev

Name: quota
Namespace: paymentapp-dev
Resource Used Hard

cpu 0 400m
memory 0 200M
pods 0 2
replicationcontrollers O 1
resourcequotas 1 1
services 0 1

Note that the resourcequotas limit of 1 is already used up. In order to apply additional resource
quotas we would first need to remove the quota definition that was just applied.

2.5.4 Setting Limits

Similar to the manner in which we set quotas, we will begin to set limits by creating a file called

resource-limits-non-prod.yaml and populate it as follows:

24

apiVersion: "v1"

kind: "LimitRange"

metadata:
name: "limits"
spec:
limits:
type: "Pod"
max:
cpu: "400m"

memory: "200M"
min:
cpu: "100m"

memory: "50M"

type: "Container"
max:

cpu: "200m"

memory: "100M"
min:

cpu: "50m"

memory: "10M"
default:

cpu: "200m"

memory: "100M"
defaultRequest:

cpu: "200m"

memory: "100M"
maxLimitRequestRatio:

cpu: "4"

This Limits configuration establishes minimum, maximum and default quanitites of CPU and
memory resources. If a quota has been defined for a given project, the quota values will overrule
any limits set here. For instance, if a quota of 100 millicores of CPU was set for the entire project,
then the 200 millicore default stated in this Limits configuration would be too high for a simple
deployment.

25

Once you have created the limits template, you can apply it to the various projects with an oc

create command:

[ose3-master ~]# oc create -f

[ose3-master ~]# oc create -f

[ose3-master ~]# oc create -f

[ose3-master ~]# oc create -f

resource-limits-non-prod.yaml -n paymentapp-dev

resource-limits-non-prod.yaml -n paymentapp-test

resource-limits-non-prod.yaml -n portalapp-dev

resource-limits-non-prod.yaml -n portalapp-test

And you can verify the limits settings with the oc describe command:

[root@ose3-master ~]# oc describe limits -n paymentapp-dev

Name: limits
Namespace: paymentapp-dev
Type Resource Min
Pod memory 50M
Pod cpu 100m
Container memory 10M
Container cpu 50m

Max

200M
400m
100M
200m

2.5.5 Deploying Applications

Request

Limit

Limit/Request

As a final step, we will deploy a “Hello World” application into each of the projects using the oc

new-app command.

When quotas are defined in a project, we must specify the needed amounts of any resources

governed by the quota. However, because our limits definition included default request sizes for

CPU and memory, we can skip the complexities of requesting these resources at creation time and

simply run an oc new-app command for each project:

[~1# oc
[~1# oc
[~1# oc
[~1# oc

new-app docker

new—-app docker

new-app docker.

new-app docker.

io/openshift/hello-openshift:
io/openshift/hello-openshift:

Each should provide output similar to:

.10/openshift/hello-openshift:
.10/openshift/hello-openshift:

v1.1.6 -n paymentapp-dev
vl.1l.6 -n paymentapp-test
vl.1.6 -n portalapp-dev

v1l.1.6 -n portalapp-test

26

--> Found Docker image 4cc2d04 (6 weeks old) from Docker Hub for
"openshift/hello-openshift:v1l.1.6"

* An image stream will be created as "hello-openshift:v1l.1.6" that will track
this image

* This image will be deployed in deployment config "hello-openshift"

* [WARNING] Image "hello-openshift" runs as the 'root' user which may not be
permitted by your cluster administrator

* Ports 8080/tcp, 8888/tcp will be load balanced by service "hello-openshift"
--> Creating resources with label app=hello-openshift

ImageStream "hello-openshift" created

DeploymentConfig "hello-openshift" created

Service "hello-openshift" created
—-—> Success

Run 'oc status' to view your app.
After a few moments, you can check on each project’s status with the oc status command:

[root@ose3-master ~]# oc status -n paymentapp-dev
In project Payment App Development (paymentapp-dev) on server

https://ose3-master.example.com:8443

svc/hello-openshift - 172.30.56.197 ports 8080, 8888
dc/hello-openshift deploys imagestreamtag/hello-openshift:v1.1.6
#1 deployed 43 seconds ago - 1 pod

View details with 'oc describe <resource>/<name>' or list everything with 'oc get

all'.

Finally, you can test that the app is available by curling one of the svc/hello-openshift IP and port

combinations. Note that the exact IP addresses used may be different in your lab environment:

[root@ose3-master ~]# curl 172.30.56.197:8888
Hello OpenShift!

Now that we’ve got apps running in the cluster, on to the next lab!

27

Lab 3: Node Management

So far we've focused almost entirely on user and group administration tasks, along with some

basic project management exercises. In this lab, we move our focus to managing the cluster itself.

To begin, let's have a look at what we’ve deployed so far. Run the following command to see all of

the pods currently deployed under any project on the cluster:

[root@ose3-master ~]# oc get pods --all-namespaces -o wide

The complete output is too wide to show on this page, but here are the fields of interest:

NAMESPACE NAME
default docker-registry-1-714p8
default router-1-izdbr

paymentapp-dev hello-openshift-1-ilz6t
paymentapp-test hello-openshift-1-7ax8d
portalapp-dev hello-openshift-1-41w82
portalapp-test hello-openshift-1-p9pox

NODE

ose3-master.example.com
ose3-master.example.com
ose3-node2.example.com
ose3-node2.example.com
ose3-nodel.example.com

ose3-nodel .example.com

The exact names and node locations will vary in your deployment. Note that the registry and router

pods, which are part of the ‘default’ namespace, both ended up on the master, while the project

pods that we've deployed have been evenly distributed across all available node hosts. That is due

to the work we did in setting up a default node selector for apps (‘env=usr’, which is associated the

the node1 & node2 node hosts) and then overriding that default for cluster assets (mapping the
‘default’ namespace to ‘env=infra’, which is assocated with the master node host).

28

3.1 Reducing the Cluster Size

Now let’s walk through a very common cluster management scenario: migrating pods away from a
Node so that we can take it out of the cluster.

3.1.1 Node Maintenance Mode

The first step in preparing to take a node offline is to ensure that new pods are not deployed to it.
We accomplish this by flagging the node as unschedulable.

To see the current state of the nodes, run:
[root@ose3-master ~]# oc get nodes

You should see output like:

NAME LABRELS STATUS AGE
ose3-master.example.com env=infra, ... Ready 3h
ose3-nodel .example.com env=user, ... Ready 3h
ose3-node?2.example.com env=user, ... Ready 3h

The status of all three node hosts is ‘ready’, meaning they are available to take on more
containers.

Now we are going to change Node 2 to be unschedulable by running the following command:

[ose3-master ~]# oadm manage-node ose3-node2.example.com —--schedulable=false

If you rerun the oc get nodes command, the change should be reflected there:

NAME LABELS STATUS AGE
ose3-master.example.com env=infra, ... Ready 3h
ose3-nodel.example.com env=user, ... Ready 3h
ose3-node2.example.com env=user, ... Ready, SchedulingDisabled 3h

Now, to see only those pods that are running on Node 2 (and to confirm that they are still running
even though the Node was marked as unschedulable), run the following:

29

[root@ose3-master ~]# oadm manage-node ose3-node2.example.com --list-pods
You should see the pods from the beginning of the exercise that were deployed on Node 2:

Listing matched pods on node: ose3-node2.example.com

NAME READY STATUS RESTARTS AGE
hello-openshift-1-dllim 1/1 Running 0 27m
hello-openshift-1-iaofb 1/1 Running 0 27m

On to the next step...

3.1.2 Migrating Containers

With Node 2 marked as unschedulable, now it is time to move the pods that are running there to
other nodes on the cluster. This process is called evacuation. To perform an evacuation, we run

another oadm manage-node command.

The --dry-run version of the command enables us to preview and confirm the results before
making changes to the cluster:

[ose3-master ~]# oadm manage-node ose3-node2.example.com —--evacuate --dry-run

Listing matched pods on node: ose3-node2.example.com

NAME READY STATUS RESTARTS AGE
hello-openshift-1-dlljm 1/1 Running 0 32m
hello-openshift-1-iaofb 1/1 Running 0 31m

And then we can run it again without the --dry-run flag for effect:

[root@ose3-master ~]# oadm manage-node ose3-node2.example.com --evacuate

Migrating these pods on node: ose3-node2.example.com

NAME READY STATUS RESTARTS AGE
hello-openshift-1-dlljm 1/1 Running 0 34m
hello-openshift-1-iaofb 1/1 Running 0 34m

30

After a moment, we can confirm that the pods were redistributed by rerunning the oc get pods

command (again, the output has been limited to the fields of interest):

[root@ose3-master ~]# oc get pods --all-namespaces -o wide

NAMESPACE NAME NODE
default docker-registry-1-714p8 ose3-master.example.com
default router-1-iz4br ose3-master.example.com

paymentapp-dev hello-openshift-1-881i53 ose3-nodel.example.com
paymentapp-test hello-openshift-1-ywou3 ose3-nodel.example.com
portalapp-dev hello-openshift-1-41w82 ose3-nodel.example.com
portalapp-test hello-openshift-1-p9pox ose3-nodel .example.com

At this point, we are ready for the final step, which would be to delete the Node 2 host from the list
of nodes known to the system. However! We’re not going to do that in this lab environment. Adding
a new node, or re-adding one that has been deleted, would require us to rerun the Ansible
playbook. That runs a risk of failure in a network-isolated place like our lab environment.

That said, we’ve gone far enough along that we can now look at reversing the process to increase
the cluster size.

3.2 Increasing the Cluster Size

In a normal deployment, we would begin the process of adding a node by entering information
about it into the Ansible manifest file at /etc/ansible/hosts and the rerunning our playbook.
However, in this lab, Node 2 is already known to the cluster.

In our lab environment, we’ll bring Node 2 back into the fold by making it schedulable again:
[ose3-master ~]# oadm manage-node ose3-node2.example.com —--schedulable=true
We confirm that the node is now schedulable with oc get nodes:

[root@ose3-master ~]# oc get nodes

NAME LABELS STATUS AGE
ose3-master.example.com env=infra, ... Ready 1h
ose3-nodel.example.com env=user, ... Ready 1h
ose3-node?2.example.com env=user, ... Ready 1h

31

This is the same state that we would be in if we were to rerun the Ansible playbook in a normal
(non-lab) environment, after adding an additional node to the /etc/ansible/hosts file.

3.3 Super-Secret Bonus Exercise

How did you find this carefully concealed bonus exercise? No matter - we’re going to play a

mini-game called “whack-a-pod”.

Since you've evacuated and then re-added Node 2, have a look again at the pods running on this

cluster:

[root@ose3-master ~]# oc get pods --all-namespaces -o wide

NAMESPACE NAME
default docker-registry-1-714p8
default router-1-iz4br

paymentapp-dev hello-openshift-1-881i53
paymentapp-test hello-openshift-1-ywou3
portalapp-dev hello-openshift-1-41w82
portalapp-test hello-openshift-1-p9pox

NODE

ose3-master.example.com
ose3-master.example.com
ose3-nodel.example.com
ose3-nodel.example.com
ose3-nodel.example.com

ose3-nodel .example.com

They are all still running on Node 1! But why didn’t they get evenly distributed between Node 1 and

Node 2?7 Because Node 1 is not overloaded, the cluster is not going to automatically redistribute

pods to other hosts. However, if any of these pods fails, crashes, or otherwise exits out, the cluster

will detect that and launch a new copy. At that point, pods will start ending up on Node 2 again.

So, on to the game:

Cluster administrators can manually delete pods on the cluster with the command:

[root@ose3-master ~]# oc delete pod/<pod name> -n <project name>

Try it with the pod associated with the paymentapp-dev project and then re-list the pods:

[root@ose3-master ~]# oc get pods --all-namespaces -o wide

NAMESPACE NAME

NODE

32

default docker-registry-1-1gl7i ose3-master.example.com
default router-1-9h34w ose3-master.example.com
paymentapp-dev hello-openshift-1-njjyd ose3-node?2.example.com
paymentapp-test hello-openshift-1-fllav ose3-nodel.example.com
portalapp-dev hello-openshift-1-ozble ose3-nodel.example.com

portalapp-test hello-openshift-1-5e370 ose3-nodel.example.com
A couple of points here:

e Surprise! You thought you deleted the pod, but it's back with a different name.
e There’s no guarantee that it will end up on Node 2, but it is likely to do so.

You can keep trying this with other pods on Node 1. Eventually, you may only have pods running
on Node 2, or they end up distributed between the two Nodes.

What's important to understand is the “self healing” nature of applications running on OpenShift.
When you create applications with oc new-app, OpenShift creates a replication controller (RC) on
the cluster, and it is the RC’s job to make sure that your requested number of instances is always
available.

For more on that, check out some of the great developer materials available for people who want
to deploy apps on OpenShift.

33

Lab 4: OpenShift Ul

Up to this point we’'ve been focused entirely on what you can accomplish using the command line
tools. Now let’s take a tour of the web console.

Start by opening this URL in your browser:

https://ose3-master.example.com:8443/

(Sometimes that won’t work in a lab environment where DNS is not working, so you can also try
https://192.168.133.2:8443/)

And log in with the admin1 credentials we’ve been using: admin1 / r3dh4t1!

You should see a list of all of the projects that you've created, plus the built-in projects that all
OpenShift deployments contain.

4.1 Creating a New Project

From the Ul, create a new project namespace by pressing the blue New Project button at the top of
the Projects list:

Projects

Management Infrastructure

open shift

Next, give the project a system name and a display name, like web-project / Web Project:

34

https://ose3-master.example.com:8443/
https://ose3-master.example.com:8443/
https://192.168.133.2:8443/

SL44232: OpenShift for Operators

New Project

* Name
web-project
A unigue name for the project.
Display Name

Web Project

Description

On the next page, you will see a wide variety of options for starting off your application.
Unfortunately, we won'’t get very far without access to the internet, but we can still build out a
simple application with images that are already available in our lab environment. With that in mind,
instead of selecting one of the images that are listed, head to the top left corner of the page and

click on the name of your project:

Web Project » Add to Project

Select Image or Template

Choose from web frameworks, databases, and other & Builder Image

components to add content to your project. Builds im

¥ Template

Fifter by keyword . Browse - |
Instant Apps xPaaS See all

jenkins-ephemeral . fis-java-openshift:1.0

i B i S i i

35

SL44232: OpenShift for Operators

You should see an empty project summary space like this:

OPENSHIFT ENTERPRISE] Documentation & admin1 OSEUser v
Projects Filter by labels
Web Project ~ ¢ Add to Project
@&
Overview

Get started with your project.

Browse Use your source or an example repository to build an application image,

or add components like databases and message queues.

Settings
Add to Project

At this point you could either proceed from the command line or (network allowing) the internet to
continue building out your app.

4.2 Quota and Limits

On the left side of the project Overview page, click on the Settings tab. Note that the project that
you’ve created has no associated quotas or limits:

36

SL44232: OpenShift for Operators

OPENSHIFT ENTERPRISE

Projects
Web Project v Add to Project
B 5 Z O
o | PEOIRCE SETEINES
i General information
Browse
Name: web-project
— Display name: Web Project
== Description: No description
Settings
Quota @

There are no resource quotas set on this profect.

Resource limits ®

There are no resource limits set on this project.

37

SL44232: OpenShift for Operators

Now, from the Projects selection list at the top left of the page, select one of the projects that you
created earlier, like the Payment App Development project:

OPENSHIFT ENTERPRISE & r A admin1 ¢
Prois-=., Filter by labels
Web Project v Label key Ad Add to Project
default

¢ management-infra

Get started with your project.
openshift

openshift-infra Use your source or an example repository to build an application image,

or add components like databases and message queues.

Payment App Development
Add to Project
Payment App Production
Payment App Testing
Portal App Development
Portal App Production

Portal App Testing

Web Project

View all projects

38

SL44232: OpenShift for Operators

Click on the Settings tab again to see the quotas and limits that you applied there:

OPENSHIFT ENTERPRISE

Projects
Payment App Development ~ Add to Project
g i i e
||
o | PTOJECE Settings
i General information
Browse
Name: paymentapp-dev
== Display name: Payment App Development
B Description: No description
Settings
Quota @
Resource type Used Max
cpu 200 millicores 400 millicares
memory 100 MB 200 MB
pods 1 .
A\ replicationcontrollers 1 1
A resourcequotas 1 1
A services 1 1

Resource limits @

Resource type Min @ Max @ Default Request & Default Limit & Max Limit/Request Ratio @
Pod cpu 100 millicores 400 millicores — — —

Pod memory 50 MB 200 MB — — —

Container cpu 50 millicores 200 millicores 200 millicores 200 millicores 4

Container memaory 10 MB 100 MB 100 MB 100 MB i

39

SL44232: OpenShift for Operators

4.3 Scaling Applications

From the settings page, you can see that the application is running at half of its allowed capacity.
This means that there’s enough room for us to manually scale the app.

Head back to the Overview page, where you can see the Service, Deployment, and Container that
make up this application:

OPENSHIFT ENTERPRISE %) Documentation L admin1 OSEUser ~
Projects Filter by labels
Payment App Development v Label ke ! Add to Project
ﬁ | = :
- o etails
e PAYMeNt App Development < Detail
a7t SERVIC Select an object to see more
Browse hello-nbarakii RE8B/TCP — BBES8 details.
Create Route TRy TPt
o A pod contains one or more
Settings
A service groups pods and
'] & Image: openshiftrhello-openshift (4cc2d04)
pod - Ports: 8080/TCP, 8888/TCP
A deployment is an update to your

40

SL44232: OpenShift for Operators

Next to the blue circle indicating the current pod count, press the upward pointing arrow to
manually scale the application, and then click on the Topology View tab to see how this affects the
application:

OPENSHIFT ENTERPRISE @10 n 2 admini OSEUser v

Projects Filter by labels

Payment App Development v Label key \cl Add to Project

@

Overview

Payment App Development = < Details

‘_h BOROTCE — RARA Select an object to see mare

Browse o . :
hello-openshift details.

Create Route
A pod
=

-— e

-—

Settings DEPLOYMENT: HELLO-OPENSHIFT, #

A service group
2 ® Image: openshift/hello-openshift (4cc2d04)
pods - Ports: BOBO/TCP, B88&/TCP

41

SL44232: OpenShift for Operators

You should see a second instance of the hello-world pod pop into existence:

OPENSHIFT ENTERPRISE 1 D entation & admin1 OSEUser ~
Projects Filter by labels
Payment App Development v abel key Add Add to Project
e Payment App Development =< i
Overview y pp p Details
i':'i Select an object to see more
L o2\ details.
= & & o
Settings - i)
o &)

A service

42

SL44232: OpenShift for Operators

However, if you pop back to the Tile View and attempt to scale the app to 3 pods, it will never

succeed. This is our limits definition in action:

3 Documentation & admini O

OPENSHIFT ENTERFPRISE

Projects

Payment App Development

@

Overview

it

Browse

-—
—=
=

Settings

Payment App Development = <

SERVICE
E

hello-openshift

2

scaling to 3...

Filter by labels

Create Route

& |mage: openshift/hello-openshift (4cc2d04)
+- Ports: 8080/TCP, 8888/TCP

Details

Select an object to see more
details.

A pod

A service

A deployment is

43

SL44232: OpenShift for Operators

4.4 Other Details

When you mouse over the Browse tab on the left side of the screen, you will see several
sub-items:

OPENSHIFT ENTERPRISE) stion & admini OS
Projects Filter by labels
Payment App Development v . key Add to Project
® Builds -
Overview Opment =2 < Details
Deployments
i Earis SOBO/TCP — 8080 Select an object to see more
Browse o C Sl details.
Image Streams Create Route L
=
Settings Pods

Routes
A service gro
Services INTAINE ENSHIE
& Image: openshift/hello-openshift (4cc2d04)
SR + Ports: 8080/TCP, 8888/TCP

v A deployment

These are the various objects that make up your application. Click through to see which items were
created for you when you ran the oc new-app command.

44

OpenShift for Operators: Lab Summary

Over the course of this lab we:
e Set up an Ansible configuration to deploy an OpenShift cluster
e Configured the cluster to use an external IDM system for user authentication
e Mapped groups from the IDM system to roles and projects within the cluster
e Created projects and applications
e Set quotas and limits
e Shrunk and grew the cluster
e Took a tour of the OpenShift web console

But in two hours, we’ve really only scratched the surface of what is possible with OpenShift.

Where to Learn More

There are several resources available to you:

e Red Hat Training offers a course for OpenShift Administration

e OpenShift Enterprise documentation is available online

e OpenShift gurus hang out on the #openshift channel on FreeNode

e You can join and ask questions on the OpenShift Users mailing list

And if you are interested in development resources, you can also check out

developers.openshift.com!

Thank You!

We really appreciate your interest in this lab! Loved it? Hated it? Either way, please leave your
feedback so that we can keep improving our training offerings.

45

https://www.redhat.com/en/services/training
https://www.redhat.com/en/services/training/do280-openshift-enterprise-administration
https://www.redhat.com/en/services/training/do280-openshift-enterprise-administration
https://docs.openshift.com/enterprise/latest/
http://webchat.freenode.net/?randomnick=1&channels=openshift&uio=d4
http://webchat.freenode.net/?randomnick=1&channels=openshift&uio=d4
http://lists.openshift.redhat.com/openshiftmm/listinfo/users
http://lists.openshift.redhat.com/openshiftmm/listinfo/users
https://developers.openshift.com/
https://developers.openshift.com/

