
FROM SOURCE TO RPM IN
120 MINUTES
Adam Miller
Senior Software Engineer
2016-06-30

#redhat #rhsummit

1

WHY WE'RE HERE

#redhat #rhsummit

2 . 1

TOPICS FOR TODAY

GENERAL TOPICS AND BACKGROUND

RPM PACKAGING

Plenty of reference materials in the Appendix

What is source code?

How programs are made.

Building Software from Source

Patching Software

Installing Arbitrary Artifacts

What is a RPM?

What is a SPEC file?

Buildroots

RPM Macros

Building RPMs

Checking RPMs for Sanity

Advanced Topics

2 . 2

ABOUT THIS LAB
L A B M A N UA L

MEANT TO BE COMPREHENSIVE

Meant to be a resource today and as a reference later
We will not cover the whole thing in this session

Appendix is full of advanced topics we will not have time for

Is living document, Upstream Project information on last page of manual.

2 . 3

ABOUT THIS LAB
P R E R E Q U I S I T E S - PAG E 2

PLEASE TURN TO PAGE 2 IN YOUR LAB MANUAL

Here you will find the Prerequisites required, please run the command on your Student
system

Note that all prerequisites needed for this Lab are included as part of Red Hat Enterprise
Linux 7 Server, meaning there is no need to enable any extra Subscription Channels to
complete the exercises in this Lab.

Note: Extra resources are required for some of the advanced topics in the Appendix

yum install gcc rpmbuild rpm-devel rpmlint make python bash coreutils diffutils patch

2 . 4

GENERAL TOPICS AND BACKGROUND

#redhat #rhsummit

3 . 1

WHAT IS SOURCE CODE?
B R I E F OV E RV I E W - PAG E 3
SOURCE CODE

Human friendly representation of instructions for the computer. Source code can be referred to
as "program code" or a "script" depending on programming language or execution
environment.

BASH SHELL

The Bash Shell is an interactive UNIX shell which happens to be "scriptable" (as most are), it's
scripting language is in fact a programming language and therefore it's instructions to the
computer can be considered Source Code

#!/bin/bash

printf "Hello World\n"

3 . 2

HOW PROGRAMS ARE MADE
U N D E R S TA N D I N G B U I L D S - PAG E 4
COMPILATION

The process by which source code is translated into a representation the computer
understands, native computer language or otherwise.

TYPES OF EXECUTION

Three types of execution. Two main categories.

Natively Compiled
Interpreted

Byte Compiled
Raw Interpreted

3 . 3

HOW PROGRAMS ARE MADE
U N D E R S TA N D I N G B U I L D S - PAG E 4
NATIVE

Translated (compiled) directly to machine code
Can execute directly on the system

Examples: C/C++, Go, Objective-C, Fortran, COBOL, Vala

INTERPRETED (BYTE COMPILED)

Translated into an optimized intermediate representation (byte-compiled)
Needs an interpreter to execute ("wrapper" scripts are common)

Examples: Java, Python, Ruby, Node.js/JavaScript, Tcl, Lua, Perl

INTERPRETED (RAW)

Interpreted and executed directly by it's runtime as the source code is parsed
Needs an interpreter to execute

Examples: bash, zsh, batch

3 . 4

BUILDING SOFTWARE
(F R O M S O U R C E) - PAG E 6
BUILDING

Software compilation is often referred to as "building"
"build system" or "build tool" will often refer to things like GNU Make to automate this

NATIVE COMPILED SOURCE CODE

Natively compiled code must be "built" in order to execute as it doesn't have an interpreter
to execute it otherwise
Hardware Architecture specific

Can not build on x86_64 and run on POWER, s390x, or AARCH64

INTERPRETED SOURCE CODE

Source code written in interpreted programming languages that are byte-compiled must be
"built" also

Some languages do this automatically for you (Python, Ruby, Node.js) others must be
built by hand (Java).

3 . 5

PATCHING SOFTWARE
F I X I N G S O F T WA R E - PAG E 9
PATCH

A software patch is much like a cloth patch used in repair of a shirt, a blanket, a pair of
pants or otherwise.
Is meant to either repair a defect (bug) found in the software or add new functionality that
was previously missing

WHY?

This is important for RPM Packagers because we will often find ourselves needing to fix
something or add functionality before the next major revision
Original source code should remain pristine

Build audit chains
Reproducability
Debugging

3 . 6

INSTALLING ARTIFACTS
P L AC I N G F I L E S - PAG E 1 2
INSTALLATION ON LINUX SYSTEMS

Placing files in the "correct" place.

Everything is a file.

FILESYSTEM HIERARCHY STANDARD (FHS)

Default directory structure
Define context for arbitrary files based on location

INSTALL COMMAND

Part of GNU Coreutils
Copies files into their destination location

Also handles permissions/modes, owner, groups

/
├── bin -> usr/bin
├── boot
├── dev
├── etc
├── home
├── lib -> usr/lib
├── lib64 -> usr/lib64
├── media
├── mnt
├── opt
├── proc
├── root
├── run
├── sbin -> usr/sbin
├── srv
├── sys
├── tmp
├── usr
└── var

Filesystem Hierarchy of RHEL7

install -m 0755 bello /usr/bin/bello

3 . 7

RPM PACKAGING GUIDE

#redhat #rhsummit

4 . 1

WHAT IS A RPM?
D E M Y S T I F Y I N G - PAG E 1 9
RPM PACKAGE

File containing other files and metadata about them
More specifically

Lead (96 Bytes of "magic")

No longer used, maintained for backwards compat

Signature - digital signatures
RPM Header - metadata
CPIO Archive - Payload

4 . 2

WORKSPACE SETUP
P R E P P I N G F O R B U I L D - PAG E 2 0
SETTING UP OUR PACKAGING ENVIRONMENT

rpmdevtools

rpmdev-setuptree

$ rpmdev-setuptree

$ tree ~/rpmbuild/
/home/maxamillion/rpmbuild/
|-- BUILD
|-- RPMS
|-- SOURCES
|-- SPECS
`-- SRPMS

5 directories, 0 files

4 . 3

LAB TIME!

S E T U P YO U R R P M W O R K S PAC E
PAGE 20

TIME: 5 MINUTES

SSH Into your Student System and run the commands on Page 20 to
familiarize yourself with setting up a RPM Workspace.

NOTE: Not as root or with sudo

4 . 4

WHAT IS A SPEC FILE?
T H E R P M R E C I P E - PAG E 2 1
THE SPEC FILE

Recipe or set of instructions to tell rpmbuild how to actually build a RPM
Composed of various sections and headings

populate metadata
build instructions
file manifest

Where we define the Name-Version-Release (N-V-R)

This is used in RPM version comparison transactions as well as for yum installations
$ rpm -q python
python-2.7.5-34.el7.x86_64

4 . 5

WHAT IS A SPEC FILE?
C O N T I N U E D - PAG E 2 1
PREAMBLE

Name - name of the software being packaged
Version - version of the software being packaged
Release - release number of the package
Summary - short summary of what software the package contains
License - software license of the software being packaged
URL - sofware or software vendor's website
Source0 - URL to where the software can be downloaded from

Can be multiple SourceX entries. Source1, Source2, Source3, etc.

Patch0 - File listing of a patch found in ~/rpmbuild/SOURCES/

Can be multiple PatchX entries. Patch1, Patch2, Patch3, etc.

BuildArch - Architectures supported by this package (natively compiled code)
BuildRequires - Packages required to be installed on build host to perform build
Requires - Packages required to be installed on target host to actually run the software
ExcludeArch - Architectures this package explicitly does not support (natively compiled
code)

4 . 6

WHAT IS A SPEC FILE?
C O N T I N U E D - PAG E 2 2
BODY

%description - Long hand description of the software, can be many paragraphs.
%prep - Command or series of commands to prepare the software for being built.

This is where you will unarchive/uncompress source code, etc.

%build - Command or series of commands to build the software
%install - Command or series of commands to install the software

Software is installed here in the context of the RPM BUILDROOT

%check - Command or series of commands to run tests on the software
%files - File manifest with metadata and default permissions attributes
%changelog - Changelog for this package

Things like CVE fix listings and bug fix patches are normally listed here or information
about a change to the SPEC file itself.

4 . 7

RPM MACROS
A L I T T L E M AG I C - PAG E 2 3
MACROS

Straight text substitution of a variable name

Can be conditionally called upon, meaning only expand this macro if some condition is
true
Can be explored, evaluated before time

'rpm --eval' - to evaluate a specific macro
'rpm --showrc' - to see what macros are defined on the build host

A lot of output, normally used with 'grep' to search for something specific

COMMON MACROS

Filesystem locations

%{_bindir} -> /usr/bin
%{_libexecdir} -> /usr/libexec

Dist tag

%{?dist} - conditionally expanded if it exists in the context of our rpmbuild (?)

4 . 8

WORKING WITH SPEC FILES
G E T T I N G S TA R T E D - PAG E 2 4
CREATING SPEC FILES FROM SCRATCH

Most RPM Packagers don't create SPEC files completely from scratch

Use built-in template tooling in their editor (vim/emacs/etc)
Use rpmdev-newspec

We will be using rpmdev-newspec

Creates a template with some fields pre-populated and we can just fill it in
Template can be altered based on command line options passed

4 . 9

LAB TIME!

D O W N L OA D S O U R C E

C R E AT E S P E C F I L E S
PAGE 24/25

TIME: 5 MINUTES

On Student System: download source files to ~/rpmbuild/SOURCES/

http://classroom.example.com/rpm
Then run commands on Page 25

NOTE: Not as root or with sudo

4 . 10

BELLO
F I R S T R P M S P E C F I L E - PAG E 2 7
EXERCISE TO PACKAGE SOFTWARE

Example software written in bash, simple "Hello world" program

Note: This is a raw interpreted programming language and therefore doesn't need to be
built.

A similar method could be used for arbitrary binaries as Source0 (not recommended
but sometimes necessary)

We will in this section of the lab create and modify the SPEC file for bello

4 . 11

LAB TIME!

B E L L O S P E C F I L E
PAGE 27-32

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 27 and
ending on Page 32

NOTE: Not as root or with sudo

4 . 12

PELLO
S E C O N D R P M S P E C F I L E - PAG E 3 3
EXERCISE TO PACKAGE SOFTWARE

Example software written in Python, simple "Hello world" program

Note: This is a byte-compiled interpreted programming language and therefore does
need to be built.

We will be using a simple example of how to do this, more sophisticated methods exist
in the wild.
Also will be using a wrapper script (as discussed previously is common)

We will in this section of the lab create and modify the SPEC file for pello

4 . 13

LAB TIME!

P E L L O S P E C F I L E
PAGE 33-40

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 33 and
ending on Page 40

NOTE: Not as root or with sudo

4 . 14

CELLO
T H I R D R P M S P E C F I L E - PAG E 4 1
EXERCISE TO PACKAGE SOFTWARE

Example software written in C, simple "Hello world" program

Note: This is a native compiled programming language and therefore does need to be
built.

We will be using GNU Make

This is one of the most popular build automation tools in the world and you will
almost certainly run into it as a RPM Packager

We will in this section of the lab create and modify the SPEC file for pello

4 . 15

LAB TIME!

C E L L O S P E C F I L E
PAGE 41-46

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 41 and
ending on Page 46

NOTE: Not as root or with sudo

4 . 16

BUILDING RPMS
R P M B U I L D - PAG E 4 7
ACTUALLY PRODUCING RPMS

Up until now we've been prepping ourselves for a rpmbuild

We learned what source code was
How software is built from source code
How arbitrary artifacts such as those built from source code are installed
Prepping our RPM build environment
How to instruct rpmbuild what to do (create a SPEC file)

We will use rpmbuild to build Source RPMs (SRPMS) as well as Binary RPMs
Explore some aspects of rpmbuild that can be surprising
Note: rpmbuild should never be executed as root, if something is wrong in the SPEC file it
could have negative affects on the system that is performing the build.

4 . 17

LAB TIME!

B U I L D I N G R P M S
PAGE 47-51

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 47 and
ending on Page 51

NOTE: Not as root or with sudo

4 . 18

CHECKING RPM SANITY
L I N T I N G - PAG E 5 2
VERIFYING RPMS POST-BUILD FOR QUALITY

rpmlint

Linter tool for RPMs and SPEC files
Checks common packaging errors

We will use rpmlin to check the sanity of the SPEC files, RPMs, and SRPMs we have just
created

THERE WILL BE FAILURES AND WARNINGS
Explore some reasons there are failures and warnings

Understanding these is a great tool in RPM Packaging
rpmlint can provide us will plenty of information about the errors and warnings

4 . 19

LAB TIME!

C H E C K I N G R P M S A N I T Y
PAGE 52-56

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 52 and
ending on Page 56

NOTE: Not as root or with sudo

4 . 20

APPENDIX
A DVA N C E D R P M TO P I C S - PAG E
5 7
RESOURCES FOR BEYOND THE LAB

The Appendix has been written in such a way that it will supplement what you have
learned here today. The Lab Manual is meant to be a reference as is the Appendix.

TOPICS

mock - pristine cross-distro and cross-release buildroots
Version Control Systems - Following DevOps style workflows while building
RPMs
More on Macros

Defining Macros, %files directive, Buit-ins, Distribution specific, and more.

Advanced SPEC Topics

Epoch - the final straw in versioning
Triggers and Scriptlets - modifying RPM transaction behavior

References

#redhat #rhsummit

5

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

#redhat #rhsummit

THANK YOU!

Adam Miller

maxamillion - Fedora

maxamillion - GitHub

@TheMaxamillion - Twitter

6

