FROM SOURCE TO RPM IN
120 MINUTES

Adam Miller
Senior Software Engineer
2016-06-30

#redhat #rhsummit

TOPICS FOR TODAY

GENERAL TOPICS AND BACKGROUND

¢ What is source code?

® How programs are made.

e Building Software from Source
e Patching Software

e Installing Arbitrary Artifacts

RPM PACKAGING

e What is a RPM?

e What is a SPEC file?

®¢ Buildroots

®¢ RPM Macros

®¢ Building RPMs

®¢ Checking RPMs for Sanity
e Advanced Topics

m Plenty of reference materials in the Appendix

ABOUT THIS LAB
LAB MANUAL

MEANT TO BE COMPREHENSIVE

e Meant to be a resource today and as a reference later
e We will not cover the whole thing in this session

m Appendix is full of advanced topics we will not have time for
e |s living document, Upstream Project information on last page of manual.

ABOUT THIS LAB
PREREQUISITES - PAGE 2

PLEASE TURN TO PAGE 2 IN YOUR LAB MANUAL

e Here you will find the Prerequisites required, please run the command on your Student
system

yum install gcc rpmbuild rpm-devel rpmlint make python bash coreutils diffutils patch

e Note that all prerequisites needed for this Lab are included as part of Red Hat Enterprise
Linux 7 Server, meaning there is no need to enable any extra Subscription Channels to
complete the exercises in this Lab.

m Note: Extra resources are required for some of the advanced topics in the Appendix

GENERAL TOPICS AND BACKGROUND

WHAT IS SOURCE CODE?
BRIEF OVERVIEW - PAGE 3

SOURCE CODE

Human friendly representation of instructions for the computer. Source code can be referred to
as "program code" or a "script" depending on programming language or execution
environment.

BASH SHELL

The Bash Shell is an interactive UNIX shell which happens to be "scriptable" (as most are), it's
scripting language is in fact a programming language and therefore it's instructions to the
computer can be considered Source Code

#!/bin/bash

printf "Hello World\n"

HOW PROGRAMS ARE MADE
UNDERSTANDING BUILDS - PAGE 4

COMPILATION

The process by which source code is translated into a representation the computer
understands, native computer language or otherwise.

TYPES OF EXECUTION

Three types of execution. Two main categories.

e Natively Compiled
e [nterpreted

m Byte Compiled
m Raw Interpreted

HOW PROGRAMS ARE MADE
UNDERSTANDING BUILDS - PAGE 4

NATIVE

e Translated (compiled) directly to machine code
e Can execute directly on the system

m Examples: C/C++, Go, Objective-C, Fortran, COBOL, Vala

INTERPRETED (BYTE COMPILED)

e Translated into an optimized intermediate representation (byte-compiled)
e Needs an interpreter to execute ("wrapper" scripts are common)

= Examples: Java, Python, Ruby, Node.js/JavaScript, Tcl, Lua, Perl

INTERPRETED (RAW)

e [nterpreted and executed directly by it's runtime as the source code is parsed
e Needs an interpreter to execute

m Examples: bash, zsh, batch

BUILDING SOFTWARE
(FROM SOURCE) - PAGE 6

BUILDING

e Software compilation is often referred to as "building"
e "build system" or "build tool" will often refer to things like GNU Make to automate this

NATIVE COMPILED SOURCE CODE

e Natively compiled code must be "built" in order to execute as it doesn't have an interpreter

to execute it otherwise
e Hardware Architecture specific

m Can not build on x86_64 and run on POWER, s390x, or AARCH64

INTERPRETED SOURCE CODE

e Source code written in interpreted programming languages that are byte-compiled must be
"built" also
m Some languages do this automatically for you (Python, Ruby, Node.js) others must be
built by hand (Java).

PATCHING SOFTWARE
FIXING SOFTWARE - PAGE 9

PATCH

e A software patch is much like a cloth patch used in repair of a shirt, a blanket, a pair of

pants or otherwise.
e |s meant to either repair a defect (bug) found in the software or add new functionality that

was previously missing

WHY?

e Thisisimportant for RPM Packagers because we will often find ourselves needing to fix
something or add functionality before the next major revision
e Original source code should remain pristine

m Build audit chains
m Reproducability
= Debugging

INSTALLING ARTIFACTS
PLACING FILES - PAGE 12

INSTALLATION ON LINUX SYSTEMS

e Placing files in the "correct"” place.
m Everything is a file.

FILESYSTEM HIERARCHY STANDARD (FHS)

e Default directory structure
e Define context for arbitrary files based on location

INSTALL COMMAND

e Part of GNU Coreutils
e Copies files into their destination location

= Also handles permissions/modes, owner, groups

install -m 0755 bello /usr/bin/bello

Filesystem Hierarchy of RHEL7

/

bin -> usr/bin
boot

dev

etc

home

lib -> usr/1lib
1ib64 -> usr/lib64
media

mnt

opt

proc

root

run

sbin -> usr/sbin
sSrv

sys

tmp

usr

var

RPM PACKAGING GUIDE

#redhat #rhsummit

WHAT IS A RPM?
DEMYSTIFYING - PAGE 19

RPM PACKAGE

e File containing other files and metadata about them
e More specifically

m [ead (96 Bytes of "magic")
o No longer used, maintained for backwards compat

m Signature - digital signatures
= RPM Header - metadata
m CPIO Archive - Payload

WORKSPACE SETUP
PREPPING FOR BUILD - PAGE 20

SETTING UP OUR PACKAGING ENVIRONMENT

e rpmdevtools
m rpmdev-setuptree

$ rpmdev-setuptree

$ tree ~/rpmbuild/
/home/maxamillion/rpmbuild/
| -- BUILD

| -- RPMS

| -- SOURCES

| -- SPECS

S -- SRPMS

5 directories, 0 files

LAB TIME!

SETUP YOUR RPM WORKSPACE
PAGE 20

TIME: 5 MINUTES

SSH Into your Student System and run the commands on Page 20 to
familiarize yourself with setting up a RPM Workspace.

NOTE: Not as root or with sudo

4.4

WHAT IS A SPEC FILE?
THE RPM RECIPE - PAGE 21

THE SPEC FILE

e Recipe or set of instructions to tell rombuild how to actually build a RPM
e Composed of various sections and headings

m populate metadata
= build instructions
= file manifest

e Where we define the Name-Version-Release (N-V-R)
m Thisis used in RPM version comparison transactions as well as for yum installations

$ rpm -gq python
python-2.7.5-34.e17.x86_64

WHAT IS A SPEC FILE?
CONTINUED - PAGE 21

PREAMBLE

Name - name of the software being packaged

Version - version of the software being packaged

Release - release number of the package

Summary - short summary of what software the package contains
License - software license of the software being packaged

URL - sofware or software vendor's website

SourceO - URL to where the software can be downloaded from

m Can be multiple SourceX entries. Sourcel, Source2, Source3, etc.
PatchO - File listing of a patch found in ~/rpmbuild/SOURCES/
= Can be multiple PatchX entries. Patch1, Patch2, Patch3, etc.

BuildArch - Architectures supported by this package (natively compiled code)
BuildRequires - Packages required to be installed on build host to perform build
Requires - Packages required to be installed on target host to actually run the software
ExcludeArch - Architectures this package explicitly does not support (natively compiled
code)

WHAT IS A SPEC FILE?
CONTINUED - PAGE 22

BODY

%description - Long hand description of the software, can be many paragraphs.
%prep - Command or series of commands to prepare the software for being built.
m This is where you will unarchive/uncompress source code, etc.
%build - Command or series of commands to build the software
%install - Command or series of commands to install the software
m Software is installed here in the context of the RPM BUILDROOT
%check - Command or series of commands to run tests on the software
%files - File manifest with metadata and default permissions attributes
%changelog - Changelog for this package

= Things like CVE fix listings and bug fix patches are normally listed here or information
about a change to the SPEC file itself.

RPM MACROS
A LITTLE MAGIC - PAGE 23

MACROS

e Straight text substitution of a variable name
= Can be conditionally called upon, meaning only expand this macro if some condition is

true
m Can be explored, evaluated before time

o 'rpm --eval' - to evaluate a specific macro
o 'rpm --showrc' - to see what macros are defined on the build host

o A lot of output, normally used with 'grep' to search for something specific

COMMON MACROS

e Filesystem locations
m %{ _bindir} -> /usr/bin
m %{ libexecdir} -> /usr/libexec

e Dist tag
m %{?dist} - conditionally expanded if it exists in the context of our rpmbuild (?)

WORKING WITH SPEC FILES
GETTING STARTED- PAGE 24

CREATING SPEC FILES FROM SCRATCH

e Most RPM Packagers don't create SPEC files completely from scratch

m Use built-in template tooling in their editor (vim/emacs/etc)
m Use rpmdev-newspec

e We will be using rpomdev-newspec

m Creates a template with some fields pre-populated and we can just fill it in
m Template can be altered based on command line options passed

LAB TIME!

DOWNLOAD SOURCE

CREATE SPEC FILES
PAGE 24/25

TIME: 5 MINUTES

On Student System: download source files to ~/rpmbuild/SOURCES/
http://classroom.example.com/rpm

Then run commands on Page 25

NOTE: Not as root or with sudo

BELLO
FIRST RPM SPEC FILE- PAGE 27

EXERCISE TO PACKAGE SOFTWARE

e Example software written in bash, simple "Hello world" program

m Note: This is a raw interpreted programming language and therefore doesn't need to be
built.

o Asimilar method could be used for arbitrary binaries as SourceO (not recommended
but sometimes necessary)

e We will in this section of the lab create and modify the SPEC file for bello

LAB TIME!

BELLO SPEC FILE
PAGE 27-32

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 27 and
ending on Page 32

NOTE: Not as root or with sudo

PELLO
SECOND RPM SPEC FILE- PAGE 33

EXERCISE TO PACKAGE SOFTWARE

e Example software written in Python, simple "Hello world" program

m Note: This is a byte-compiled interpreted programming language and therefore does
need to be built.

o We will be using a simple example of how to do this, more sophisticated methods exist
in the wild.
o Also will be using a wrapper script (as discussed previously is common)

e We will in this section of the lab create and modify the SPEC file for pello

LAB TIME!

PELLO SPEC FILE
PAGE 33-40

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 33 and
ending on Page 40

NOTE: Not as root or with sudo

CELLO
THIRD RPM SPEC FILE- PAGE 41

EXERCISE TO PACKAGE SOFTWARE

e Example software written in C, simple "Hello world" program

m Note: This is a native compiled programming language and therefore does need to be
built.

o We will be using GNU Make

o This is one of the most popular build automation tools in the world and you will
almost certainly run into it as a RPM Packager

e We will in this section of the lab create and modify the SPEC file for pello

LAB TIME!

CELLO SPEC FILE
PAGE 41-46

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 41 and
ending on Page 46

NOTE: Not as root or with sudo

BUILDING RPMS
RPMBUILD - PAGE 47

ACTUALLY PRODUCING RPMS

e Up until now we've been prepping ourselves for a rombuild
m We learned what source code was
m How software is built from source code
m How arbitrary artifacts such as those built from source code are installed
m Prepping our RPM build environment
m How to instruct rpmbuild what to do (create a SPEC file)

e We will use rpmbuild to build Source RPMs (SRPMS) as well as Binary RPMs

e Explore some aspects of rombuild that can be surprising

e Note: rombuild should never be executed as root, if something is wrong in the SPEC file it
could have negative affects on the system that is performing the build.

LAB TIME!

BUILDING RPMS
PAGE 47-51

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 47 and
ending on Page 51

NOTE: Not as root or with sudo

CHECKING RPM SANITY
LINTING - PAGE 52

VERIFYING RPMS POST-BUILD FOR QUALITY

e rpmlint
m Linter tool for RPMs and SPEC files
m Checks common packaging errors

e We will use romlin to check the sanity of the SPEC files, RPMs, and SRPMs we have just
created
= THERE WILL BE FAILURES AND WARNINGS
m Explore some reasons there are failures and warnings

o Understanding these is a great tool in RPM Packaging
o rpmlint can provide us will plenty of information about the errors and warnings

4.20

LAB TIME!

CHECKING RPM SANITY
PAGE 52-56

TIME: 15 MINUTES

Use Student system to perform exercise starting on Page 52 and
ending on Page 56

NOTE: Not as root or with sudo

APPENDIX

ADVANCED RPM TOPICS - PAGE
57

RESOURCES FOR BEYOND THE LAB

The Appendix has been written in such a way that it will supplement what you have
learned here today. The Lab Manual is meant to be a reference as is the Appendix.

TOPICS

e mock - pristine cross-distro and cross-release buildroots

Version Control Systems - Following DevOps style workflows while building
RPMs

More on Macros

= Defining Macros, %files directive, Buit-ins, Distribution specific, and more.

Advanced SPEC Topics

m Epoch - the final straw in versioning
#redhat Friiggers and Scriptlets - modifying RPM transaction behavior

e References

#redhat #rhsummit

THANK YOU!

sdiir

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

Adam Miller

maxamillion - EJ;MI
F <« rednat

maxamiIIionJJ-

@TheMak
i =l

