G

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER
SECURITY

Thursday, June 30, 2016, 3:30PM-5:30PM, Room 3018, Lab 3

Presenters

Bob Kozdemba, Principal Solutions Architect, Red Hat, Inc.

Bob Kozdemba is a field architect who specializes in open source container application platforms.
Bob is a Red Hat Certified Architect (RHCA) and holds an MS in Information Technology and an
MBA from the University of Maryland. In his spare time he enjoys studying jazz and blues and
performs with the Austin Classical Guitar Ensemble.

Dan Walsh, Consulting Software Engineer, Red Hat, Inc.

Dan Walsh has worked in the computer security field for over 30 years. Dan joined Red Hat in
August 2001. Dan leads the RHEL Docker enablement team since August 2013, but has been
working on container technology for several years. He has led the SELinux project, concentrating
on the application space and policy development. Dan helped developed sVirt, Secure
Vitrualization. He also created the SELinux Sandbox, the Xguest user and the Secure Kiosk.
Previously, Dan worked Netect/Bindview's on Vulnerability Assessment Products and at Digital
Equipment Corporation working on the Athena Project, AltaVista Firewall/Tunnel (VPN) Products.

Abstract

Linux containers provide convenient application packing and run-time isolation in multi-tenant
environments. However, the security implications of running containerized applications is often
taken for granted. For example, today it's very easy to pull docker images from the internet and run
them in a datacenter without examining their content and authenticity. During this lab, students will
complete hands-on exercises to understand the concepts and challenges associated with
deploying containers at an enterprise scale in a secure fashion. You'll learn how to run containers
with elevated privileges, use atomic tools to scan, verify, and compare containers and images for
common vulnerabilities and exposures(CVEs). You'll also experiment with how SELinux works with
containers.

Overview and Prerequisites

This session is a self paced, hands introduction to container security using Red Hat Enterprise
Linux 7. The prerequisites for this lab include basic Linux command line and text editing skills. A
basic knowledge of Docker is helpful.

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

Lab Environment

Your workstation is configured with the following virtual machines running RHEL7 Server
connected via a private libvirt network.

e rhserverQ.example.com (192.168.0.100)

e rhserver1l.example.com (192.168.0.101)

e rhserver2.example.com (192.168.0.102)

Open a terminal window on your workstation and use the ssh client to login to the various systems
as root (password is redhat). Before you get started with the labs. run a quick test to make sure
you can connect between the virtual servers on their private network.

For example:

$ ssh root@rhserver(O.example.com

[root@rhserver0 ~]# ping -cl rhserverl.example.com
[root@rhserver0 ~]# ping -cl rhserver2.example.com

Now go ahead and dive in. If you have a question, flag one of us down and we’ll be happy to help.

Lab 1: Registry and Docker Configuration

Most of the exercises in this hands on lab will be completed on the rhserverQ system. The
rhserver1 and rhserver2 systems will be used only as Docker registry servers.

Registry Configuration

Configure and start the Docker registry services on the rhserver? and rhserver2 systems.

Hints:
e Enable and start the docker registry.
systemctl enable docker-registry
systemctl start docker-registry
systemctl status docker-registry

e The registry listens on port 5000 by default so you’ll want to open up the firewall ports.
firewall-cmd --add-port 5000/tcp
firewall-cmd --add-port 5000/tcp —--permanent

Open a separate terminal window, login to each registry server and follow the registry logs.
journalctl -u docker-registry --follow

mailto:root@rhserver0.example.com

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

Run a quick test from each server.
curl http://localhost:5000

The curl command should return a "docker-registry server\" string. You should also see
a GET entry in the logs from the curl.

Docker Configuration

On rhserver0, configure the Docker service to trust the registry running on rhserver.

Hints:

Using the vim or nano text editor, edit /etc/sysconfig/docker on rhserverQ and add
rhserver1.example.com:5000 as an INSECURE_REGISTRY then restart the docker service.
systemctl restart docker

Run a quick test from rhserver0Q.
curl http://rhserverl.example.com:5000

The curl command should return a "docker-registry server\" string. This will confirm that
your firewall settings on the registry servers are working. You should also see a GET in the logs
from the curl.

Is there another method that you can think of to test the registry?

Pushing images to a remote registry

Login to rhserver0. Notice that a few images are present in the local Docker image cache. Run the
following command to see them.

docker images

Test the registry service on both rhserver1 and rhserver2 using the docker command line from
rhserver0. Use the docker command to tag a local image and push it to the registry running on
rhserver1. Then remove your local copy and pull the image from the remote registry. For this
exercise tag, and push all of the images in the local docker cache on rhserver0 to both registry
servers.

Hints:

man docker-tag

docker tag <image-name> rhserverl.example.com:5000/<image-name>
docker images

man docker-push

S o S o

docker push rhserverl.example.com:5000/<image-name>

http://rhserver1.example.com:5000/
http://rhserver1.example.com:5000/

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

If the push was successful, make a backup copy then delete (untag) the local cached copy and pull
a new copy from the remote registry.

man docker-tag

docker tag rhserverl.example.com:5000/<image—-name>:latest
rhserverl.example.com:5000/<image-name>:backup

docker rmi rhserverl.example.com:5000/<image—-name>:latest
docker pull <registry-host>:<port>/<image-name>

Login to rhserver1 and check the registry logs.
journalctl -udocker-registry —--follow

Lab 2: Authorization

The Docker software that ships with RHEL has the ability to block remote registries. For example,
in a production environment you might want to prevent users from pulling random containers from
the public internet by blocking Docker Hub (docker.io). During this lab you will configure docker on
rhserver0 to block the registry on rhserver2, then try to pull or run the image from the blocked
registry.

Perform the following by editing /etc/sysconfig/docker on rhserver0:
e Configure docker to use rhserver2 as an insecure registry.
e Configure docker to block rhserver2 (see BLOCK REGISTRY=).
e Restart the docker daemon.
e Try to pull or run the image that was pushed to the registry on rhserver2. It should fail.

Lab 3: Isolation

Containers provide a certain degree of process isolation via kernel namespaces. In this lab, we’ll
examine the capabilities of a process running in a containerized namespace. Begin by running a
container and looking at it's capabilities.

docker run --rm -ti --name temp registry.access.redhat.com/rhel7 grep

Cap /proc/self/status
A non-null CapE£ £ value indicates the process has capabilities.

Now run the same command as a non-root user and compare the results.

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

docker run --rm -ti --name temp --user 32767
registry.access.redhat.com/rhel7 grep Cap /proc/self/status

Run as root but drop all capabilities.

docker run --rm -ti --name temp --cap-drop=all
registry.access.redhat.com/rhel7 grep Cap /proc/self/status

Let’s dig in a bit deeper. Run the s1eep command in a container as a daemon (-d) then run some
additional commands on the host to examine capabilities.

docker run -d --name sleepy registry.access.redhat.com/rhel7 sleep
9999

Check to make sure the sleepy container is running.
docker ps

Run the pscap command on the container host to produce a report of process capabilities. If the
application has any capabilities, they will be listed in the report. You should see that the sleep
process has a number of capabilities. If a process is not in the report, it has dropped all
capabilities.

pscap

When you are finished, stop then remove the sleepy container.

docker stop sleepy
docker rm sleepy

Now, repeat the procedure above but run the container as a non-root user. Again, run the pscap
command again and compare the difference in capabilities.

docker run -d --name sleepy --user 32767
registry.access.redhat.com/rhel7 sleep 9999

pscap
When you are finished, stop and remove the sleepy container.

docker rm --force sleepy

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

SELinux Basics

In this section, we’ll cover the basics of SELinux and containers. SELinux policy prevents a lot of
break out situations where the other security mechanisms fail. With SELinux on Docker, we write
policy that says that the container process running as svirt lxc net t can only read/write files
with the svirt sandbox file t label.

On rhserver0, create the following directories.

mkdir /data /shared /private

Run bash in a rhel7 container and volume mount the /data directory on rhserver0 to the /data
directory in the container’s file system. Once the container is running, verify the volume mount and

try to list the contents of /data and the files.

docker run --rm -it --name rhel7 -v /data:/data
registry.access.redhat.com/rhel7 bash

Notice the bash prompt changes when you enter the container's namespace. Did the mount
succeed? Can you examine the /data directory?

[container \]# df

[container \]# 1ls /data

[container \]# date > /data/date.txt

Can you create a file in the /data directory? The container ran as root, correct?
Open a second window on rhserverQ and examine the selinux labels on the host.
1s -dz /data

Find the selinux context of bash in the container.

ps -eZ | grep bash

Find the selinux file context associated with containers.

semanage fcontext --list | grep svirt

Change the context of /data/file2 to match the container’s context.

chcon -Rt svirt sandbox file t /data

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

Now try to create a file again from the container shell.
[container \]# date > /data/date.txt
Exit the container.

[container \]# exit

Private Mounts

Now let Docker create the SELinux labels. Repeat the scenario above but instead add the : 7
option for the bind mount the /private directory then try to create a file in the /private directory
from the container’'s namespace.

docker run -d --name sleepy -v /private:/private:Z
registry.access.redhat.com/rhel7 sleep 9999

Note the addition of a unique Multi-Category Security (MCS) label to the directory. SELinux takes
advantage of MCS separation to ensure that the processes running in the container can only write
to svirt_sandbox_file_t files with the same MCS Label s0.

1s -dz /private

Shared Mounts

Repeat the scenario above but instead add the : z option for the bind mount then try to create a file
in the /shared directory from the container's namespace.

docker run -d --name sleepy -v /shared:/shared:z
registry.access.redhat.com/rhel7 sleep 9999

Notice the SELinux label.

1ls -dZ /shared

Lab 4: Inspecting Content

Docker images can easily be pulled from any public registry and run on a container host but is this
good practice? Do we trust this image and what are its contents? A better approach would be to
inspect and scan the image first. The atomic command ships with both RHEL7 Server and RHEL7
Atomic Host.

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

atomic diff

Hints:

atomic diff --help
man atomic-diff

Run the rhel7 image and connect to its namespace with bash. Then make some change like
creating a file or something.

docker run --rm -it --name my container
registry.access.redhat.com/rhel7 bash

[container /]# date > /usr/tmp/date.txt

Now, open a new terminal window, ssh into rhserverQ and run atomic diff to see the differences
between the rhe7 image and the running container.

atomic diff registry.access.redhat.com/rhel7 my container

Atomic should report a list of differences between the two file systems. The
/usr/tmp/date. txt file should appear in the report.

Exit the container namespace when you're finished.

[container /]# exit

atomic mount

Next we'll use the atomic command to inspect a container’s filesystem by mounting it to the host.
mkdir /mnt/image

atomic mount registry.access.redhat.com/rhel7 /mnt/image

cat /mnt/image/etc/redhat-release

How might you search a container for all programs that are owned by root and have the SETUID
bit set? Sound like a good idea for a custom container scanner?

find /mnt/image -user root -perm -4000 -exec ls -1db {} \;

Unmount when finished.

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

s

CONTAINERS

atomic umount /mnt/image

Live mount

Use atomic to live mount a running a container. This option allows the user to modify the
container's contents as it runs or update the container's software without rebuilding the container.

docker run --rm --name sleepy registry.access.redhat.com/rhel7 sleep
9999

Open a second window and mount the running container’s file system from the host.

mkdir /mnt/live

atomic mount --live sleepy /mnt/live

date > /mnt/live/usr/tmp/date.txt

Now exec into the container’'s namespace and examine the file that was created above.
docker exec -it sleepy bash

[container \] # cat /usr/tmp/date.txt

Before unmounting, open another terminal window on rhserver0O and take note of the SELinux label
on the mount point.

1s -dZ /mnt/live
atomic umount /mnt/live

Shared mount

This option mounts a container with a shared SELinux label.
This seems to work but what is a good demo of shared mounting?

atomic mount --shared sleepy /mnt/live
1s -dZz /mnt/live

Compare the SELinux label of the mount point to the live mount in the step above.
Unmount the container.
atomic umount /mnt/live

Exit from the container namespace.

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

[container \] # exit

Atomic verify

This option is currently under development so we’ll leave it as a homework exercise. For now, have
a quick look at the atomic-verify (1) man page. Refer to
https://bugzilla.redhat.com/show_bug.cgi?id=1341347 for details.

Skopeo

Skopeo is an atomic project that ships as a technology preview with RHEL7. Example use cases
include retrieving information from remote registries and signing content. You can read more about
it on github but for now, try the following simple example.

Run the skopeo command from rhserver0O and inspect one of the images that you pushed to the
registry on rhserver1.

Hints:
skopeo docker://<remote-registry-host:port>/<image> | jg-linux64

Lab 5: Atomic Scanner

Before containers are run, it makes good sense to be able to scan container images for known
vulnerabilities and configuration problems. A number of container scanning tools are beginning to
appear including RHEL’s atomic scan command.

OpenSCAP scanner

Get started by running the built-in atomic scanner that ships with RHEL.

Hints:
atomic scan --help
atomic scan --list

Scan the rhel7 image using the OpenSCAP scanner. This will use the default scan type (more
about that later).

atomic scan registry.access.redhat.com/rhel7

In addition to container images, running containers can also be scanned. Scan the sleepy
container that maybe still running from the previous lab.

10

https://bugzilla.redhat.com/show_bug.cgi?id=1341347

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

How would you scan all running containers on a given host?
Try running the scanner on an image in one of the remote registries.

Finally, have a look at the contents of the /var/lib/atomic/atomic_scan openscap
directory on the host. The scanner itself runs as a container and writes its results in the host’s file
system. The scanning tools do not run as privileged containers but they are able to mount up a
read only rootfs along with a writeable directory on the host’s file system so the scanner can place
its output. You’ll lean more about this feature in the final lab.

Scan Types

Scanners can support a number of scan types. In the section, configure atomic to enable the
openscap scanner’s standard compliance scan type.

Hints:

First, make a backup copy of the scanner configuration file into /usr/tmp.

#cp /etc/atomic.d/atomic scan openscap /usr/tmp

Edit /etc/atomic.d/atomic_scan openscap and add an element to the scans array with

the following properties:

{ name: compliance,

args: ['oscapd-evaluate', 'scan', '--no-cve', '--targets',
'chroots-in-dir:///scanin’', '--output', '/scanout'],
description: "Performs a standard compliance scan."}

Verify the scanner now supports the compliance scan type.
atomic scan --list
Run the scanner using the new compliance scan type.

atomic scan --scanner atomic scan openscap --scan_type compliance

registry.access.redhat.com/rhel?7

Lab 6: Custom Scanners

The atomic scanner was designed with a pluggable architecture to allow developers to write
custom scanners using any programming language of supported by RHEL. Adding a scanner
plugin involves the following:

11

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

e Make atomic aware of your plug-in.
e Ensure the plugin obtains the proper input from the /scanin directory.
e Ensure the plugin writes the results to the /scanout directory.

Installing a custom scanner

Hints:
cd /root/custom-scanner

Build a docker image that contains the new scanner.
docker build --rm=true --force-rm=true --tag=example plugin

The example_plugin image should appear in the docker image cache.
docker images
Now install the scanner and confirm it is configured.

atomic install --name example plugin example plugin
atomic scan --list

It should report 2 scanners each with 2 scan types. Also, look in the /etc/atomic.d directory.
Edit /etc/atomic.conf and set a default_scanner field to the new example_plugin scanner.
Confirm the default setting.

atomic scan --list

Run the new scanner using the default scan type.

atomic scan <image>

Use a specific scanner and scan type to find out more about the mystery image that you pushed to
the registry on rhserveri.

atomic scan --scanner example plugin --scan_type=get-os
rhserverl.example.com:5000mystery

12

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

Writing a custom scanner

As an example of how to create a custom scanner, you’ll make changes to the custom scanner
source code and rebuild its container image.

cd custom-scanner

Have a look at the scanner source code in the list_rpms.py source file. The atomic scan
command will bind mount directories so the scanner container can read from its /scanin
directory and write to its /scanout directory.

Begin by making a backup copy of the 1ist rpms.py file and modify the custom scanner python
source code. A simple, recommended change would be to insert an 'etc/Isb-release’ element into
the array at line 39 before the ‘etc/debian_version’ element.

Also make a backup copy of the original scanner image by change the image tag. Build a docker
image and install the scanner as you did above.

docker tag example plugin:latest example plugin:vl
docker images
docker build --rm=true --force-rm=true --tag=example plugin

Now run the modified example_plugin scanner on the mystery image again. If everything worked,
the scanner should help you solve the mystery.

atomic scan --scanner example plugin --scan_type=get-os
rhserverl.example.com:5000/mystery

Extra Credit

Tag the new scanner image so it can be pushed to the registry on rhserver1. On rhserverO,
configure the scanner to pull the scanner image directly from the registry on rhserver1 by editing
the scanner configuration file in /etc/atomic.d

Lab 7: Read-only Containers

Imagine a scenario where an application gets compromised. The first thing the bad guy wants to
do is to write an exploit into the application, so that the next time the application starts up, it starts
up with the exploit in place. If the container was read-only it would prevent leaving a backdoor in
place and be forced to start the cycle from the beginning.

13

s

CONTAINERS

A PRACTICAL INTRODUCTION TO CONTAINER SECURITY

Docker added a read-only feature but it presents challenges since many applications need to write
to temporary directories like /run or /tmp and when these directories are read-only, the apps fail.
Red Hat’s approach leverages tmpfs. It's a nice solution to this problem because it eliminates data
exposure on the host. As a best practice, run all applications in production with this mode.

At the time of this writing, the --tmpfs feature is only available via the docker-latest RHEL package
so you will need to swap out the Docker runtime in order to complete the lab.

Confirm that you have pushed the docker images to the registries on rhserver1 or rhserver2.
docker tag registry.access.redhat.com/rhel?
rhserverl.example.com:5000/rhel?7

docker push rhserverl.example.com:5000/rhel’

Configure rhserverQ to use the docker-latest environment.

systemctl stop docker

systemctl disable docker

yum remove docker

yum reinstall /root/dist/docker-latest-1.10.3-22.el7.x86 64.rpm

HH o W

Edit /etc/sysconfig/docker-latest and configure rhserverO as an insecure registry as you
did in the first lab then enable and start the docker-latest service.

systemctl enable docker-latest
systemctl start docker-latest
systemctl status docker-latest

Now run a read-only container and specify a few writable file systems using the —--tmpfs option.

docker run --rm -ti --name test --read-only —--tmpfs /run --tmpfs /tmp
rhserverl.example.com:5000/rhel7 bash

Now, try to the following. What fails and what succeeds? Why?

[container \]# mkdir /newdir
[container \]# mkdir /run/newdir

This concludes the lab on container security. We hope you had fun and learned something in the
process.Thanks for attending and please complete the course survey.

14

