
A PRACTICAL INTRODUCTION TO CONTAINER 
SECURITY 

Thursday, June 30, 2016, 3:30PM­5:30PM, Room 3018, Lab 3 

Presenters 

Bob Kozdemba, Principal Solutions Architect, Red Hat, Inc. 
Bob Kozdemba is a field architect who specializes in open source container application platforms. 
Bob is a Red Hat Certified Architect (RHCA) and holds an MS in Information Technology and an 
MBA from the University of Maryland. In his spare time he enjoys studying jazz and blues and 
performs with the Austin Classical Guitar Ensemble. 

Dan Walsh, Consulting Software Engineer, Red Hat, Inc. 
Dan Walsh has worked in the computer security field for over 30 years. Dan joined Red Hat in 
August 2001. Dan leads the RHEL Docker enablement team since August 2013, but has been 
working on container technology for several years. He has led the SELinux project, concentrating 
on the application space and policy development. Dan helped developed sVirt, Secure 
Vitrualization. He also created the SELinux Sandbox, the Xguest user and the Secure Kiosk. 
Previously, Dan worked Netect/Bindview's on Vulnerability Assessment Products and at Digital 
Equipment Corporation working on the Athena Project, AltaVista Firewall/Tunnel (VPN) Products. 

Abstract 
Linux containers provide convenient application packing and run­time isolation in multi­tenant 
environments. However, the security implications of running containerized applications is often 
taken for granted. For example, today it's very easy to pull docker images from the internet and run 
them in a datacenter without examining their content and authenticity. During this lab, students will 
complete hands­on exercises to understand the concepts and challenges associated with 
deploying containers at an enterprise scale in a secure fashion. You'll learn how to run containers 
with elevated privileges, use atomic tools to scan, verify, and compare containers and images for 
common vulnerabilities and exposures(CVEs). You’ll also experiment with how SELinux works with 
containers. 
 

Overview and Prerequisites 
This session is a self paced, hands introduction to container security using Red Hat Enterprise 
Linux 7. The prerequisites for this lab include basic Linux command line and text editing skills. A 
basic knowledge of Docker is helpful.   

 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

Lab Environment 
Your workstation is configured with the following virtual machines running RHEL7 Server 
connected via a private libvirt network. 

● rhserver0.example.com (192.168.0.100) 
● rhserver1.example.com (192.168.0.101) 
● rhserver2.example.com (192.168.0.102) 

 
Open a terminal window on your workstation and use the ​ssh​ client to login to the various systems 
as ​root​ (password is ​redhat​). Before you get started with the labs. run a quick test to make sure 
you can connect between the virtual servers on their private network. 
 
For example: 
$ ssh ​root@rhserver0.example.com 
[root@rhserver0 ~]# ping ­c1 rhserver1.example.com  
[root@rhserver0 ~]# ping ­c1 rhserver2.example.com 
 
Now go ahead and dive in. If you have a question, flag one of us down and we’ll be happy to help. 

Lab 1: Registry and Docker Configuration 
Most of the exercises in this hands on lab will be completed on the ​rhserver0​ system. The 
rhserver1​ and ​rhserver2​ systems will be used only as Docker registry servers.  

Registry Configuration 
Configure and start the Docker registry services on the ​rhserver1​ and ​rhserver2​ systems. 
 
Hints: 

● Enable and start the docker registry. 
# systemctl enable docker­registry 
# systemctl start docker­registry 
# systemctl status docker­registry 
 

● The registry listens on port 5000 by default so you’ll want to open up the firewall ports. 
# firewall­cmd ­­add­port 5000/tcp 
# firewall­cmd ­­add­port 5000/tcp ­­permanent 
 

Open a separate terminal window, login to each registry server and follow the registry logs. 
# journalctl ­u docker­registry ­­follow 
 

2 

mailto:root@rhserver0.example.com


A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

Run a quick test from each server. 
# curl ​http://localhost:5000 
 
The curl command should return a ​"docker­registry server\"​ string.  You should also see 
a ​GET​ entry in the logs from the ​curl. 

Docker Configuration 
On ​rhserver0​, configure the Docker service to trust the registry running on ​rhserver1​. 
 
Hints: 
Using the ​vim​ or ​nano​ text editor, edit /etc/sysconfig/docker on rhserver0 and add 
rhserver1.example.com:5000 as an INSECURE_REGISTRY then restart the docker service. 
# systemctl restart docker 
 
Run a quick test from rhserver0. 
# curl ​http://rhserver1.example.com:5000 
 
The curl command should return a ​"docker­registry server\"​ string. This will confirm that 
your firewall settings on the registry servers are working. You should also see a ​GET​ in the logs 
from the ​curl. 
 
Is there another method that you can think of to test the registry? 

Pushing images to a remote registry 
Login to ​rhserver0​. Notice that a few images are present in the local Docker image cache. Run the 
following command to see them. 
 
# docker images 
 
Test the registry service on both ​rhserver1​ and ​rhserver2​ using the docker command line from 
rhserver0​. Use the docker command to tag a local image and push it to the registry running on 
rhserver1​. Then remove your local copy and pull the image from the remote registry. For this 
exercise tag, and push all of the images in the local docker cache on ​rhserver0​ to both registry 
servers. 
 
Hints: 
# man docker­tag 
# docker tag <image­name> rhserver1.example.com:5000/<image­name> 
# docker images 
# man docker­push 
# docker push rhserver1.example.com:5000/<image­name> 

3 

http://rhserver1.example.com:5000/
http://rhserver1.example.com:5000/


A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

 
If the push was successful, make a backup copy then delete (untag) the local cached copy and pull 
a new copy from the remote registry.  
 
# man docker­tag 
# docker tag rhserver1.example.com:5000/<image­name>:latest 
rhserver1.example.com:5000/<image­name>:backup 
# docker rmi rhserver1.example.com:5000/<image­name>:latest 
# docker pull <registry­host>:<port>/<image­name> 
 
Login to ​rhserver1​ and check the registry logs. 
# journalctl ­udocker­registry ­­follow 

Lab 2: Authorization  
The Docker software that ships with RHEL has the ability to block remote registries. For example, 
in a production environment you might want to prevent users from pulling random containers from 
the public internet by blocking Docker Hub (docker.io). During this lab you will configure docker on 
rhserver0​ to block the registry on ​rhserver2​, then try to pull or run the image from the blocked 
registry. 
 
Perform the following by editing ​/etc/sysconfig/docker​ on ​rhserver0​: 

● Configure docker to use ​rhserver2​ as an insecure registry. 
● Configure docker to block ​rhserver2​ (see ​BLOCK_REGISTRY=)​. 
● Restart the docker daemon. 
● Try to pull or run the image that was pushed to the registry on ​rhserver2​. It should fail. 

 

Lab 3: Isolation 
Containers provide a certain degree of process isolation via kernel namespaces. In this lab, we’ll 
examine the capabilities of a process running in a containerized namespace. Begin by running a 
container and looking at it’s capabilities. 
 
# docker run ­­rm ­ti ­­name temp registry.access.redhat.com/rhel7 grep 
Cap /proc/self/status 
 
A non­null ​CapEff​ value indicates the process has capabilities.  
 
Now run the same command as a non­root user and compare the results. 
 

4 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

# docker run ­­rm ­ti ­­name temp ­­user 32767 
registry.access.redhat.com/rhel7 grep Cap /proc/self/status 
 
Run as root but drop all capabilities. 
 
# docker run ­­rm ­ti ­­name temp ­­cap­drop=all 
registry.access.redhat.com/rhel7 grep Cap /proc/self/status 
 
Let’s dig in a bit deeper. Run the ​sleep​ command in a container as a daemon (­d) then run some 
additional commands on the host to examine capabilities. 
 
# docker run ­d ­­name sleepy registry.access.redhat.com/rhel7 sleep 
9999 
 
Check to make sure the sleepy container is running. 
# docker ps 
  
Run the​ pscap​ command on the container host to produce a report of process capabilities. If the 
application has any capabilities, they will be listed in the report. You should see that the ​sleep 
process has a number of capabilities. If a process is not in the report, it has dropped all 
capabilities.  
 
# pscap 
 
When you are finished, stop then remove the sleepy container.  
 
# docker stop sleepy  
# docker rm sleepy 
 
Now, repeat the procedure above but run the container as a non­root user. Again, run the ​pscap 
command again and compare the difference in capabilities. 
 
# docker run ­d ­­name sleepy ­­user 32767 
registry.access.redhat.com/rhel7 sleep 9999 
 
# pscap 
 
When you are finished, stop and remove the sleepy container. 
 
# docker rm ­­force sleepy 

5 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

SELinux Basics 
In this section, we’ll cover the basics of SELinux and containers. SELinux policy prevents a lot of 
break out situations where the other security mechanisms fail. With SELinux on Docker, we write 
policy that says that the container process running as ​svirt_lxc_net_t​ can only read/write files 
with the ​svirt_sandbox_file_t ​label. 
 
On rhserver0, create the following directories. 
 
# mkdir /data /shared /private 
 
Run bash in a rhel7 container and volume mount the /data directory on rhserver0 to the /data 
directory in the container’s file system. Once the container is running, verify the volume mount and 
try to list the contents of /data and the files. 
 
# docker run ­­rm ­it ­­name rhel7 ­v /data:/data 
registry.access.redhat.com/rhel7 bash 
 
Notice the bash prompt changes when you enter the container’s namespace. Did the mount 
succeed? Can you examine the /data directory?  
 
[container \]# df 
[container \]# ls /data 
[container \]# date > /data/date.txt 
 
Can you create a file in the /data directory? The container ran as root, correct?  
 
Open a second window on rhserver0 and examine the selinux labels on the host. 
 
# ls ­dZ /data 
 
Find the selinux context of bash in the container. 
 
# ps ­eZ | grep bash 
 
Find the selinux file context associated with containers. 
 
# semanage fcontext ­­list | grep svirt 
 
Change the context of ​/data/file2​ to match the container’s context. 
 
# chcon ­Rt svirt_sandbox_file_t /data 

6 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

 
Now try to create a file again from the container shell. 
 
[container \]# date > /data/date.txt 
 
Exit the container. 
 
[container \]# exit 

Private Mounts 
Now let Docker create the SELinux labels. Repeat the scenario above but instead add the ​:Z 
option for the bind mount the ​/private​ directory then try to create a file in the /private directory 
from the container’s namespace. 
 
# docker run ­d ­­name sleepy ­v /private:/private:Z 
registry.access.redhat.com/rhel7 sleep 9999 
 
Note the addition of a unique Multi­Category Security  (MCS) label to the directory. SELinux takes 
advantage of MCS separation to ensure that the processes running in the container can only write 
to svirt_sandbox_file_t files with the same MCS Label ​s0​. 
 
# ls ­dZ /private 

Shared Mounts 
Repeat the scenario above but instead add the ​:z​ option for the bind mount then try to create a file 
in the ​/shared​ directory from the container’s namespace. 
 
# docker run ­d ­­name sleepy ­v /shared:/shared:z 
registry.access.redhat.com/rhel7 sleep 9999 
 
Notice the SELinux label. 
 
# ls ­dZ /shared 

Lab 4: Inspecting Content 
Docker images can easily be pulled from any public registry and run on a container host but is this 
good practice? Do we trust this image and what are its contents? A better approach would be to 
inspect and scan the image first. The atomic command ships with both RHEL7 Server and RHEL7 
Atomic Host. 

7 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

atomic diff  
 
Hints: 
 
# atomic diff ­­help 
# man atomic­diff 
 
Run the rhel7 image and connect to its namespace with bash. Then make some change like 
creating a file or something. 
 
# docker run ­­rm ­it ­­name my_container 
registry.access.redhat.com/rhel7 bash 
[container /]# date > /usr/tmp/date.txt 
 
Now, open a new terminal window, ssh into rhserver0 and run atomic diff to see the differences 
between the rhe7 image and the running container.  
 
# atomic diff registry.access.redhat.com/rhel7 my_container 
 
Atomic should report a list of differences between the two file systems. The 
/usr/tmp/date.txt​ file should appear in the report. 
 
Exit the container namespace when you're finished. 
 
[container /]# exit 

atomic mount 
Next we’ll use the atomic command to inspect a container’s filesystem by mounting it to the host. 
 
# mkdir /mnt/image 
# atomic mount registry.access.redhat.com/rhel7 /mnt/image 
# cat /mnt/image/etc/redhat­release 
 
How might you search a container for all programs that are owned by root and have the SETUID 
bit set? Sound like a good idea for a custom container scanner? 
 

# find /mnt/image ­user root ­perm ­4000 ­exec ls ­ldb {} \; 
 
Unmount when finished. 
 

8 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

# atomic umount /mnt/image 

Live mount 
Use atomic to live mount a running a container. This option allows the user to modify the 
container's contents as it runs or update the container's software without rebuilding the container. 
 
# docker run ­­rm ­­name sleepy registry.access.redhat.com/rhel7 sleep 
9999 
 
Open a second window and mount the running container’s file system from the host. 
 
# mkdir /mnt/live 
# atomic mount ­­live sleepy /mnt/live 
# date > /mnt/live/usr/tmp/date.txt 
 
Now exec into the container’s namespace and examine the file that was created above. 
 
# docker exec ­it sleepy bash 
 
[container \] # cat /usr/tmp/date.txt 
 
Before unmounting, open another terminal window on ​rhserver0​ and take note of the SELinux label 
on the mount point. 
 
# ls ­dZ /mnt/live 
# atomic umount /mnt/live 

Shared mount 
This option mounts a container with a shared SELinux label. 
This seems to work but what is a good demo of shared mounting? 
 
# atomic mount ­­shared sleepy /mnt/live 
# ls ­dZ /mnt/live 
 
Compare the SELinux label of the mount point to the live mount in the step above. 
 
Unmount the container. 
 
# atomic umount /mnt/live 
 
Exit from the container namespace. 
 

9 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

[container \] # exit 

Atomic verify 
This option is currently under development so we’ll leave it as a homework exercise. For now, have 
a quick look at the ​atomic­verify(1)​ man page. Refer to 
https://bugzilla.redhat.com/show_bug.cgi?id=1341347​ for details. 

Skopeo  
Skopeo is an atomic project that ships as a technology preview with RHEL7. Example use cases 
include retrieving information from remote registries and signing content. You can read more about 
it on github but for now, try the following simple example. 
 
Run the ​skopeo​ command from rhserver0 and inspect one of the images that you pushed to the 
registry on ​rhserver1​. 
 
Hints: 
# skopeo docker://<remote­registry­host:port>/<image> | jq­linux64 

Lab 5: Atomic Scanner 
Before containers are run, it makes good sense to be able to scan container images for known 
vulnerabilities and configuration problems. A number of container scanning tools are beginning to 
appear including  RHEL’s ​atomic scan​ command. 

OpenSCAP scanner 
Get started by running the built­in atomic scanner that ships with RHEL. 
 
Hints: 
 
# atomic scan ­­help 
# atomic scan ­­list 
 
Scan the rhel7 image using the OpenSCAP scanner. This will use the default scan type (more 
about that later). 
 
# atomic scan registry.access.redhat.com/rhel7 
 
In addition to container images, running containers can also be scanned. Scan the sleepy 
container that maybe still running from the previous lab. 

10 

https://bugzilla.redhat.com/show_bug.cgi?id=1341347


A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

 
How would you scan all running containers on a given host? 
 
Try running the scanner on an image in one of the remote registries. 
 
Finally, have a look at the contents of the ​/var/lib/atomic/atomic_scan_openscap 
directory on the host. The scanner itself runs as a container and writes its results in the host’s file 
system. The scanning tools do not run as privileged containers but they are able to mount up a 
read only rootfs along with a writeable directory on the host’s file system so the scanner can place 
its output. You’ll lean more about this feature in the final lab. 

Scan Types 
Scanners can support a number of scan types. In the section, configure atomic to enable the 
openscap scanner’s standard compliance scan type. 
 
Hints: 
 
First, make a backup copy of the scanner configuration file into /usr/tmp. 
 
# cp ​/etc/atomic.d/atomic_scan_openscap /usr/tmp 
 
Edit ​/etc/atomic.d/atomic_scan_openscap and a​dd an element to the scans array with 
the following properties: 
{ name: compliance, 
        args: ['oscapd­evaluate', 'scan',  '­­no­cve', '­­targets', 
'chroots­in­dir:///scanin',  '­­output', '/scanout'], 
        description: "Performs a standard compliance scan."} 
 
Verify the scanner now supports the ​compliance​ scan type. 
 
# atomic scan ­­list 
 
Run the scanner using the new compliance scan type. 
 
# atomic scan ­­scanner atomic_scan_openscap ­­scan_type compliance 
registry.access.redhat.com/rhel7 

Lab 6: Custom Scanners 
The atomic scanner was designed with a pluggable architecture to allow developers to write 
custom scanners using any programming language of supported by RHEL. Adding a scanner 
plugin involves the following: 

11 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

● Make atomic aware of your plug­in. 
● Ensure the plugin obtains the proper input from the ​/scanin​ directory.  
● Ensure the plugin writes the results to the ​/scanout​ directory. 

 

Installing a custom scanner 
 
Hints: 
# cd /root/custom­scanner 
 
Build a docker image that contains the new scanner. 
# docker build ­­rm=true ­­force­rm=true ­­tag=example_plugin . 
 
The example_plugin image should appear in the docker image cache. 
 
# docker images 
 
Now install the scanner and confirm it is configured. 
 
# atomic install ­­name example_plugin example_plugin 
# atomic scan ­­list 
 
It should report 2 scanners each with 2 scan types. Also, look in the ​/etc/atomic.d​ directory. 
 
Edit ​/etc/atomic.conf​ and set a ​default_scanner​ field to the new example_plugin scanner. 
 
Confirm the default setting. 
 
# atomic scan ­­list 
 
Run the new scanner using the default scan type. 
 
# ​atomic scan <image> 
 
Use a specific scanner and scan type to find out more about the mystery image that you pushed to 
the registry on ​rhserver1​. 
 
# atomic scan ­­scanner example_plugin ­­scan_type=get­os 
rhserver1.example.com:5000mystery 

12 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

Writing a custom scanner 
As an example of how to create a custom scanner, you’ll make changes to the custom scanner 
source code and rebuild its container image.  
 
# cd custom­scanner 
 
Have a look at the scanner source code in the list_rpms.py source file. The ​atomic scan 
command will bind mount directories so the scanner container can read from its ​/scanin 
directory and write to its ​/scanout​ directory. 
  
Begin by making a backup copy of the ​list_rpms.py​ file and modify the custom scanner python 
source code. A simple, recommended change would be to insert an  'etc/lsb­release’ element into 
the array at line 39 before the ‘etc/debian_version’ element.  
 
Also make a backup copy of the original scanner image by change the image tag. Build a docker 
image and install the scanner as you did above. 
 
# docker tag example_plugin:latest example_plugin:v1 
# docker images 
# docker build ­­rm=true ­­force­rm=true ­­tag=example_plugin . 
 
Now run the modified example_plugin scanner on the mystery image again. If everything worked, 
the scanner should help you solve the mystery. 
 
# atomic scan ­­scanner example_plugin ­­scan_type=get­os 
rhserver1.example.com:5000/mystery 

Extra Credit 
Tag the new scanner image so it can be pushed to the registry on rhserver1. On rhserver0, 
configure the scanner to pull the scanner image directly from the registry on rhserver1 by editing 
the scanner configuration file in ​/etc/atomic.d 

Lab 7: Read­only Containers 
Imagine a scenario where an application gets compromised. The first thing the bad guy wants to 
do is to write an exploit into the application, so that the next time the application starts up, it starts 
up with the exploit in place. If the container was read­only it would prevent leaving a backdoor in 
place and be forced to start the cycle from the beginning. 
 

13 



A PRACTICAL INTRODUCTION TO CONTAINER SECURITY 

Docker added a read­only feature but it presents challenges since many applications need to write 
to temporary directories like ​/run​ or ​/tmp​ and when these directories are read­only, the apps fail. 
Red Hat’s approach leverages tmpfs. It's a nice solution to this problem because it eliminates data 
exposure on the host. As a best practice, run all applications in production with this mode.  
 
At the time of this writing, the ­­tmpfs feature is only available via the ​docker­latest​ RHEL package 
so you will need to swap out the Docker runtime in order to complete the lab.  
 
Confirm that you have pushed the docker images to the registries on rhserver1 or rhserver2.  
# docker tag registry.access.redhat.com/rhel7 
rhserver1.example.com:5000/rhel7 
# docker push rhserver1.example.com:5000/rhel7 
 

Configure rhserver0 to use the docker­latest environment. 
 
# systemctl stop docker 
# systemctl disable docker 
# yum remove docker 
# yum reinstall /root/dist/docker­latest­1.10.3­22.el7.x86_64.rpm 
 
Edit ​/etc/sysconfig/docker­latest​ and configure ​rhserver0​ as an insecure registry as you 
did in the first lab then enable and start the docker­latest service. 
 
# systemctl enable docker­latest 
# systemctl start docker­latest 
# systemctl status docker­latest 
 
Now run a read­only container and specify a few writable file systems using the ​­­tmpfs​ option. 
  
# docker run ­­rm ­ti ­­name test ­­read­only ­­tmpfs /run ­­tmpfs /tmp 
rhserver1.example.com:5000/rhel7 bash 
 
Now, try to the following. What fails and what succeeds? Why? 
 
[container \]# mkdir /newdir 
[container \]# mkdir /run/newdir 
 
This concludes the lab on container security. We hope you had fun and learned something in the 
process.Thanks for attending and please complete the course survey. 
 

14 


