
Overhauling Dev Arch
with Ansible Tower and Docker

Scott Van Velsor, Bryan Shake, Khaled Awwad
June 29 1130a #redhat #rhsummit

origins

the landscape that came before

endevor

VB migration
coordinator
thick client

the frame

subversion nexus

 build on check-In
 semi-automated deployments
 environments built by hand
 heroics

 branch & path
limits

 no automation
 confusion
 heroics

dev arch hero

cleanest 42u racks ever

the devs

hudson

processes of the old world

• check-in

• update tool

• send email

• wait

dev
• send

migrate
email

• wait

test
• send

approval
email

• wait

pm
• check tool

• migrate

• update tool
arch deployed!!

rinse & repeat

how does this scale to multiple releases and more environments?
how does this scale to a 100+ person development team?
how is this even sane? what about coordinating deployments on both

platforms?
what about coordinating database changes?
what about coordinating config & script changes?
what about environment changes?

it was obvious

that approach (combined with heroics) supported
• 25+ applications (4 websites)
• 5 major releases/yr + service packs + emergency
• 8 environments
• only 2 release paths to production
• many, many late nights

our enterprise is not small

the architecture challenge

platform and architecture transition
1. replace transactional mainframe CICS

processing with an EAP tier
2. move all batch processing from COBOL batch

on the mainframe to Spring Batch (Java)
3. move non-EAP websites from WebSphere

App Server to EAP
4. create a distinct service tier on EAP for all

application consumption
5. move from DB2 to Oracle

we did this while building the new
infrastructure and transitioning
data & components between data
centers

path to automation

figuring out the plumbing

goals…

+ accommodate more environments, paths, & releases
+ 100% automated environment creation & maintenance
+ 100% coordination of code, config, database changes
+ consolidate/integrate authentication
+ containers (control) for all except perf & prod
+ eliminate the human factor

tenants…

+ if it can’t be automated, redesign it
+ application/environment/enterprise complexity should
never be a factor (see previous)
+ 100% automation, not 99%
+ reduce vendor/tech lock-in
+ it has to be manageable

what we need…

+ configuration repo – CMDB, property files
+ an engine – Ansible/Chef/Puppet
+ a platform – Docker
+ many smart (*new*) people
+ time

keep hands off by applying more hands

cm automationansible infrastructure cmdb

old gen team new gen team

+ team size grew (for now)
+ other operations teams shrank
+ people now touch things through Ansible Tower

the new landscape

** without the meltdowns

well tuned

the evolved state

• check-in
model

• update
ticket

dba

• create
envarch

+ oracle is not yet containerized
+ ansible tower controls everything
+ containers in preprod only
+ generally 200 – 350 containers in use

the cmdb onion

Environments

levels 0-2
- versioned
- manually defined

levels 3-4
- not versioned
- automatically defined

per environment

regions: prod, preprod, aws-east
types: prd, cct, pdt, uat, pft, ops, srt, …
environments: uat004, cct007, pft009, prd001
components: eap, apache, clamav

capabilities

+ version controlled and auditable
+ region/type overrides (versioned)
+ environment/component overrides

+ new version branching/insertion
+ version auto-inheritance (COW)

+ separate version for each area (prior
slide) to allow independent mapping to
each environment

versioned areas

+ architecture
+ application (code/database)
+ application (configuration)
+ job schedule

these can differ between each “install”
of a component within the environment

generic values

regions

types

environments

component instance

integration API

user access & management site

environment status site

ansible tower

config
changes

db model
changes

audit
records

app, build,
checksum

envs
app

versions
containers

& VMs
URLs and
IP/Ports

databases

user
access

info

Infrastructure detailsreleasesdeployments

RESTful API (JSON)
(Ruby / PostgreSQL)

architecture
specification

versioned data

our application
configuration

versioned data

templates

database
objects, tables

versioned
“coordinates”

change sets

3rd party
components

complex business
processing schedule

versioned data

our business
applications

versioned
“coordinates”

compiled code

architecture build
& maintenance

scripts/modules

like a rollercoaster – improvements looped continuously

why ansible?
what we liked…

+ geared toward system admins & archs vs developers
+ YAML – easy to learn & write playbooks
+ agent-less architecture, therefore nothing installed on target machines
+ ssh-based integration approach leverages solid security foundation
+ variable registration & reuse
+ excellent documentation

what we had to live with…
+ newer contender in the market place against Chef & Puppet
which had more maturity
+ community still growing & issue reporting more challenging

Chef
the

competition

Puppet Salt

why containerize with docker?

+ prod runs on vms but that does not mean everything else needs to be on vms
+ our container granularity maps to our production vm granularity allowing us to
run the same automation in all environments in the same way
+ the automation goes hand in hand with the containers – “treat them like cattle,
not pets”
+ control control control – since we did not have control
+ environment/application isolation
+ infrastructure agnostic
+ more flexibility (see control x3)
+ docker is mature, right??
+ there’s nothing better than adding yet another thing to think about with security

bumps & triumphs

growing pains

some of the not so small issues…
+ environment instability - too many environments on an unsupported os led to
many sleepless nights
+ config management – keeping code and config in sync across all the different
environments
+ chaos with deployments – deploy everything everywhere at all times brought
deployment infrastructure to a crawl
+ limited infrastructure & growing demands – everything’s critical and we could not
support all the environment requests coming in
+ bottlenecks – error handling, hung jobs, slow jobs

This did not happen without its major hurdles… they were worth it.

would we do it again?

things to know before you start…
+ select a strong, engaged team (they can be junior)
+ design, design, design, design, design review, plan, design, plan, plan, plan,
design, design, design review, consider building
+ focus on security from the offset, don’t try to layer in later (always true)
+ don’t start with Docker on RHEL6
+ look to openshift to simplify many things now that it leverages Docker
+ don’t completely re-platform your system when doing this
+ get the devs and testers comfortable and excited at the onset so they
understand there will be bumps along the way

Yes, we would do it again without hesitation. It’s not even a conversation.

cost of not automating

$$$ + sanity

cost of automation

it doesn’t matter, just go do it

it’s never done

tasks that remain
+ implement a workflow process engine for release automation
+ further integrate jira ticketing (see previous)
+ automate and containerize oracle
+ cmdb more more more
+ full test suite automation (ops, perf, security, regression)
+ stop ssh’ing into everything
+ containers for prod
+ eap 7 + standalone
+ ansible 2.x – optimizing/rewriting scripts
+ automate what remains – target a self service, on-demand model
+ high availability (scaling & replication) with openshift

find out more

scott van velsor
fscott.van.velsor.jr at accenturefederal.com

bryan shake
bryan.shake at accenturefederal.com

khaled awwad
khaled.t.awwad at accenturefederal.com

#redhat #rhsummit

