3

Overhauling Dev Arch
with Ansible Tower and Docker

Scott Van Velsor, Bryan Shake, Khaled Awwad
June 29 1130a #redhat #rhsummit

origins

w - u- .. w-wes v w

MW WM M WM W W Ew W W

G de ee e e el e

ﬂ\i,w. oo [| oo (ate || oo L1 et LR W

e e e e da e

#redhat #rhsummi

processes of the old world

e check-in e send send

e update tool migrate approval
e send email email email

e Wait e Wait wait

e check tool

° migrate deployed!!
e update tool

rinse & repeat

now does this scale to multiple releases and more environments?
now does this scale to a 100+ person development team?

how is this even sane? what about coordinating deployments on both

platforms?

what about coordinating database changes?
what about coordinating config & script changes?
what about environment changes?

It was obVvIous

that approach (combined with heroics) supported
* 25+ applications (4 websites)
* 5 major releases/yr + service packs + emergency
* 8 environments
* only 2 release paths to production
* many, many late nights

our enterprise is not small

the architecture challenge

platform and architecture transition

1. replace transactional mainframe CICS
processing with an EAP tier

2. move all batch processing from COBOL batch
on the mainframe to Spring Batch (Java)

3. move non-EAP websites from WebSphere
App Server to EAP

4. create a distinct service tier on EAP for all we did this while building the new
application consumption infrastructure and transitioning

data & components between data
5. move from DB2 to Oracle P

path to automation

figuring out the plumbing

goals...

+ accommodate more environments, paths, & releases

+ 100% automated environment creation & maintenance
+ 100% coordination of code, config, database changes what we need...
+ consolidate/integrate authentication

+ containers (control) for all except perf & prod
+ eliminate the human factor

+ configuration repo — CMDB, property files
+ an engine — Ansible/Chef/Puppet

+ a platform — Docker

+ many smart (*new™) people

tenants...

+ if it can’t be automated, redesign it + time
+ application/environment/enterprise complexity should

never be a factor (see previous)

+ 100% automation, not 99%

+ reduce vendor/tech lock-in

+ it has to be manageable

keep hands off by applying more hands

old gen team hew gen team

cm ansible automation infrastructure cmdb

+ team size grew (for now)
+ other operations teams shrank
+ people now touch things through Ansible Tower

v 2
&' \ ‘/(\ Y 4
J .
. e & TR
2. VAVAVLY
b & 3,

1 SPRINGFIELD LE T 11
NUCLEAR -l
20050 POWER PLANT °

: ‘ < V : \
e \.\ ‘—._\ o b
A" \\ \'\\ o
\ - \‘\
\ .
‘Y

\\ -
X
\

) \\‘ l]
\ A W LL !
AN |
€' i \\C}‘ - L3 ‘ U——*”' | ‘ ' ﬂ — <
L]
s v-'r‘“‘k' ! i :.'"":” =
- : | ~! =l 7 “.’ 3 2 ‘ .
a1 ' ‘,
q g’

#iredhat #rhsummit

well tuned

the evolved state

® create

e check-in /

model

e update
ticket

+ oracle is not yet containerized

+ ansible tower controls everything

+ containers in preprod only

+ generally 200 — 350 containers in use

& the cmdb onion

generic values

levels 0-2
- versioned
- manually defined

levels 3-4 environments
- hot versioned

- automatically defined
per environment component instance

g\

these can differ between each “install”
of a component within the environment

regions: prod, preprod, aws-east
types: prd, cct, pdt, uat, pft, ops, srt, ...
environments: uat004, cct007, pft009, prd001

components: eap, apache, clamav

Integration AP|

RESTful API (JSON)

(Ruby / PostgreSQL)
config db model app, build, audit app anve databases URLs and containers
changes changes checksum records versions IP/Ports & VMs
. user
access
info

deployments Infrastructure details

releases

like a rollercoaster — improvements looped continuously

architecture }
our business

specification 3" party applications

components - :
P compiled code

versioned
“coordinates”

database
objects, tables

change sets

architecture build versioned
. {4 - 77
complex business & maintenance coordinates

processing schedule
scripts/modules

our application
configuration

— templates
| -
this takes time to build and optimize... versioned dota ey

why ansible?

what we liked...
+ geared toward system admins & archs vs developers
+ YAML — easy to learn & write playbooks
+ agent-less architecture, therefore nothing installed on target machines
+ ssh-based integration approach leverages solid security foundation
+ variable registration & reuse
+ excellent documentation

%
what we had to live with... 69’?
Chef + newer contender in the market place against Chef & Puppet Q. QQ
which had more maturity Y %A

+ community still growing & issue reporting more challenging

Puppet Salt

why containerize with docker?

+ prod runs on vms but that does not mean everything else needs to be on vms
+ our container granularity maps to our production vm granularity allowing us to
run the same automation in all environments in the same way

+ the automation goes hand in hand with the containers — “treat them like cattle,
not pets”

+ control control control — since we did not have control

+ environment/application isolation

+ infrastructure agnostic

+ more flexibility (see control x3)

+ docker is mature, right??

+ there’s nothing better than adding yet another thing to think about with security

bumps & triumphs

growing pains

This did not happen without its major hurdles... they were worth it.

some of the not so small issues...
+ environment instability - too many environments on an unsupported os led to
many sleepless nights
+ config management — keeping code and config in sync across all the different
environments
+ chaos with deployments — deploy everything everywhere at all times brought
deployment infrastructure to a crawl
+ limited infrastructure & growing demands — everything’s critical and we could not
support all the environment requests coming in
+ bottlenecks — error handling, hung jobs, slow jobs

would we do It again?

Yes, we would do it again without hesitation. It’s not even a conversation.

things to know before you start...
+ select a strong, engaged team (they can be junior)
+ design, design, design, design, design review, plan, design, plan, plan, plan,
design, design, design review, consider building
+ focus on security from the offset, don’t try to layer in later (always true)
+ don’t start with Docker on RHEL6
+ look to openshift to simplify many things now that it leverages Docker
+ don’t completely re-platform your system when doing this
+ get the devs and testers comfortable and excited at the onset so they
understand there will be bumps along the way

cost of hot automating

+ sanity

cost of automation

it doesn’t matter, just go do it

It’s never done

tasks that remain
+ implement a workflow process engine for release automation
+ further integrate jira ticketing (see previous)
+ automate and containerize oracle
+ cmdb more more more
+ full test suite automation (ops, perf, security, regression)
+ stop ssh’ing into everything
+ containers for prod
+ eap 7 + standalone
+ ansible 2.x — optimizing/rewriting scripts
+ automate what remains — target a self service, on-demand model
+ high availability (scaling & replication) with openshift

find odt more

- s -
scott van velsor
fscott.van.velsor.jr at accenturefederal.com
-
bryan shake
bryan.shake at accenturefederal.com
-
- khaled awwad
khaled.t.awwad at accenturefederal.com

