

Microservices with OpenShift
Experience from the fields
Campfire & Battlefield stories
Sébastien Pasche
Security Architect
22.06.2016

Welcome

Who am I ?

twitter @braoru

@Leshop since 2012

I ’am a computer security enthusiast

Security contests, Malware, Web architecture

Open source contributor since 2001

Cinema, Music, Beer, Whisky, Food, Wine

Presentation plan

Not so technical

Who & what is LeShop

Why we dramatically needed micro-services

Battlefield & campfire story

Jobs, Load Balancing, PAAS, Distributed architecture & more

“The corollary of constant change is ignorance.
This is not often talked about: we computer
experts barely know what we're doing. We're
good at fussing and figuring out. We function
well in a sea of unknowns. Our experience has
only prepared us to deal with confusion. A
programmer who denies this is probably lying,
or else is densely unaware of himself.”

Ellen Ullman, Close to the Machine:
Technophilia and Its Discontents

Before we start

This talk is not a set of absolute truth

There are plenty of amazing microservices related talks

I will try to focus on what we found useful in our case

Our choice could not be the best at all, but at least, it worked
for us

Who is leshop.ch ?

Private customers & B2B

Between 10% and 12% of everything
is sold online

Our customer want the ease of use
of amazon with the quality and
flexibility of a local retail
shop

Small country, and relatively
wide area to cover (for our
company size)

Swizerland & LeShop customers

A lot of boxes

700'000 orders/year

45'000'000 items/year to
deliver
Most of them are
fresh(perishable) product

2'900'000 boxes/years to
deliver

180 ton/day to deliver

Where it started

Leshop

Internal ERP, Internal website,
Internal supply chain management,
Internal warehouse management and so
on..

15 years old massive & organically
grown applications started with java
1.0

More than 250 various recurrent jobs

Everything distributed on 5 Data center

308 collaborators

20 IT people (Dev, Design,
Operation & Infrastructure,
Business intelligence)

12 Devs

5 Operations people

The Great divide

Migros (main shareholder) ask us to follow group guidelines and
centralize all our IT within 2 new Data-Center

Several technical requirements must be meet
–Active-Active (Connection between DC can be loss at anytime
without any warning)

–Spread users across both DC (internal and external)
–No DC stickiness

And there is internal requirements
–Must be manageable by small team of people
–2 years from start time to production full launch

Critical business requirements

Time to market
–Being able to release often (hourly) without any downtime

Compliance & security
–Being constantly up to date with software update (Systems,
software and dependencies)

–Being easier to review and analyses

Reproducible & cost efficient
–Unit testable infrastructure and systems configurations

People

People

People tend to react badly to violent change

Always keep in mind the human advantages of technology changes
(ex: less midnight call)

DevOps is not a dream, you just have to make it happen

Make people working in peer (cross team)
–Software packaging
–Bug solving is a good source of accomplishment feeling

Involve everyone on software requirements

People

1 change at a time, and don't
forget mind adaptation time

Avoid the 30 minutes barrier

2 minutes is the maximum length it
should take to explain a change
–If it's longer, split it

Does Never apply a change in production until
you are sure everyone knows what you are
doing

Never forget the
“midnight call

effect”

How we did it

Reminder
Avoid overengineering

Avoid massive and non-flexible
frameworks

Prefer open and well-maintained
frameworks

Workaround is not a new dev
methodology

If something dosen’t work change it

Sometime you need to create

Do not hesitate to learn

Reminder

Follow RFC

–Don’t forget drafts

Apply web best practices

Don’t ignore OWASP

Be critic about what do you read

Understand what you do

Google coding is not a new dev
methodology

LeShop OpenShift dev guidelines

Every request is authenticated
–Client - Service
–Service Service–

Input validation & Output validation within each service
–JSON format, fields content, object creation and so on…

Input business validation & output business validation
–Can this item be in this cart ? Can this item be added ?

LeShop OpenShift dev guidelines

Applications must be stateless and scalable (known limits)

No Client-Service and Service-Service session

Independent and idempotent messages

“Current state” never expire

Work with functional programming approach as much as possible

LeShop OpenShift dev guidelines

No local logs

Split business logs from technical logs

HTTPS only

Application only speak JSON

Application only expose Data

LeShop OpenShift dev guidelines

Security context (user + roles) used at every steps

Input & Output request/s must be throttled and measurable

DB & Service access must be throttled and measurable

PAAS & LeShop 2014/2016

We run on Openshift 2

2 clusters of 25 nodes

Approximately 100 micro services in production

Docker Kubernetes dedicated clusters
–Non Heterogeneous services
–Databases (ElasticSearch, Riak, Redis, Mongo, InfluxDB,
Graphite, LevelDB)

–Services that require high resources

One rule

III

Independent Immutable Idempotent

Design a container ready micro services

Elementary concept

1 service 1 business functionality aka “the unix way”

Services are responsible of their own data

Data processing lead to schema then schema lead to storage
selection

If service(s) need to communicate with other service(s) then use
messages

A database is not a communication channel

Run a self contained services

Self contained container

Advices

Do input & Output throttling
–We use Nginx as input throttling within each container
–We use actors-based programming for output throttling

Each micro-service is tested and a request/s value is stetted
–Scaling and resources planning

I I I
–Each micro-service can run by itself everywhere (independent)
–Each container is completely immutable and reproducible
(idempotent)

Let's make them speak together

Client based approach

Each service is released with a corresponding client library
–Business related Dev should only use business object and never
deal with HTTP layers

Don't forget to use version within your HTTP endpoints to allows
easier and smooth internal library upgrade

Client based approach

Databases and MicroServices

Load Balancing

Load balancing

Avoid single point of failure

III

Place LB as close as possible from client

Internal & External client Facing : FrontEnd LB

Services & Tools client : Load blancer on each node (Independent)
–More complicated but no single point of failure
–All fqdn to 127.0.0.1 (Allow SSL passthroug)

Jobs

Jobs

The best way to manage jobs is to avoid recurrent Jobs
–But it's almost never possible

Use reactive programming instead of batch programming

Minimal requirements
–Jobs must have a single “effective” running instance
–Detect and handle job failures

Jobs distributed the heavy way–

Distributed jobs engine
–Mesosphere
–Chronos + mesos

At least 5 different kinds of services to manage

Not very compliant with small teams and low maintenance times

Jobs leShop way–

Each jobs is owned by a micro-service

Allow each job to be idempotent and independent instances

Each job decided to stop/start himself
–This require each micro-service to use an internal scheduler
–Quartz is an internal scheduler, cron/systemd.timer are
not :-)

Jobs leShop way–

Cleaning phase: detects jobs that are running for too long or are
hung.

Reservation phase: place a reservation for the job

Execution phase: If the instance owns the reservation, it executes
and handles the job.

Place easy to use milestone before critical operation within the
execution phase

You need atomic operations on “quorum”
–You have to use a fully consistent write-oriented database (this is
exactly the SQL pattern)

–But this imply active-passive setup (Break III)

Jobs

Reservation phase

1 Read status of job

2 If <status> is START/RUN ARBORT→

3 Update job status (Start, worker, now)

Execution phase

1 Read status of job

2 If <status> != START || not my worker id ARBORT→

3 Update job status : (Run, worker, now)

4 Peform job:

a regulary update job status

b for critical action, check if worker still own
the job

5 Finish job (Term, worker, now)

Monitoring

Monitoring

Each component runs multiple instances, each instance deals with
jobs
–You may not know the current number of instances at a time T

Monitor business state instead of detailed views

Base your monitoring on business requirements
–A customer can create an account
–A retailer order can be send
–And so on ...

Monitoring
Require deep knowledge of business and inter-services communication
–Luckily, It's exactly the job of the acceptance phase in
continuous delivery

–Just reuse a subset of your acceptance tasks/tests
–Dedicated special HTTP route to run services self-business test

Create a service in charge of running end to end business case
–Use it for continuous integration/delivery

To follow III each test must be self contained and leave do track

Monitoring jobs & instances

We store micro-services status within a distributed databases

Same for jobs

Services instances periodically update their status (from
business internal test)

Job periodically update their status (last completion time)

Check if number of alive instances are able to support business

Check if jobs have run in a business reliable time-span

Migrate and survive the great divide

Where we are and where we go

PAAS & LeShop 2016/2017

We run on Openshift 2

Approximately 100 micro
services in production

Docker Kubernetes dedicated
clusters

Plan to move on Openshift 3
within 2017

We will not add Database within
Openshift

We plan to move some services
from dedicated dockers cluster
to OpenShift 3

Wrap up

Don't forget people

Never forget the human natural Fear of Changes
–Keep change smooth and make them natural and part of your
software life-cycle

–Release often and water down perception of “Breaking change”

Never forget to try on the battlefield
–Use less important services to effectively test your changes

III :-)

Thank you

Authentication

Security context, authentication, AC and no
session

JSON Web Token (JWT) “pronounced JOT”
–draft-ietf-oauth-json-web-token-32

Contain user role & authorizations (Called claims in literature)

Non-cookie based Token

Not automatically sent by browser

Easier to manipulate from non-browser apps

Short and Hard lifetime

Signed and enciphered

Allow message to be independent

Security context, authentication, AC and no session

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

