

Features & Futures: Red Hat Enterprise Virtualization Hypervisor (KVM)

Karen Noel – Senior Software Engineering Manager
Andrea Arcangeli – Sr. Principal Software Engineer
June 2016

Features & Futures:

- Red Hat's KVM Hypervisor
- Virtual CPU and memory hot-plug
- Real-time KVM
- Post-copy live migration
- More futures...

Red Hat Virtualization - KVM

RED HAT® CLOUD INFRASTRUCTURE

RED HAT® CLOUDFORMS
Cloud management platform

RED HAT® SATELLITE
Cloud system management

RED HAT® ENTERPRISE VIRTUALIZATION
Cost-efficient traditional virtualization

RED HAT® ENTERPRISE LINUX® OPENSTACK® PLATFORM
Massively scalable cloud workloads

CL0061

Cloud Infrastructure for Cloud Workloads

RHEV and Red Hat OpenStack Platform

TRADITIONAL: SCALE UP (RHEV)	CLOUD: SCALE OUT (OpenStack)	MIXED/HYBRID
Big stateful VM	Small stateless VMs	Combination of traditional scale-up and cloud scale-out workloads.
1 Application → 1 VM	1 Application → Many VMs	For example: Database may be hosted on traditional workloads, web front-end and logic layers on cloud workloads.
Lifecycle in years	Lifecycle hours to months	
Increased user demand = Scale up (VM gets bigger)	Increased user demand = Scale out (add VMs)	
Not designed to tolerate failure of VM, so you need features that keep VMs up	If a VM dies, application kills it and creates a new one, app stays up	
Application SLA requires enterprise virtualization features (migration, HA, etc.) to keep applications available	Application SLA requires adding/removing VM instances to application cloud to maintain application availability	

KVM Virtualization Stack - host

KVM Virtualization Stack - guest

Who is running RHEL?
RHEV?
OpenStack?
VMware?

ovirt OPEN VIRTUALIZATION MANAGER

Vms:

Data Centers Clusters Hosts Network

New VM Import Edit Remove Clone VM Run Once

	Name	Comment	Host
▼	vsphere-client		
▼	windows7		

Import Virtual Machine(s)

Data Center: Default

Source: VMware

vCenter: 10.35.4.144

Data Center: ovirt

Username: administrator@vsphere.internal

Proxy Host: bamba

1. Connect to vSphere

2: Select VMs to Migrate

Virtual Machines on Source

<input type="checkbox"/>	Name
<input type="checkbox"/>	windows8
<input type="checkbox"/>	fedora21
<input type="checkbox"/>	windows7
<input type="checkbox"/>	vcenter

Virtual Machines to Target

<input type="checkbox"/>	Name
<input type="checkbox"/>	

Vms:

X ☆ Q

Data Centers Clusters Hosts Networks Storage Disks Virtual Machines Pools Templates Users

Log Viewer Events

System

New VM Import Edit Remove Clone VM Run Once Migrate Cancel Migration Cancel Conversion Make Template Export Create Snapshot Change CD Assign Tags Guide Me Red Hat Access Support

1-1

Expand All Collapse All

Name Comment Host IP Address FQDN Cluster Data Center Memory CPU Network Graphics Status

Uptime Description

System

HostedEngine

59 min

Data Centers

Default

Storage

Networks

Templates

Clusters

External Providers

VMware_QE

Errata

Guest Information

General Network Interfaces

Name:

Description:

Template:

Operating System:

Graphics protocol:

Video Type:

Priority:

Bookmarks

Tags

Last Message: Jan 18, 2016 5:56:14 PM Provider VMware_QE was added. (User: admin@internal)

Jan 18, 2016 5:56:14 PM Provider VMware_QE was added. (User: admin@internal)

Jan 18, 2016 5:53:49 PM Provider VMware_QE was removed. (User: admin@internal)

Jan 18, 2016 5:52:05 PM Failed to import Vm RHEL7_20_test to Data Center Default, Cluster Default

Jan 18, 2016 5:52:04 PM VM RHEL7_20_test was successfully removed.

Alerts (0) Events Tasks (0)

Import Virtual Machine(s)

Storage Domain	nfs_0 (195 GB free of 2048 GB)	Allocation Policy	Thin Provision	
Cluster	Default	Attach VirtIO-Drivers	<input type="checkbox"/>	
CPU Profile	Default			

Clone	Name	Origin	Memory	CPUs	Architecture	Disks
<input type="checkbox"/>	RHEL7_18	VmWare	2048 MB	1	x86_64	1

General

Name:	RHEL7_18	Physical Memory	2048 MB	Run On:	Any Host in Cluster
Operating System:	Red Hat Enterprise	Guaranteed:	Not Configured	Custom Properties:	Not Configured
Description:		Free/Cached			
		/Buffered:			
		Number of CPU	1 (1:1:1)	Cluster	
		Cores:		Sockets:Cores/S.:Threads/Compatibility	
Template:		Guest CPU Count:	N/A	Version:	
				VM Id:	423c11bc-

Network Interfaces

Adapter	Device	Driver	MAC Address	IP Address	Subnet Mask	Bridged Adapter	Virtual Interface

Disk

Adapter	Device	Driver	Size	File	Format	File Type	File System	Mount Point

OK Back Cancel

3: Configure RHEV VM

RED HAT ENTERPRISE VIRTUALIZATION

Vms: X ★ Q

Data Centers Clusters Hosts Networks Storage Disks Virtual Machines Pools Templates Users Log Viewer Events

System New VM Import Edit Remove Clone VM Run Once Migrate Cancel Migration Cancel Conversion Make Template Export Create Snapshot Change CD Assign Tags Guide Me Red Hat Access: Support

Expand All Collapse All

System Data Centers Default Storage Networks Templates Clusters External Providers VMware_QE Errata Guest Information

HostedEngine hosted_engine_2 10.35.64.205 purple-vds1.qa.la... Default Default 99% 1% 0% VNC Up 1 h

RHEL7_18 Default Default 0% 0% 0% None Down

4: Completion

General Network Interfaces Disks Snapshots Applications Host Devices Vm Devices Affinity Groups Guest Info Errata Permissions Red Hat Search Red Hat Documentation Events

Time	Message	Correlation Id	Origin	Custom Event Id
Jan 18, 2016 6:18:56 PM	Vm RHEL7_18 was imported successfully to Data Center Default, Cluster Default	666a5101	oVirt	
Jan 18, 2016 5:57:59 PM	Starting to convert Vm RHEL7_18	666a5101	oVirt	
Jan 18, 2016 5:57:53 PM	Starting to Import Vm RHEL7_18 to Data Center Default, Cluster Default	6a11da78	oVirt	
Jan 18, 2016 5:57:53 PM	Add-Disk operation of 'RHEL7_18' was initiated by the system.	ad4f161	oVirt	

Bookmarks

Tags

Last Message: Jan 18, 2016 6:18:56 PM Vm RHEL7_18 was imported successfully to Data Center Default, Cluster Default

Alerts (0) Events Tasks (0)

Jan 18, 2016 6:18:56 PM Vm RHEL7_18 was imported successfully to Data Center Default, Cluster Default

Jan 18, 2016 6:14:15 PM Critical, Low disk space. hosted_storage domain has 4 GB of free space.

Jan 18, 2016 6:13:36 PM Failed to create OVF store disk for Storage Domain hosted_storage. OVF data won't be updated meanwhile for that domain.

Jan 18, 2016 6:13:36 PM Failed to create OVF store disk for Storage Domain hosted_storage. OVF data won't be updated meanwhile for that domain.

<http://libguestfs.org/virt-v2v.1.html#convert-from-vmware-vcenter-server-to-local-libvirt>

From VMWare to KVM...

RHEV:

```
# virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest \
-o rhev -os rhev.nfs:/export_domain --network rhevm
```

RHOSP - Glance:

```
# virt-v2v -i disk disk.img -o glance
```

RHEL:

```
# virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest
```

How does V2V work? Windows Guest

- Check for Group Policy Objects → WARNING!
- Check for Anti-Virus → WARNING!
- Insert RHEV guest agent - add firstboot script to install
- Disable Windows services, intelppm.sys, processor.sys
- Disable autoreboot... just in case
- Upload virtio drivers
 - Modify HKLM\SOFTWARE registry, locate virtio-blk at boot
 - Other drivers – use PCI/driver discovery

Windows Guest – v2v support

- RHEL 7.3 adds Win8+
 - Tech preview? Supported?
 - New Windows driver installation model
 - Being very cautious, needs lots of testing ← volunteer!

How does V2V work? RHEL Guest

- Clean RPM database
- Check kernels available: virtio supported? Which drivers?
- Touch `/.autorelabel` – SELinux will relabel file system on next boot
- `/etc/X11/xorg.conf` – change to use QXL or Cirrus
- Rebuild initrd – so virtio drivers are available

Virtual CPU and memory hot-plug

Memory size > increase

#redhat #rhsummit

<http://captainkvm.com/2016/04/hot-adding-memory-rhev/>

OK
Apply immediately

Memory hot-plug

- Configure guest with:
 - `-maxMemory > currentMemory`
 - NUMA topology
 - `node0` is enough

```
<maxMemory slots='16' unit='KiB'>4194304</maxMemory>
```

```
<cpu>
  <numa>
    <cell id='0' cpus='0-3' memory='524288' unit='KiB' />
  </numa>
</cpu>
```

Memory hot-plug

- Prepare a device memory.xml to attach with:

```
# virsh attach-device memory.xml
```

```
<memory model='dimm'>
  <target>
    <size unit='KiB'>524288</size>
    <node>0</node>
  </target>
</memory>
```

Memory hot-plug

- Memory unplug not supported, yet*
- Use balloon to adjust guest memory down/up

* Currently targeted for a future release of RHEV

Virtual CPU hot-plug

- Configure guest with max vcpus > current vcpus

```
<domain type='kvm'>
  <vcpu placement='static' current='2'>16</vcpu>
```

Virtual CPU hot-plug

- Specify total number of vcpus for guest
 - Unplug is not supported yet*
- RHEL: udev rule brings cpus online
- Fedora: use --guest or add udev rule
 - Configure QEMU guest agent

```
# virsh setvcpus fedora-24 4
# virsh setvcpus fedora-24 4 --guest
```

Virtual Machine Manager

File Edit View

</memory>

[root@localhost ~]# cat /sys/devices/system/cpu/offline

Device attach

Name CPU usage Host CPU usage

[root@localhost ~]# cat /sys/devices/system/cpu/possible

Device attach

fedora-24 Running

[root@localhost ~]# grep processor /proc/cpuinfo | wc -l

[root@localhost ~]# virsh setvcpus fedora-24 --guest 1

[root@localhost ~]# virsh setvcpus fedora-24 --guest 2

[root@localhost ~]# virsh setvcpus fedora-24 --guest 4

[root@localhost ~]#

0 root@localhost:~

Threads: 806 total, 6 running, 799 sleeping, 1 stopped, 0 zomb

%Cpu0 : 100.0/0.0 100[|||||

%Cpu1 : 97.1/2.9 100[|||||

%Cpu2 : 99.0/1.0 100[|||||

%Cpu3 : 100.0/0.0 100[|||||

GiB Mem : 63.4/3.574 [

GiB Swap: 30.0/3.625 [

PID	VIRT	RES	%CPU	%MEM	TIME+	S	COMMAND
9844	3586.0m	654.0m	99.9	17.9	2:51.73	R	CPU 1/KVM
9843	3586.0m	654.0m	99.0	17.9	4:05.44	R	CPU 0/KVM
10763	3586.0m	654.0m	96.2	17.9	1:37.24	R	CPU 3/KVM
10762	3586.0m	654.0m	95.2	17.9	1:39.13	R	CPU 2/KVM
5927	142.2m	21.3m	2.9	0.6	3:29.91	S	x11vnc
9532	122.9m	3.1m	2.9	0.1	1:05.81	R	lt-top
2620	339.4m	51.3m	1.9	1.4	153:33.67	S	Xorg

2 aarcange@localhost:~

[screen 0: root@localhost:~]

0-3

[root@guest ~]# cat /sys/devices/system/cpu/offline

[root@guest ~]# cat /sys/devices/system/cpu/possible

0-3

[root@guest ~]# grep processor /proc/cpuinfo | wc -l

4

[root@guest ~]# yes >/dev/null &

[1] 1794

[root@guest ~]# yes >/dev/null &

[2] 1795

[root@guest ~]# yes >/dev/null &

[3] 1796

[root@guest ~]# yes >/dev/null &

[4] 1797

[root@guest ~]#

1 root@guest:~

Threads: 240 total, 6 running, 234 sleeping, 0 stopped, 0 zomb

%Cpu0 : 17.0/83.0 100[|||||

%Cpu1 : 19.8/80.2 100[|||||

%Cpu2 : 18.0/82.0 100[|||||

%Cpu3 : 16.3/83.7 100[|||||

GiB Mem : 19.2/1.914 [

GiB Swap: 0.0/0.000 [

PID	VIRT	RES	%CPU	%MEM	TIME+	S	COMMAND
1795	109.7m	0.7m	99.9	0.0	2:24.15	R	yes
1796	109.7m	0.6m	99.9	0.0	2:22.58	R	yes
1794	109.7m	0.7m	99.9	0.0	2:26.23	R	yes
1797	109.7m	0.7m	99.9	0.0	2:21.52	R	yes
1659	121.1m	1.2m	1.0	0.1	0:19.13	R	lt-top
1	190.1m	5.4m	0.0	0.3	0:02.41	S	systemd
2	0.0m	0.0m	0.0	0.0	0:00.00	S	kthreadd

3 aarcange@guest:~

RHEL for Real-Time with KVM

Red Hat OpenStack Platform 8*

Real-time KVM

- 1/3 Code
- 1/3 Tuning & Config
- 1/3 Apps & Ops

Collaboration:

- Open source
- HW partners
- NFV partners

KVM-RT - code

- 56% Red Hat contribution as of June 2015 (48 of 86)
- 58% Red Hat contribution as of June 2016 (63 of 109)
- Kernel: mm, core, vmstat, sched, memcontrol, workqueue, timer, cpusets/isolcpus, lib/vsprintf, rcu/nohz/kvm, tracing, kvm/x86
- Ftrace: x86
- RT kernel: rt/kvm
- Libvirt: qemu

KVM-RT – tuning/config host

```
[root@localhost ~]# hwlatdetect
hwlatdetect: test duration 120 seconds
parameters:
    Latency threshold: 10us
    Sample window:    1000000us
    Sample width:     500000us
    Non-sampling period: 500000us
    Output File:      None

Starting test
test finished
Max Latency: 11us
Samples recorded: 6
Samples exceeding threshold: 7
1466464193.0724182328  0      11
1466464211.0725493769  11     0
1466464234.0724915467  0      11
1466464276.0725694788  11     0
1466464280.0725769009  0      11
1466464286.0724895787  11     0
```

```
[root@localhost ~]# hwlatdetect
hwlatdetect: test duration 120 seconds
parameters:
    Latency threshold: 10us
    Sample window:    1000000us
    Sample width:     500000us
    Non-sampling period: 500000us
    Output File:      None
```

```
Starting test
test finished
Max Latency: 0us
Samples recorded: 0
Samples exceeding threshold: 0
```

- * https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
- * <https://access.redhat.com/ecommerce/search/#/category/Server>

KVM-RT - tuned profiles

KVM-RT – tuning/config host

```
# yum install tuned-profiles-realtime tuned-profiles-nfv  
  
# echo "isolated_cores=3,5,7" >> /etc/tuned/realtime-virtual-  
host-variables.conf  
  
# systemctl enable tuned  
# systemctl start tuned  
# tuned-adm profile realtime-virtual-host
```

KVM-RT – tuning/config host

In /etc/default/grub add:

```
default_hugepagesz=1G
```

Update the bootloader:

```
# grub2-mkconfig -o /boot/grub2/grub.cfg
```

Set hugepage reservation:

```
# echo 2 >
/sys/devices/system/node/nodeY/hugepages/hugepages-
1048576kB/nr_hugepages
```

```
[root@virtlab502 proc]# cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-3.10.0-327.18.2.rt56.223.el7_2.x86_64 root=/dev/mapper/rhel_virtlab502-root ro
crashkernel=auto rd.lvm.lv=rhel_virtlab502/root rd.lvm.lv=rhel_virtlab502/swap
console=ttyS1,115200 default_hugepagesz=1G isolcpus=3,5,7 nohz=on nohz_full=3,5,7
intel_pstate=disable nosoftlockup
[root@virtlab502 proc]# 

[root@virtlab502 proc]# tuned-adm active
Current active profile: realtime-virtual-host
[root@virtlab502 proc]# 

[root@virtlab502 proc]# cat /usr/lib/tuned/realtime-virtual-host/lapic_timer_adv_ns
5000 = non matching 0
[root@virtlab502 proc]# cat /sys/module/kvm/parameters/lapic_timer_advance_ns
5000 = non matching 0
[root@virtlab502 proc]# 

[root@virtlab502 ~]# cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
2
[root@virtlab502 ~]#
```

```
[root@compute ~]# vi /etc/nova/nova.conf
...
# Defines which vcpus that instance vcpus can use. For example, "4-12,^8,15"
# (string value)
#vcpu_pin_set=<None>
vcpu_pin_set=3,5,7...
```

```
[root@controller ~]# . keystonerc_admin
[root@controller ~]# nova flavor-create realTime.medium 99 1024 100 4
+-----+-----+-----+-----+-----+-----+-----+-----+
| ID | Name      | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+-----+-----+-----+-----+-----+-----+-----+-----+
| 99 | r1.small | 1024      | 10    | 0          |       | 4     | 1.0          | True       |
+-----+-----+-----+-----+-----+-----+-----+-----+
[root@controller ~]#
[root@controller ~]# nova flavor-key 99 set hw:cpu_policy=dedicated
[root@controller ~]# nova flavor-key 99 set hw:cpu_realtime=yes
[root@controller ~]# nova flavor-key 99 set hw:cpu_realtime_mask="^0-1"
[root@controller ~]# nova flavor-key 99 set hw:mem_page_size=1GB
```

KVM-RT – tuning/config guest

- Install kernel-rt in guest, too!
- Use same default_hugepagesz as host
- Install tuned profile: tuned-profiles-nfv

```
# echo "isolated_cores=2,3" >> /etc/tuned/realtime-virtual-guest-variables.conf
```

```
# tuned-adm profile realtime-virtual-guest
```

```
# grep tuned_params= /boot/grub2/grub.cfg
set tuned_params="isolcpus=2,3 nohz=on nohz_full=2,3
intel_pstate=disable nosoftlockup
```

KVM-RT – apps/ops

- Target applications are NFV networking workloads
- Types of operations to avoid
 - Disk IO
 - Video or Sound
 - Page faults or swapping
 - CPU hot-plug
 - Live migration

KVM-RT – testing

Run cyclictest: confirm guest latencies within expected limits

```
# taskset -c 2 <application>
```

```
# taskset -c 2 cyclictest -m -n -q -p95 -D 24h -h100 -i 200 >
cyclictest.out
```

KVM-RT – testing

- Tuning: real-time tuned profiles host and guest
- Fork app:
 - Simple application executing fork() repeatedly
 - Task that sends signal to fork app

KVM-RT – testing

cyclictest -m -n -q -p95 -D 60s -h60 -i 200 -a 1

KVM Live Migration

Precopy vs Auto Converge vs Postcopy

KVM Live Migration

- Software Dependability
 - Is Live Migration guaranteed to succeed?
 - Emergency Evacuation
 - Recoverable machine checks
 - Hardware maintainance
- Guest performance during live migration
 - Minimize CPU performance impact on the guest
- Live migration time
 - Take as little time as possible
 - To reduce network load as well
- Downtime latency
 - Minimize the downtime with source & destination both paused

Precopy

- Software Dependability
 - **No**
- Guest performance during live migration
 - **Good**
- Live migration time
 - **Bad, could never end/converge**
- Downtime latency
 - **Low, if we sacrifice dependability & migration time**

Auto Converge

- Software Dependability
 - Yes
- Guest performance during live migration
 - *Bad, guest vCPUs may be throttled down heavily*
- Live migration time
 - Bad, the CPU throttling process takes time
- Downtime latency
 - Low, same as precopy
 - Artificial “latency” created during the auto-converge phase

Postcopy after Precopy

- Software Dependability
 - **Yes**
 - Guest memory accesses might block waiting for network I/O *if the network hardware fails*
- Guest performance during live migration
 - ***Guest vCPUs performance is never throttled down***
 - The first access to some memory page in the destination may be delivered at network I/O bandwidth instead of RAM bandwidth, similar to a disk swapin
- Live migration time
 - Lower than precopy & auto converge and **deterministic**
- Downtime latency
 - Lower than precopy & auto converge artificial latencies

```
Network Monitor  
br0  
1131 KB/s / 2 KB/s  
1, q=-1--1, 5000 kb/s, 29.97 fps, 90k tbn, 29.97 tbc (default)  
Metadata:  
encoder : Lavc56.60.100 libvpx  
Stream mapping:  
Stream #0:0 -> #0:0 (vp8 (native) -> vp8 (libvpx))  
Press [q] to stop, [?] for help  
frame= 150 fps= 29 q=0.0 size=N/A time=00:00:05.00 bitrate=N/A  
[root@localhost ~]# stress --vm 1 --vm-keep --vm-bytes $[1500*1024*1024]  
stress: info: [1673] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd  
host $ time virsh migrate --live --timeout 60 --timeout-pause suspend fedora23 qemu+ssh://ept/system
```

```
1st and 2nd packet latency: 20 (ms)  
Setting spike throttle to: 40 (ms)  
Updating spike log initial timestamp  
[2820272069] max_delay: 24 (ms), last: 21 (ms)
```


Live migration total time

Live migration max UDP guest delivery latency

Everything Else

RED HAT
SUMMIT

**LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.**