

Features & Futures: Red Hat Enterprise
Virtualization Hypervisor (KVM)

Karen Noel – Senior Software Engineering Manager
Andrea Arcangeli – Sr. Principal Software Engineer
June 2016

Features & Futures:
● Red Hat's KVM Hypervisor
● Virtual CPU and memory hot-plug
● Real-time KVM
● Post-copy live migration
● More futures...

Red Hat Virtualization - KVM

Cloud Infrastructure for Cloud Workloads

KVM

RHEV and Red Hat OpenStack Platform

TRADITIONAL: SCALE UP
(RHEV)

CLOUD: SCALE OUT
(OpenStack)

MIXED/HYBRID

Big stateful VM Small stateless VMs Combination of traditional
scale-up and cloud scale-out

workloads.

For example: Database may be
hosted on traditional

workloads, web front-end and
logic layers on cloud

workloads.

1 Application → 1 VM 1 Application → Many VMs

Lifecycle in years Lifecycle hours to months

Increased user demand = Scale up
(VM gets bigger)

Increased user demand = Scale out
(add VMs)

Not designed to tolerate failure of VM, so
you need features that keep VMs up

If a VM dies, application kills it and
creates a new one, app stays up

Application SLA requires enterprise
virtualization features (migration, HA,

etc.) to keep applications available

Application SLA requires
adding/removing VM instances to

application cloud to maintain application
availability

libvirt

KVM Virtualization Stack - host

KVM

Red Hat Enterprise Linux

QEMU

virt-manager

openstack-nova

RHEV vdsm

virsh cli

VFIO vhost

QEMU process

KVM Virtualization Stack - guest

virtio drivers
Red Hat Enterprise Linux

qemu-ga

virtio-win drivers
Microsoft Windows

qemu-guest-agent-win

Serial port to host

QEMU process

Serial port to host

Who is running RHEL?
RHEV?

OpenStack?
VMware?

https://www.youtube.com/watch?v=yEjckA-FriU

1. Connect to vSphere

2: Select VMs to Migrate

4: Completion

http://libguestfs.org/virt-v2v.1.html#convert-from-vmware-vcenter-server-to-local-libvirt

From VMware to KVM...

RHEV:
virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest \
 -o rhev -os rhev.nfs:/export_domain --network rhevm

RHOSP - Glance:
virt-v2v -i disk disk.img -o glance

RHEL:
virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest

How does V2V work? Windows Guest

● Check for Group Policy Objects → WARNING!
● Check for Anti-Virus → WARNING!
● Insert RHEV guest agent - add firstboot script to install
● Disable Windows services, intelppm.sys, processor.sys
● Disable autoreboot... just in case
● Upload virtio drivers

– Modify HKLM\SOFTWARE registry, locate virtio-blk at boot
– Other drivers – use PCI/driver discovery

Windows Guest – v2v support

● RHEL 7.3 adds Win8+
– Tech preview? Supported?
– New Windows driver installation model
– Being very cautious, needs lots of testing ←volunteer!

How does V2V work? RHEL Guest

● Clean RPM database
● Check kernels available: virtio supported? Which drivers?
● Touch /.autorelabel – SELinux will relabel file system on next boot
● /etc/X11/xorg.conf – change to use QXL or Cirrus
● Rebuild initrd – so virtio drivers are available

Virtual CPU and memory hot-plug

Memory size
increase

http://captainkvm.com/2016/04/hot-adding-memory-rhev/

OK
Apply immediately

Memory hot-plug

● Configure guest with:
– maxMemory > currentMemory
– NUMA topology

● node0 is enough

 <maxMemory slots='16' unit='KiB'>4194304</maxMemory>

 <cpu>
 <numa>
 <cell id='0' cpus='0-3' memory='524288' unit='KiB'/>
 </numa>
 </cpu>

Memory hot-plug

● Prepare a device memory.xml to attach with:
virsh attach-device memory.xml

<memory model='dimm'>
 <target>
 <size unit='KiB'>524288</size>
 <node>0</node>
 </target>
</memory>

Memory hot-plug

● Memory unplug not supported, yet*
● Use balloon to adjust guest memory down/up

Virtual CPU hot-plug

● Configure guest with max vcpus > current vcpus

<domain type='kvm'>
 <vcpu placement='static' current='2'>16</vcpu>

Virtual CPU hot-plug

● Specify total number of vcpus for guest
– Unplug is not supported yet*

● RHEL: udev rule brings cpus online
● Fedora: use –guest or add udev rule

– Configure QEMU guest agent

virsh setvcpus fedora-24 4
virsh setvcpus fedora-24 4 --guest

RHEL for Real-Time with KVM

Red Hat OpenStack Platform 8*

* KVM-RT is Tech Preview in RHOSP 8

KVM-RT

RHEL-RT

RHEL-RT

Real-time KVM

● 1/3 Code
● 1/3 Tuning & Config
● 1/3 Apps & Ops

Collaboration:
● Open source
● HW partners
● NFV partners

KVM-RT - code

● 56% Red Hat contribution as of June 2015 (48 of 86)
● 58% Red Hat contribution as of June 2016 (63 of 109)
● Kernel: mm, core, vmstat, sched, memcontrol, workqueue, timer, cpusets/isolcpus,

lib/vsprintf, rcu/nohz/kvm, tracing, kvm/x86
● Ftrace: x86
● RT kernel: rt/kvm
● Libvirt: qemu

STOP! Do not continue!

KVM-RT – tuning/confg host

* https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
* https://access.redhat.com/ecosystem/search/#/category/Server

https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

Children

Children/Grandchildren

Parents

latency-performance

realtime

KVM-RT - tuned profiles

realtime-virtual-host realtime-virtual-guest

network-latency

KVM-RT – tuning/config host

yum install tuned-profiles-realtime tuned-profiles-nfv

echo “isolated_cores=3,5,7” >> /etc/tuned/realtime-virtual-
host-variables.conf

systemctl enable tuned
systemctl start tuned
tuned-adm profile realtime-virtual-host

KVM-RT – tuning/config host

In /etc/default/grub add:

Update the bootloader:

Set hugepage reservation:

default_hugepagesz=1G

grub2-mkconfig -o /boot/grub2/grub.cfg

echo 2 >
/sys/devices/system/node/nodeY/hugepages/hugepages-
1048576kB/nr_hugepages

KVM-RT – tuning/config guest

● Install kernel-rt in guest, too!
● Use same default_hugepagesz as host
● Install tuned profile: tuned-profiles-nfv

echo “isolated_cores=2,3” >> /etc/tuned/realtime-virtual-guest-
variables.conf

tuned-adm profile realtime-virtual-guest

grep tuned_params= /boot/grub2/grub.cfg
set tuned_params=”isolcpus=2,3 nohz=on nohz_full=2,3
intel_pstate=disable nosoftlockup

KVM-RT – apps/ops

● Target applications are NFV networking workloads
● Types of operations to avoid

–Disk IO
–Video or Sound
–Page faults or swapping
–CPU hot-plug
–Live migration

KVM-RT – testing

Run cyclictest: confirm guest latencies within expected limits

taskset -c 2 <application>

taskset -c 2 cyclictest -m -n -q -p95 -D 24h -h100 -i 200 >
cyclictest.out

KVM-RT – testing

● Tuning: real-time tuned profiles host and guest
● Fork app:

–Simple application executing fork() repeatedly
–Task that sends signal to fork app

KVM-RT – testing

cyclictest -m -n -q -p95 -D 60s -h60 -i 200 -a 1

KVM Live Migration

 Precopy vs Auto Converge vs Postcopy

KVM Live Migration

● Software Dependability
– Is Live Migration guaranteed to succeed?

● Emergency Evacuation
● Recoverable machine checks
● Hardware maintainance

● Guest performance during live migration
– Minimize CPU performance impact on the guest

● Live migration time
– Take as little time as possible

● To reduce network load as well
● Downtime latency

– Minimize the downtime with source & destination both paused

Precopy

● Software Dependability
– No

● Guest performance during live migration
– Good

● Live migration time
– Bad, could never end/converge

● Downtime latency
– Low, if we sacrifice dependability & migration time

Auto Converge

● Software Dependability
– Yes

● Guest performance during live migration
– Bad, guest vCPUs may be throttled down heavily

● Live migration time
– Bad, the CPU throttling process takes time

● Downtime latency
– Low, same as precopy

● Artificial “latency” created during the auto-converge phase

Postcopy after Precopy

● Software Dependability
– Yes

● Guest memory accesses might block waiting for network I/O if the network
hardware fails

● Guest performance during live migration
– Guest vCPUs performance is never throttled down
– The first access to some memory page in the destination may be delivered at

network I/O bandwidth instead of RAM bandwidth, similar to a disk swapin
● Live migration time

– Lower than precopy & auto converge and deterministic
● Downtime latency

– Lower than precopy & auto converge artificial latencies

Live migration total time

Total time
0

50

100

150

200

250

300

350

400

450

500

autoconverge
postcopy

se
co

n
d

s

Live migration max UDP guest delivery latency

Max UDP latency
0

5

10

15

20

25

precopy timeout
autoconverge
postcopyse

co
n

d
s

Everything Else

 “Meet The Experts” - Thurs 5:45-7 PM Free - Soda/Beer/Wine

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

