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Features & Futures:
● Red Hat's KVM Hypervisor
● Virtual CPU and memory hot-plug
● Real-time KVM
● Post-copy live migration
● More futures...



  

Red Hat Virtualization - KVM



  

Cloud Infrastructure for Cloud Workloads

KVM



  

RHEV and Red Hat OpenStack Platform

TRADITIONAL: SCALE UP 
(RHEV)

CLOUD: SCALE OUT
(OpenStack)

MIXED/HYBRID

Big stateful VM Small stateless VMs Combination of traditional 
scale-up and cloud scale-out 

workloads. 

For example: Database may be 
hosted on traditional 

workloads, web front-end and 
logic layers on cloud 

workloads.

1 Application → 1 VM 1 Application → Many VMs

Lifecycle in years Lifecycle hours to months

Increased user demand = Scale up 
(VM gets bigger)

Increased user demand = Scale out 
(add VMs) 

Not designed to tolerate failure of VM, so 
you need features that keep VMs up

If a VM dies, application kills it and 
creates a new one, app stays up

Application SLA requires enterprise 
virtualization features (migration, HA, 

etc.) to keep applications available

Application SLA requires 
adding/removing VM instances to 

application cloud to maintain application 
availability 



libvirt

KVM Virtualization Stack - host

KVM

Red Hat Enterprise Linux

QEMU

virt-manager

openstack-nova

RHEV vdsm

virsh cli

VFIO   vhost



QEMU process

KVM Virtualization Stack - guest

virtio drivers
Red Hat Enterprise Linux

qemu-ga

virtio-win drivers
Microsoft Windows 

qemu-guest-agent-win

Serial port to host

QEMU process

Serial port to host



  

Who is running RHEL?
RHEV?

OpenStack?
VMware?



  

https://www.youtube.com/watch?v=yEjckA-FriU

1. Connect to vSphere

2: Select VMs to Migrate



  



  

4: Completion



  

http://libguestfs.org/virt-v2v.1.html#convert-from-vmware-vcenter-server-to-local-libvirt



  

From VMware to KVM...

RHEV:
# virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest \
   -o rhev -os rhev.nfs:/export_domain --network rhevm

RHOSP - Glance:
# virt-v2v -i disk disk.img -o glance

RHEL:
# virt-v2v -ic vpx://vcenter.example.com/Datacenter/esxi vmware_guest



  

How does V2V work? Windows Guest

● Check for Group Policy Objects → WARNING!
● Check for Anti-Virus → WARNING!
● Insert RHEV guest agent - add firstboot script to install
● Disable Windows services, intelppm.sys, processor.sys
● Disable autoreboot... just in case
● Upload virtio drivers

– Modify HKLM\SOFTWARE registry, locate virtio-blk at boot
– Other drivers – use PCI/driver discovery



  

Windows Guest – v2v support

● RHEL 7.3 adds Win8+
– Tech preview? Supported?
– New Windows driver installation model
– Being very cautious, needs lots of testing ←volunteer!



  

How does V2V work? RHEL Guest

● Clean RPM database
● Check kernels available: virtio supported? Which drivers?
● Touch /.autorelabel – SELinux will relabel file system on next boot
● /etc/X11/xorg.conf – change to use QXL or Cirrus
● Rebuild initrd – so virtio drivers are available



  

Virtual CPU and memory hot-plug



  

Memory size 
increase

http://captainkvm.com/2016/04/hot-adding-memory-rhev/



  

OK
Apply immediately



  

Memory hot-plug

● Configure guest with:
– maxMemory > currentMemory
– NUMA topology

● node0 is enough

  <maxMemory slots='16' unit='KiB'>4194304</maxMemory>

  <cpu>
    <numa>
       <cell id='0' cpus='0-3' memory='524288' unit='KiB'/>
    </numa>
  </cpu>



  

Memory hot-plug

● Prepare a device memory.xml to attach with:
# virsh attach-device memory.xml

<memory model='dimm'>
  <target>
    <size unit='KiB'>524288</size>
    <node>0</node>
  </target>
</memory>



  

Memory hot-plug

● Memory unplug not supported, yet*
● Use balloon to adjust guest memory down/up



  

Virtual CPU hot-plug

● Configure guest with max vcpus > current vcpus

<domain type='kvm'>
  <vcpu placement='static' current='2'>16</vcpu>  
  



  

Virtual CPU hot-plug

● Specify total number of vcpus for guest
– Unplug is not supported yet*

● RHEL: udev rule brings cpus online
● Fedora: use –guest or add udev rule

– Configure QEMU guest agent

# virsh setvcpus fedora-24  4
# virsh setvcpus fedora-24  4  --guest



  



  

RHEL for Real-Time with KVM



  

Red Hat OpenStack Platform 8*

* KVM-RT is Tech Preview  in RHOSP 8

KVM-RT

RHEL-RT

RHEL-RT



  

Real-time KVM

● 1/3 Code
● 1/3 Tuning & Config
● 1/3 Apps & Ops

Collaboration:
● Open source
● HW partners
● NFV partners 



  

KVM-RT - code

● 56% Red Hat contribution as of June 2015 (48 of 86)
● 58% Red Hat contribution as of June 2016 (63 of 109)
● Kernel: mm, core, vmstat, sched, memcontrol, workqueue, timer, cpusets/isolcpus, 

lib/vsprintf, rcu/nohz/kvm, tracing, kvm/x86
● Ftrace: x86
● RT kernel: rt/kvm
● Libvirt: qemu



  

STOP! Do not continue!

KVM-RT – tuning/confg host

* https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
* https://access.redhat.com/ecosystem/search/#/category/Server

https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application


  

Children

Children/Grandchildren

Parents

latency-performance

realtime

KVM-RT - tuned profiles 

realtime-virtual-host realtime-virtual-guest

network-latency



  

KVM-RT – tuning/config host

# yum install tuned-profiles-realtime tuned-profiles-nfv

# echo “isolated_cores=3,5,7” >> /etc/tuned/realtime-virtual-
host-variables.conf

# systemctl enable tuned
# systemctl start tuned
# tuned-adm profile realtime-virtual-host



  

KVM-RT – tuning/config host

In /etc/default/grub add:

Update the bootloader:

Set hugepage reservation:

default_hugepagesz=1G

# grub2-mkconfig -o /boot/grub2/grub.cfg

# echo 2 > 
/sys/devices/system/node/nodeY/hugepages/hugepages-
1048576kB/nr_hugepages



  



  



  

KVM-RT – tuning/config guest

● Install kernel-rt in guest, too!
● Use same default_hugepagesz as host
● Install tuned profile: tuned-profiles-nfv

# echo “isolated_cores=2,3” >> /etc/tuned/realtime-virtual-guest-
variables.conf

# tuned-adm profile realtime-virtual-guest

# grep tuned_params= /boot/grub2/grub.cfg
set tuned_params=”isolcpus=2,3 nohz=on nohz_full=2,3 
intel_pstate=disable nosoftlockup



  

KVM-RT – apps/ops

● Target applications are NFV networking workloads
● Types of operations to avoid

–Disk IO
–Video or Sound
–Page faults or swapping
–CPU hot-plug
–Live migration



  

KVM-RT – testing

Run cyclictest: confirm guest latencies within expected limits

# taskset -c 2 <application>

# taskset -c 2 cyclictest -m -n -q -p95 -D 24h -h100 -i 200 > 
cyclictest.out



  

KVM-RT – testing

● Tuning: real-time tuned profiles host and guest
● Fork app: 

–Simple application executing fork() repeatedly
–Task that sends signal to fork app



  

KVM-RT – testing

cyclictest -m -n -q -p95 -D 60s -h60 -i 200 -a 1



  

KVM Live Migration

 Precopy vs Auto Converge vs Postcopy



  

KVM Live Migration

● Software Dependability
– Is Live Migration guaranteed to succeed?

● Emergency Evacuation
● Recoverable machine checks
● Hardware maintainance

● Guest performance during live migration
– Minimize CPU performance impact on the guest

● Live migration time
– Take as little time as possible

● To reduce network load as well
● Downtime latency

– Minimize the downtime with source & destination both paused



  

Precopy

● Software Dependability
– No

● Guest performance during live migration
– Good

● Live migration time
– Bad, could never end/converge

● Downtime latency
– Low, if we sacrifice dependability & migration time



  

Auto Converge

● Software Dependability
– Yes

● Guest performance during live migration
– Bad, guest vCPUs may be throttled down heavily

● Live migration time
– Bad, the CPU throttling process takes time

● Downtime latency
– Low, same as precopy

● Artificial “latency” created during the auto-converge phase



  

Postcopy after Precopy

● Software Dependability
– Yes

● Guest memory accesses might block waiting for network I/O if the network 
hardware fails

● Guest performance during live migration
– Guest vCPUs performance is never throttled down
– The first access to some memory page in the destination may be delivered at 

network I/O bandwidth instead of RAM bandwidth, similar to a disk swapin
● Live migration time

– Lower than precopy & auto converge and deterministic
● Downtime latency

– Lower than precopy & auto converge artificial latencies



  



  

Live migration total time
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Live migration max UDP guest delivery latency

Max UDP latency
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Everything Else



  

 “Meet The Experts” - Thurs 5:45-7 PM Free - Soda/Beer/Wine 
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