
A-MQ 7 Sneak Preview

David Ingham
Senior Engineering Manager

June 30, 2016



Red Hat JBoss A-MQ 7

Standard 
protocols

Common 
tooling

Flexible, standards-based messaging for the 
enterprise, cloud and Internet of Things

Broker

• New broker core with 
modern async
architecture

• Improved performance 
and scalability

Interconnect

• Message router

• High-performance 
direct messaging

• Distributed messaging 
backbone

Clients

• New set of AMQP 1.0 
clients

• Support for A-MQ 6.x 
and HornetQ clients for 
backward compatibility



Standard Protocols



Advanced Message Queuing Protocol
AMQP v1.0

Open, standard messaging protocol
General-purpose message transfer protocol that enables cross-platform apps 
to be built using brokers, libraries and frameworks from different vendors

International Standard ISO/IEC 19464

Features
Efficient – binary, connection-oriented protocol

Reliable – range of guarantees, fire-&-forget to reliable, exactly-once delivery

Portable data representation – cross-platform, full-fidelity message exchange

Sophisticated flow control – credit-based flow control & channel multiplexing

Flexible – client-client, client-broker & broker-broker topologies

Broker-model independent – no requirements on broker internals

ISO/IEC 19464:2014

http://www.amqp.org



Container A Container B
Connection

Session

Node B1

Node A2 Node B2

Link 1

Link 2

AMQP Concepts

• Containers (clients, brokers, …) connect to other containers

• Connections manage transfer capacity (frame size, channel count, …)

• Bidirectional Sessions created over Connection. Byte-based flow control.

• Links are created over Sessions for unidirectional message transfer. Credit-based flow control.

Node A1



Message Queuing Telemetry Transport
MQTT v3.1.1

Open, standard messaging protocol
Lightweight publish/subscribe messaging transport for the Internet of Things

International Standard ISO/IEC 20922

Features
Efficient – binary, connection-oriented protocol

Reliable – range of guarantees, fire-&-forget to reliable, exactly-once delivery

Lightweight – minimal overhead of business payload

Simple message format – messages are simple arrays of bytes

Pub/sub model – defines hierarchical pub/sub broker model

ISO/IEC 20922:2016

http://www.mqtt.org



A-MQ 7 Broker



A-MQ 6

EAP 6

HornetQ

Broker consolidation

ActiveMQ 5

Apache ActiveMQ Community

ActiveMQ 5

HornetQ

ActiveMQ
Artemis

A-MQ 7

ActiveMQ
Artemis

EAP 7

ActiveMQ
Artemis



AMQP

AMQP Clients

JMS, C++, Python, 

JavaScript/Node.js,

.NET, …

MQTT

Community 
MQTT Clients

STOMP

Community 
STOMP Clients

Artemis 
“Core”

HornetQ / 
Artemis JMS 
Client Clients

Protocols and clients

OpenWire

A-MQ 6.x Clients

JMS, C++ (CMS),

.NET (NMS)

A-MQ 7 Broker



A-MQ 7 Broker vs. EAP 7 Broker

Feature A-MQ 7 EAP 7

High performance broker based on ActiveMQ Artemis  

JMS 2.0 client library using “Core” protocol  

AMQP 1.0 protocol support  

MQTT protocol support  

OpenWire protocol support  



A-MQ 7 Broker: headline features

• Pure Java, high-performance message broker

• Multi-protocol: AMQP 1.0, MQTT, STOMP, OpenWire, HornetQ Core

• Polyglot: Java JMS, C++, .NET, Python, JavaScript (inc. Node.js)

• Flexible persistence: high performance journal or JDBC

• Support for large messages

• Flexible clustering

• High availability: shared SAN or shared nothing



A-MQ 7 Broker: internal architecture

• Fully asynchronous (non-blocking) internal architecture
• Developed using reactive patterns

• Netty IO

• Thread pooling
• Predictable thread usage (cf. 1 thread per client/queue)

• Configurable thread pools

• High performance journal
• Custom implementation using Linux asynchronous I/O (JNI to libaio)

• Automatically switches to Java NIO implementation when not on Linux

• Compaction



A-MQ 7 Broker: clustering

• Goal: balance message processing across several broker nodes

• Brokers can be grouped into clusters
• Explicit configuration, discovery using UDP multicast, JGroups, …

• Messages arriving on cluster are balanced to different nodes to 
spread the load – default balancing is round robin

• Balancing takes into account selectors and consumers on each node



A-MQ 7 Broker: high availability

Live

Backup

Node

Live

Backup

Node

Live

Backup

Node

Boom!

Live

Backup

Live

Backup



A-MQ 7 Interconnect



A-MQ 7 Interconnect

• AMQP-native message router

• Influenced by Red Hat MRG Messaging use cases

• Supports high performance direct messaging

• Best effort or end-to-end guaranteed delivery

• 1-to-1 or 1-to-many

• Can be used a single instance or connected as a network

• Network offers shortest-path routing with redundancy

• Can be used standalone or in conjunction with broker



Client C

A-MQ 7 Interconnect

Client A Client B

Router
A

Router
A

Client D

Router Config
A: anycast



Client C

A-MQ 7 Interconnect

Client A Client B

Router
B

Router
B

Client D

Router Config
B: multicast



B
ro

ke
r

queue.A

A-MQ 7 Interconnect + Broker

Client A Client B

R
o

u
te

r

queue.A

Router Config

address: 
prefix: queue, waypoint = true

connector:
host: bhost, port: amqp, name: broker1

autoLink
addr: queue.A, connector: broker1, dir: in

autoLink
addr: queue.A, connector: broker1, dir:out



Comparing broker vs. router

A-MQ 7 Broker A-MQ 7 Interconnect Router

Role Intermediary between clients Intermediary between clients

Protocol Supports AMQP (and others) Supports AMQP

Patterns 1:1 (queue) & 1:many (topic) 1:1 (anycast) & 1:many (multicast)

Delivery guarantees Best-effort or guaranteed delivery Best-effort or guaranteed delivery

Ownership Takes ownership of messages Does not take ownership of messages

Contracts 2: sender-broker & broker-receiver 1: sender-receiver

High availability Provided by broker clustering Provided by redundant topology



A-MQ 7 Clients



AMQP 1.0 client libraries
for A-MQ 7 Broker and Interconnect

Java JMS 1.1 client (Apache Qpid JMS based on Qpid Proton)

Reactive C++ client (Apache Qpid Proton)

Reactive Python client (Apache Qpid Proton)

Reactive pure JavaScript client w support for Node.js (GitHub Rhea)

Fully-featured .NET library (GitHub AMQP .NET Lite)



Backward compatibility client libraries
for A-MQ 7 Broker

Java JMS 1.1 client

C++ CMS client (ActiveMQ-CPP)

.NET NMS client (ActiveMQ-NMS)

A-MQ 6.x (OpenWire)

Java JMS 2.0 client

HornetQ (Artemis ‘Core’ protocol)



Common Tooling



A-MQ 7 Broker Hawtio Console



A-MQ 7 Broker

A-MQ 7 Broker Hawtio Console



A-MQ Interconnect

A-MQ 7 Interconnect Hawtio Console



Messaging-as-a-Service



Messaging-as-a-Service (MaaS)

• Elastic-scale messaging utility built using A-MQ 7 on OpenShift

• Separation of concerns
• Application provisioning and monitoring vs. infrastructure administration

• Multi-tenancy
• Different namespaces
• Permissions, quotas and limits

• Support a variety of communication patterns
• Request-response (point-to-point & service pool)
• Pub-sub, events
• Store-and-forward

• Support a variety of different protocols
• AMQP, MQTT, HTTP(1.1& 2)/CoAP, STOMP



Messaging-as-a-Service (MaaS)

• Handle scale in various dimensions
• Number of communicating endpoints (i.e. connections)
• Aggregate message volume
• Number of distinct addresses (or paths)
• Number of producers and consumers on given address
• Examples:

• Inflow of large volume of sensor events for processing
• Making requests on a large number of connected devices
• Broadcasting events to a large number of subscribers

• Elasticity
• Add and remove capacity without disrupting communication



Console

A-MQ 7 on OpenShift

R B

R

R

B

B

R B

R B

Service

Q1

Q2

R

R

Direct

C
lie

n
ts

ConfigMap

{

“Q1": {

"store_and_forward":true, 

"multicast":false },

“Q2": { 

"store_and_forward":true, 

"multicast":false },

“A": { 

"store_and_forward":false,

"multicast":false },

“B": {

"store_and_forward":false, 

"multicast":true }

}

G

G

Generator

Q2

Q1

1

Q1

1

Q2

2

Direct

2 3



Timeline & Summary



A-MQ 7 Timeline

GA

Q1 2017

Beta

Q4 2016

Alpha

Now!



https://access.redhat.com/documentation/en/red-hat-jboss-a-mq/?version=7.0-alpha

http://red.ht/290MtXG



Summary

• A-MQ 7 is the upcoming next major 
release of the popular messaging 
platform

• Improved broker performance and scalability

• New Interconnect router

• New AMQP 1.0 clients

Red Hat JBoss A-MQ 7

Standard 
protocols

Common 
tooling

Flexible, standards-based messaging for the 
enterprise, cloud and Internet of Things

Broker
Interconnect

Router
Clients

• A-MQ 7 on OpenShift = Messaging-as-a-service (MaaS)

• A-MQ 7 Alpha Release is available today – http://red.ht/290MtXG

• A-MQ 7 GA planned for Q1 CY 2017 (tentative)

http://red.ht/290MtXG


Thank You! Any Questions?

@dingha

http://red.ht/290MtXG




