A-MQ 7 Sneak Preview

David Ingham

Senior Engineering Manager

June 30, 2016

################

Red Hat JBoss A-MQ 7

Standard
protocols

Common
tooling

Flexible, standards-based messaging for the
enterprise, cloud and Internet of Things

Broker Interconnect Clients

* New broker core with e Message router e New set of AMQP 1.0
modern async e High-performance clients
architecture direct messaging e Support for A-MQ 6.x

¢ Improved performance e Distributed messaging and HornetQ clients for
and scalability backbone backward compatibility

Q redhat

Standard Protocols

Advanced Message Queuing Protocol
AMQP v1.0

ISO/IEC 19464:2014

http://www.amaqp.org

Open, standard messaging protocol

General-purpose message transfer protocol that enables cross-platform apps
to be built using brokers, libraries and frameworks from different vendors

International Standard ISO/IEC 19464

Features

Efficient — binary, connection-oriented protocol

Reliable — range of guarantees, fire-&-forget to reliable, exactly-once delivery
Portable data representation — cross-platform, full-fidelity message exchange
Sophisticated flow control — credit-based flow control & channel multiplexing
Flexible — client-client, client-broker & broker-broker topologies
Broker-model independent — no requirements on broker internals

Q redhat

AMOQP Concepts

Container A Container B
Connection

Session

Node A1 <l Node B1
Node A2 Node B2

Containers (clients, brokers, ...) connect to other containers

* Connections manage transfer capacity (frame size, channel count, ...)

Bidirectional Sessions created over Connection. Byte-based flow control.

Links are created over Sessions for unidirectional message transfer. Credit-based flow control. @ rednat

Message Queuing Telemetry Transport
MQTT v3.1.1

A

150|1EC

ISO/IEC 20922:2016

http://www.mqtt.org

Open, standard messaging protocol

Lightweight publish/subscribe messaging transport for the Internet of Things
International Standard ISO/IEC 20922

Features

Efficient — binary, connection-oriented protocol

Reliable — range of guarantees, fire-&-forget to reliable, exactly-once delivery
Lightweight — minimal overhead of business payload

Simple message format — messages are simple arrays of bytes

Pub/sub model — defines hierarchical pub/sub broker model

Q redhat

A-MQ 7 Broker

Broker consolidation

A-MQ 6 Apache ActiveMQ Community \

ActiveMQ 5
ActiveMQ
Artemis
HornetQ

ActiveMQ
Artemis

ActiveMQ 5

ActiveMQ

HornetQ K ! /—\PACHy Artemis

Q redhat

Protocols and clients

A-MQ 6.x Clients HornetQ /
JMS, C++ (CMS), Artemis JMS

AMQP Clients Community Community
IMS, C++, Python, MQTT Clients STOMP Clients

JavaScript/Node.js, NET (NMS) Client Clients

NET, ...

Artemis

AMQP MQTT STOMP OpenWire “ ”
Core

A-MQ 7 Broker

Q redhat

A-MQ 7 Broker vs. EAP 7 Broker

High performance broker based on ActiveMQ Artemis

JMS 2.0 client library using “Core” protocol

AMQP 1.0 protocol support X
MQTT protocol support X
OpenWire protocol support X

Q redhat

A-MQ 7 Broker: headline features

* Pure Java, high-performance message broker

* Multi-protocol: AMQP 1.0, MQTT, STOMP, OpenWire, HornetQ Core
 Polyglot: Java JMS, C++, .NET, Python, JavaScript (inc. Node.js)

* Flexible persistence: high performance journal or JDBC

e Support for large messages

* Flexible clustering

* High availability: shared SAN or shared nothing

Q redhat

A-MQ 7 Broker: internal architecture

* Fully asynchronous (non-blocking) internal architecture
* Developed using reactive patterns
* Netty IO

* Thread pooling
* Predictable thread usage (cf. 1 thread per client/queue)
* Configurable thread pools
* High performance journal
* Custom implementation using Linux asynchronous 1/O (JNI to libaio)

e Automatically switches to Java NIO implementation when not on Linux
* Compaction

Q redhat

A-MQ 7 Broker: clustering

* Goal: balance message processing across several broker nodes

* Brokers can be grouped into clusters
 Explicit configuration, discovery using UDP multicast, JGroups, ...

* Messages arriving on cluster are balanced to different nodes to
spread the load — default balancing is round robin

e Balancing takes into account selectors and consumers on each node

Q redhat

A-MQ 7 Broker: high availability

Node

Backup

Q redhat

A-MQ / Interconnect

A-MQ 7/ Interconnect

* AMQP-native message router

* Influenced by Red Hat MRG Messaging use cases

* Supports high performance direct messaging

 Best effort or end-to-end guaranteed delivery

* 1-to-1 or 1-to-many

* Can be used a single instance or connected as a network
* Network offers shortest-path routing with redundancy

e Can be used standalone or in conjunction with broker

Q redhat

A-MQ 7/ Interconnect

Router Config
A: anycast

Router Router

Client A Client B Client C Client D

Q redhat

A-MQ 7/ Interconnect

Router Config
B: multicast

Router Router

Client A Client B Client C Client D

Q redhat

A-MQ 7 Interconnect + Broker

Router Config

address:

prefix: queue, waypoint = true
connector:

host: bhost, port: amgp, name: brokerl
autoLink

addr: queue.A, connector: brokerl, dir: in
autoLink

addr: queue.A, connector: brokerl, dir:out

Client A Client B

Q redhat

Comparing broker vs. router

Role

Protocol

Patterns

Delivery guarantees
Ownership
Contracts

High availability

A-MQ 7 Broker A-MQ 7 Interconnect Router

Intermediary between clients
Supports AMQP (and others)

1:1 (queue) & 1:many (topic)
Best-effort or guaranteed delivery
Takes ownership of messages

2: sender-broker & broker-receiver

Provided by broker clustering

Intermediary between clients
Supports AMQP

1:1 (anycast) & 1:many (multicast)
Best-effort or guaranteed delivery
Does not take ownership of messages
1: sender-receiver

Provided by redundant topology

Q redhat

A-MQ 7 Clients

AMQP 1.0 client libraries

for A-MQ 7 Broker and Interconnect
Java JMS 1.1 client (Apache Qpid JMS based on Qpid Proton)

Reactive C++ client (Apache Qpid Proton)

Reactive Python client (Apache Qpid Proton)

Reactive pure JavaScript client w support for Node.js (GitHub Rhea)

Fully-featured .NET library (GitHub AMQP .NET Lite)

Q redhat

Backward compatibility client libraries

for A-MQ 7 Broker

A-MQ 6.x (OpenWire)

.NET NMS client (ActiveMQ-NMS)

HornetQ (Artemis ‘Core’ protocol)

= Java JMS 2.0 client

Java

Q redhat

Common Tooling

Artemis Connect Dashboard JMX Threads

(=} (2] & admin ¥V
WIEN iE Attributes @ Operations [l Chart

+ Create [al Diagram 7 X
LV "0.0.0.0" ‘
v = IMS Fil
v = Queue Address A Consumer count Dead letter address Delivering count Expiry address First message age First message as json
: aa jms.queue.DLQ 0 jms.queue.DLQ 0 jms.queue.ExpiryQueue 2326669244 [{"address""jms.queue.DLQ","count";26,"messagelD": 2830, "type":3,"priority":4,"userlD":"ID:2
ExpiryQueue
& Q jms.queue.ExpiryQueue 0 jms.queue.DLQ 0 jms.queue.ExpiryQueue [
£ Server
> Topic jms.queue.Q 0 jms.queue.DLQ 0
> Core

jms.queue.ExpiryQueue [t8)]

A-MQ 7 Broker Hawtio Console

Artemis Connect

v "0.0.0.0"
v = Ms
v Queue
£ Do
£+ ExpiryQueue
&0
£+ Server
> Topic
> Core

Threads

Filter x

Attributes @ Operations [Chart % Delete & Browse ¢ Send [a)Diagram

Cb44e7f(9»:fle-11e5-9<<d-54ee7531e(cb-0

CbSlSeﬂ7-:ﬂe-11e5-b4d6-54ee7531ec:b-0

| —

(bifdd99a-cfle-11e5-84c8-54ee7531ecch-0

(Cpabracsd-cire-11e5-abf7-sdee7531eccb-0

‘mpicn

Master Broker: "0.0.0.0"
‘m.o" 59

Node ID: acddb6fd-bec-11e5-9a9e-54ee7531ecchy

&(alhost: 61618"

‘xalhost: 61617"
‘xilhuﬂ: 61619"

Broker:

Started: &

Version: 1.2.0.amq 700 snapshot

L2} & admin vV

View ¥

"0.0.0.0"

A-MQ 7 Broker Hawtio Console

o) =] (7] & Uzer v
Dispatch Router Dashboard

£ Connect # Overview = Entities 3¢ Topology = Schema

Router Info
Attribute

name

Listening on
addrCount

area
debugbDump
hellolnterval
helloMaxAge

id

identity
linkCount
mobileAddrMaxAge
maode
nodeCount
ralinterval
ralntervalFlux
remoteLsMaxAge

routerld

Value
router/QDR.Y
["20005"]

]

]

1

3
QDR.Y
router/QDR.Y
0

60
interior
0

30

4

60

o QDR.D h QDR.A

|

\ /

QDR.C *— QDR.B

QDR.X .‘_ m

Router

Dispatch console

Client

A-MQ 7 Interconnect Hawtio Console

Messaging-as-a-Service

Messaging-as-a-Service (Maa$)

Elastic-scale messaging utility built using A-MQ 7 on OpenShift

Separation of concerns
* Application provisioning and monitoring vs. infrastructure administration

Multi-tenancy
 Different namespaces
* Permissions, quotas and limits

Support a variety of communication patterns
* Request-response (point-to-point & service pool)
* Pub-sub, events
 Store-and-forward

Support a variety of different protocols
« AMQP, MQTT, HTTP(1.1& 2)/CoAP, STOMP

Q redhat

Messaging-as-a-Service (Maa$)

* Handle scale in various dimensions
* Number of communicating endpoints (i.e. connections)
Aggregate message volume
Number of distinct addresses (or paths)
Number of producers and consumers on given address

Examples:
* Inflow of large volume of sensor events for processing
* Making requests on a large number of connected devices
* Broadcasting events to a large number of subscribers

* Elasticity
* Add and remove capacity without disrupting communication

Q redhat

A-MQ 7 on OpenShift

Generator ConfigMap

Direct

\\Ql": {
"store and forward":true,
"multicast":false },
\\QZ": {

, "store and forward":true,

"multicast":false },
\\A" : {

"store and forward":false,
"multicast":false },

\\B" : {
"store and forward":false,
"multicast":true }

Direct Q1

Q2
% a# e% OPENSHIFT @ e

Timeline & Summary

A-MQ 7 Timeline

GA
Q1 2017

Alpha Beta
Now! Q4 2016

Q redhat

- redhat 2;2;2:‘“ Products & Services Tools Security Community

Products & Services } Product Documentation } Red Hat JBoss A-MQ

https://access.redhat.com/documentation/en/red-hat-jboss-a-mq/?version=7.0-alpha

http://red.ht/290MtXG

Product Documentation for Red Hat JBoss A-MQ

Select Welcome to Red Hat JBoss A-MQ 7.0
PRODUCT Ao e

¥ Red Hat JBoss A-MQ

er Pro

PRODUCT VERSION

® 7.0-Alpha Introducing Red Hat JBoss A-MQ 7.0 Available Formats -
: Learn what's changed in this release and about the fundamental concepts of the A-MQ 7 product family.
6.21
62
61
&9 A-MQ Broker
CATEGORY A-MQ Broker 7.0.0 Alpha Release Notes Available Formats~
Welcome to Red Hat JBoss A-MQ Browse the latest information about new features, enhancements, fixes. and issues.
70
Getting Started Using A-MQ Broker Available Formats~
Release Information Describes nstall, configure, monitor. and manage the broker.

Managing a Broker

A-MQ Broker

Clients
A-MO Interconnect A-MQ Interconnect
Administration
Deployment A-MQ Interconnect 1.0.0 Alpha Release Notes Faormats~
eployme
Browse the latest information about new features, enhancements. fixes. and issues.
Reference
A-MQ Clients
JBoss A-MQ xPaaS Image Using A-MQ Interconnect Available Formats~

Describes h o install, configure, and manage interconnect to build a large-scale messaging network

J ONM Plug-in Pack for A-MQ
Integration with JBoss EAP

Ssummary

Red Hat JBoss A-MQ 7

Flexible, standards-based messaging for the
Standard enterprise, cloud and Internet of Things
protocols

* A-MQ 7 is the upcoming next major
release of the popular messaging
platform

* Improved broker performance and scalability Interconnect _
Common Broker S Clients
* New Interconnect router tooling

e New AMQP 1.0 clients

* A-MQ 7 on OpenShift = Messaging-as-a-service (MaaS)
* A-MQ 7 Alpha Release is available today — http://red.ht/290MtXG
* A-MQ 7 GA planned for Q1 CY 2017 (tentative)

Q redhat

http://red.ht/290MtXG

http://red.ht/290MtXG

Thank You! Any Questions?

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

#redhat #rhsummit ‘ redhat

