DEPLOYING NFV: BEST PRACTICES

Rimma Iontel
Senior Cloud Architect, Cloud Practice
riontel@redhat.com

Julio Villarreal Pelegrino
Principal Architect, Cloud Practice
julio@redhat.com
INTRODUCTION TO NFV
Introduction to NFV

What is NFV?

- NFV or **Network Functions Virtualization**:
 - Decoupling of network functions from underlying physical network infrastructure
 - Move of traditional network functions usually deployed in proprietary hardware to software running in virtual machines (VM) on general-purpose hardware or cloud infrastructure
Introduction to NFV

Why the increase in the adoption of NFV?

- Legacy infrastructure is the reason!
 - High costs
 - Lack of flexibility
 - Scalability issues
 - Slow innovation
 - Vendor lock-in
Introduction to NFV

NFV Benefits

- Lower costs:
 - Reduce CapEx
 - Reduce OpEx
- Increases flexibility:
 - Management automation
 - Reusable infrastructure
- Empowers innovation
- Easy to scale
- Faster Time-to-Market
Introduction to NFV
NFV, Open Source, and Red Hat!

83%
of telco operators demand or prefer open systems for their networks

95%
of telco operators see open source as a positive attribute for NFV solutions

Red Hat, Open Source and the Telco Industry

Open platform for network programmability for SDN and NFV
Open Source IaaS cloud platform
Linux® kernel development, innovation, and expansion

OpenStack as NFV

Advantages of OpenStack vs Traditional Virtualization

- Modular components
- Multi-tenancy
- Pluggable storage and networking
- Rich APIs
- Vibrant community
Virtualized Infrastructure Manager

Individual modular OpenStack components collectively deliver a set of capabilities necessary to meet VIM requirements:

- Controls and manages compute, networking and storage resources
 - Allocation and release of individual resources
 - Mapping of physical resources to virtual
 - Secure way of resource sharing across multiple tenants
 - Quota management and enforcement
- Provides platform resiliency with Highly Available control plane
- Exposes APIs to enable orchestration across services and domains
- Provides mechanisms to collect fault and performance data for physical and virtual resources
SDN Options

- Neutron as an SDN provider
 - Support for VLAN, VxLAN, and GRE overlays
 - Open source, supported by upstream, utilizes upstream components
 - QoS and performance optimization
 - Fully integrated into OpenStack development and maintenance tools and cycles

- Commercial SDN Implementations
 - Vendor-dependent
 - Might utilize proprietary components
 - Require integration with NFVi deployment tools
 - Different development cycles from other NFVi components
 - Might provide specialized features
 - Potential faster feature implementation and customizations support
Storage Options

- **CEPH**
 - Open source
 - Utilizes COTS x86 hardware and standard Ethernet and IP connectivity
 - Supported as a backend for all OpenStack storage components: Cinder, Glance, Swift, Nova ephemeral
 - Built-in redundancy

- **Commercial Storage Implementations**
 - Vendor-dependent
 - Might utilize proprietary components and hardware
 - Specialized connectivity requirements
 - Require integration with NFVi deployment tools
 - Different development cycles from other NFVi components
 - Might provide specialized features
Optimized Platform

End-to-end service performance achieved through individual component performance optimization and platform-aware service placement

- Support for Compute intensive workloads with Enhanced Platform Awareness (EPA)
 - Huge pages
 - Allow the use of larger page sizes (2M, 1GB) providing guests with predictable memory access
 - CPU pinning
 - Allows assignment of vCPU cores, and the associated emulator threads, to dedicated CPU cores
 - Thread affinity
 - NUMA awareness

- Support Data-plane intensive workloads with network optimization capabilities
 - Direct device assignments to virtual machines with SR-IOV and PCI-passthrough
 - DPDK-enabled OVS
 - Network QoS
 - Hardware acceleration
Monitoring and Troubleshooting Tools

- Open Source options
 - Elasticsearch
 - Fluentd
 - Kibana
 - Nagios
- Integration with existing tools
 - SNMP
 - syslog
Sample NFV Use Cases

- Virtual Evolved Packet Core (vEPC)
- Virtual IP Multimedia Subsystem (vIMS)
- Virtual Content Delivery
- vRouter/vSwitch
- vIDS/IPS
- Virtual Customer Premise Equipment (vCPE)
- Gi-LAN Virtualization
- vRAN/CRAN
- CORD
- Virtual everything (vDHCP, vDNS, vLB, vFW, vNAT, etc.)
Putting it all together with Red Hat
Red Hat OpenStack Platform

<table>
<thead>
<tr>
<th>IaaS+</th>
<th>IaaS</th>
<th>Deployment and Management</th>
<th>Identity</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemetry</td>
<td>Ceilometer</td>
<td>Sahara</td>
<td>Manila</td>
<td>Heat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compute</th>
<th>Storage</th>
<th>Networking</th>
<th>Bare-Metal Provisioning</th>
<th>Dashboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova</td>
<td>Cinder</td>
<td>Glance</td>
<td>Swift</td>
<td>Neutron</td>
</tr>
</tbody>
</table>

#redhat rhsummit
Red Hat OpenStack NFV Features

- High Availability for Platform and Instances
- Composable Roles
- Enhanced Platform Awareness
 - NUMA Awareness
 - CPU Pinning
 - Huge Pages
- SR-IOV GA (Director Support)
- OVS-DPDK GA (Director Support)
 - OVS 2.6
 - DPDK 16.11
- ODL Tech Preview
- RT-KVM Tech Preview
- Hyper Converged Infrastructure (HCI)
- Nova Device Role Tagging
- VLAN Aware VMs (OVS Support) Tech Preview
Red Hat Ceph Storage

COMPLETE STORAGE FOR OPENSTACK

- Bundled with Red Hat OpenStack Platform
- Director integration for deploying Ceph 2.0
 - Automated deployment with added validation checks
 - Automated deployment for Ceph Object storage in OSP director
 - Management of Ceph major release upgrades with added validation checks
 - Ceph best practice optimized deployment guides
- Deeply integrated with modular architecture and components for ephemeral and persistent storage
 - Nova, Cinder, Manila, Glance, Keystone, Swift
- Speed – instant booting and back-ups
- Optimized for Database as a Service with MySQL workloads
Red Hat CloudForms

- OpenStack Integration for Day 2
 - Manage multiple clouds with one pane of glass
 - Node Management: Stop/Start/Add/Remove for nodes
 - Synchronise with CloudForms Tenants: create, update, delete tenants
 - Support for Domains, Region and Host Aggregate
 - Provisioning: from Volumes, Snapshots, Instances to Volume
 - Cinder Backup/Restore from various back-ends
 - Create, delete snapshot volumes
 - CloudForms Dashboards and Topology view
 - Inventory and represent network topology of OSP infrastructure
 - Out-of-the-box reports focusing on OSP infrastructure
Automation with Red Hat Ansible

- SIMPLE
 - Human readable automation
 - No special coding skills needed
 - Tasks executed in order
- POWERFUL
 - App deployment
 - Configuration management
 - Workflow orchestration
- AGENTLESS
 - Agentless architecture
 - Uses OpenSSH and WinRM
 - No exploits or updates
- Uses YAML format - a simple, human-readable, and familiar way to blueprint the infrastructure
- Full stack automation (HW, OS, IaaS, VMs, Guest OS, Containers, Applications)
Operational Tools

- Full support of Clients for Availability Monitoring (Sensu) and Common Logging (fluentd)
 - Director provides composable service templates for deployment of Sensu monitoring agent and Fluentd configured as a log collector for OpenStack services.
- Reference implementation guide for an Operational Tool server stack
 - The opstools-ansible project is a set of Ansible playbooks
 - Enable operators to install and configure the server-side Operational Tools for availability monitoring, centralized logging, and performance monitoring.
 - Will be distributed and maintained by an upstream channel
 - Component packages will be installed directly from third-party repositories.
THANK YOU

plus.google.com/+RedHat
linkedin.com/company/red-hat
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/RedHatNews
LEARN. NETWORK. EXPERIENCE OPEN SOURCE.