Using BPM Suite in a Reactive Architecture with Microservices, Docker, and Amazon ECS

Andy Bonham, Enterprise Architect, Capital One
Sai Tadigadapa, IT Director, Capital One
David Murphy, Technical Account Manager, RedHat
May 4, 2017
Capital One at a glance

-A leading diversified bank with $357.0 billion in assets, $245.6 billion in loans and $236.8 billion in deposits¹
 - 8th largest bank based on U.S. deposits²
 - 6th largest retail depository institution in metro New York³
 - Largest consumer and commercial banking institution headquartered in the Washington, DC region
 - 3rd largest credit card issuer in the U.S.⁴
 - The 3rd largest issuer of small business credit cards in the U.S.⁵
 - The 3rd largest financial institution auto loan originator⁶
 - Largest U.S. direct bank⁷

-Major operations in 15 U.S. cities, Canada, U.K.

-More than 65 million customer accounts and 45,000 associates

-A FORTUNE 500 Company - #112
 - Numerous recent awards including:
 - Ranked #17 on Fortune Magazine’s list of “100 Best Companies to Work For”
 - Best Places to Work for LGBT Equality by Human Rights Campaign
 - Received J.D. Power & Associates Call Center Certification
 - Aon Hewitt’s Top Companies for Leaders
 - Named to Working Mother’s 100 Best Companies list & Best Companies for Hourly Workers
 - Ranked #10 on Military Times’ 2016 “Best for Vets”
 - Recipient of the Secretary of Defense Employer Support Freedom Award

1) Source: Company reported data as of Q4'16
2) Source: FDIC, Domestic deposits ranking as of Q4'16
3) Source: FDIC, June 2016, deposits capped at $1B per branch
4) Source: Company-reported domestic credit card outstandings, Q4'16,
6) Note: Financial institutions includes banks & specialty finance lenders, Source: AutoCount, 2016 originations
7) Source: Regulatory filings, company reports as of Q4'16
We have transformed the company into a top 10 bank

- 2016 – Acquires Critical Stack and Paribus
- 2015 – Acquires GE Capital’s Healthcare Financial Services, Level Money and Monsoon
- 2014 – Acquires Adaptive Path, a digital design leader and AmeriCommerce, an online e-commerce company
- 2013 – Acquires Beech Street Capital, an originator, underwriter and servicer of multifamily commercial real estate loans
- 2012 – Acquires ING DIRECT, HSBC US Card portfolio
- 2010 – Enters into card partnerships with Kohl’s and Sony in the US and Hudson’s Bay Company and Delta in Canada
- 2009 – Acquires Chevy Chase Bank in the Washington, DC area
- 2006 – Acquires North Fork Bank, one of the largest banks in the New York metro area
- 2005 – Acquires Hibernia National Bank, #1 bank in Louisiana
- 2002 – Launches its Small Business credit card
- 2000 – Introduces slogan, “What’s in your wallet?”
- 1998 – Enters Auto Finance Market
- 1996 – Expands into Canada and the U.K.
- 1995 – Spins off from Signet Bank
- 1994 – Initial Public Offering (IPO)
Capital One’s Technology Transformation

Focus on tech innovation, data-driven solutions and diverse thinking

We hire great technology talent and arm them with the cutting-edge technologies needed to innovate.
Our company is being publicly recognized

- *Fortune’s 2017 100 Best Companies to Work For #17*
- Named one of *Fortune’s 2016 World’s Most Admired Companies*
- Civic 50 list as one of America’s most community-minded companies
- Top 100 Military-Friendly Employers” and “Top 25 Military-Friendly Spouse Employers” by G.I. Jobs
- Ranked #10 on *Military Times’ 2016 “Best for Vets”*
- America’s Top Corporations for Women’s Business Enterprises by Women’s Business Enterprise National Council (WBENC)
- Women Enterprise USA’s “2016 WE USA Corporations of the Year”
- National Business Inclusion Consortium “Best of the Best: Top 30 Corporations for Inclusion”
- Awarded the Secretary of Defense Employer Support *Freedom Award*
- 2017 “Top Companies for Executive Women” by the National Association for Female Executives (NAFE)
- Capital One placed #9 on *Training Magazine’s Training Top 125*
- Information Week Elite 100 #1 for Business Technology Innovators
- “Top Workplace” Richmond, Washington D.C., Chicago, Wilmington, Minnesota, Tampa
- Best Places to Work for LGBT Equality by *Human Rights Campaign*
- Dave Thomas Foundation for Adoption – 100 Best Adoption-Friendly Workplaces
- 2016 top-scoring company and Best Place to Work by the AAPD USBLN Disability Equality Index
We adopted a microservices approach to modernizing our legacy vendor product platform

Legacy Platform is very key in the overall marketing and decisioning flow

- Served well for several years but it is running on unsupported hardware and product version getting out of support very soon
- Has several business rules in the proprietary platform
- Several integration touch points
- But has excellent features for auditing and traceability
Adopting a microservices based approach gave us several advantages

- We can break the problem into small pieces and have dedicated teams solve each piece
- Gives us great agility to respond to change in business intent
- Create a clear sense of ownership for delivery and support for each microservices
We need to solve for auditability, traceability and inherent orchestration a monolithic application provides

Having several microservices execute a business process creates some challenges

- There is no single entity that provides end to end visibility
- Lack of an easy way to orchestrate across the microservices to control the process flow
- Auditability – when a particular microservice executed in response to what trigger
- Challenging to support in production environment as we won’t know where the process stopped and to be able restart from the point of failure
Challenges of a monolithic application

A monolithic application puts all its functionality into a single process...

... and scales by replicating the monolith on multiple servers

*This illustration is from http://martinfowler.com/articles/microservices.html

Can have many dependencies

Can be challenging to make a change
Microservices and their key benefits

A microservices architecture puts each element of functionality into a separate service...

...and scales by distributing these services across servers, replicating as needed.

MICROSERVICES ARE:

- SMALL
 A microservice is very targeted in functionality and scope. Its codebase is relatively small and manageable.

- LOOSELY COUPLED
 Passing messages between services via an appropriate protocol, microservices decouple resources from the underlying technologies.

- CONTINUOUSLY DEPLOYED
 Microservices require good DevOps process, automation, acceptance testing and tooling.

- DISPOSABLE
 The systems microservices are in may be long-lived, but the microservices themselves may be short-lived.

“Organizations often want to frequently roll out updates, even multiple times a day. Consequently, it's no longer adequate to develop simple, monolithic web applications that serve up HTML to desktop browsers.”

Chris Richardson, microservices.io

This illustration is from http://martinfowler.com/articles/microservices.html
A reactive architecture leverages asynchronous messaging between microservices

Orchestration:
- Provides tight control for sequential processing
- Tightly coupled
- Can be blocking
- Central shared orchestrator instance is single point of failure

Reactive:
- Async enables faster processing time
- Decoupling makes it easier to change
- Extensible
- Async programming is a mind shift; flow is decentralized
Example of a Reactive Architecture....
Docker

- Docker is a container technology built to enable DevOps methodologies and make it easy to package software, along with all its dependencies, so the same code can be shipped *with no alteration* to staging, production, the cloud, or anywhere else it needs to run.
Amazon EC2 Container Service (ECS)

- highly scalable, fast, container management service
- makes it easy to run, stop, and manage Docker containers on a cluster of EC2 instances
- can schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements
- eliminates the need to operate your own cluster management and configuration management systems or worry about scaling your management infrastructure
RedHat Business Process Management (BPM) Suite

- Bridges Business and Technical resources together
- Leverages BPMN 2.0
- Natively integrated with Drools Rules
- Supports human workflow and system workflow
- Various APIs
- Java based and very Extensible
- BAM, Dashboards, Reports, Analytics
Kafka is a distributed streaming platform

- Used in conjunction with Zookeeper
- Runs as a cluster
- Records are stored in categories called topics
- Provides 4 core APIs: Producer, Consumer, Streams and Connector
- Supports both publish-subscribe and queuing through a consumer group concept
- Very Fast and has very high throughput – many use it for backpressure
- Can be used for message replay as the messages do not have destructive reads like traditional messaging technologies
- Guarantees order of messages within a partition, but not across partitions
- Very easy to get up and running

http://kafka.apache.org/documentation.html
Combining all of these technologies & patterns together can create a powerful solution

- BPM Suite for coordinating a reactive workflow
- Leverage Kafka as the messaging mechanism between the microservices and BPM Suite
- Docker for microservice deployment
- ECS for docker container management
Kafka Integration

kie-server extension

KIE Server is built on a concept of extensions. All capabilities are implemented as extensions:
- KIE Server extension
- Drools extension
- jBPM extension
- jBPM UI extension
Kafka Integration
kie-server extension

So we’re going to add one more
- KIE Server extension
- Drools extension
- jBPM extension
- jBPM UI extension
- Kafka extension
Kafka Integration
architecture
Fraudulent Transaction Use Case
A business process to simulate the transaction

This business process submits the below event to Kafka:
{"id": "33bb75db-6e13-48ee-8a54-b3976d3d065b","action": "Transaction Received"}
ECS setup

- Create cluster
- Create task definitions
- Create service
Create Task Definitions
Create Service

Update Service

A service lets you specify how many copies of your task definition to run. You could also use Elastic Load Balancing to distribute incoming traffic to your tasks. Amazon EDS keeps that number of tasks running and coordinates task scheduling with the load balancer.

- Task Definition: uproute.3
- Cluster: RedhatSummitDemo
- Service name: uproute
- Number of tasks: 1
- Minimum healthy percent: 50
- Maximum percent: 200

Optional configurations

Service Auto scaling

Automatically adjust your service's desired count up and down in response to CloudWatch alarms.

Configure Service Auto Scaling

[Cancel] [Update Service]
ECS deploys the container to the ECS Cluster
Task is deployed successfully
Task is deployed successfully
EC2 Container Instance is running
Lessons Learned of this approach

- Coordinator can be a single point of failure
 - Evaluate East/West deployment for active/active (application and database layers)

- Need a Unique ID (correlation ID) that goes across all microservices

- Apply this pattern where:
 - there are synchronous blocks of asynchronous processing
 - there is a need to see the overall all end to end business process at design time and run-time
 - there is a need to decouple as much as possible to eliminate dependencies
References

- Github repo for demo
 https://github.com/andy9876/ReactiveBPMDemo

- Microservices: When to react vs. orchestrate
 https://medium.com/capital-one-developers/microservices-when-to-react-vs-orchestrate-c6b18308a14c

- Comparing and Contrasting Open Source BPM Products
 https://medium.com/capital-one-developers/comparing-and-contrastin
THANK YOU
LEARN. NETWORK. EXPERIENCE OPEN SOURCE.