Container-Native Storage for Modern Applications with OpenShift and Red Hat Gluster Storage

Driving the Future of Storage

Sayan Saha
Director, Product Management, Storage Business, Red Hat

Michael Adam
Engineering Manager, Container-Native Storage, Red Hat

Annette Clewett
Senior Storage Architect, Storage Business, Red Hat

Daniel Messer
Technical Marketing, Storage Business, Red Hat
The Journey So Far
Containers are for stateless workloads only, right?
Containers need Persistence

Microservice Application
- Authentication
- Business Logic
- Indexing Service
- Application State

Monolithic Application
OpenShift supports Persistent Storage

- GlusterFS
- Amazon EBS
- Azure Disk
- GCE Disk
- iSCSI
- NFS
- Ceph RBD

AUTOMATED CONFIGURATION
SINGLE CONTROL PANEL
CHOICE OF PERSISTENT STORAGE
What if we could provide that out of the box?
Introducing Container-Native Storage

- Co-Locate Storage and Apps
- Dynamic Provisioning
- Managed by OpenShift
- Infrastructure-Agnostic
Why would I want this?
Consistent Storage Experience
Storage Consolidation

EBS gp2 vs. EBS sc1

Container-native Storage

[Diagram of storage consolidation with various EBS types connected to a container platform]
Simplify Container Availability

Availability Zone A

Availability Zone B

Availability Zone C
Demonstration
OpenShift + Storage - How it all works!
So... what is CNS?

- CNS: providing dynamic persistent storage for openshift with Gluster in a hyper-converged fashion

- Heketi: the high-level service interface to gluster to manage the lifecycle of volumes in one or more Gluster clusters.

Openshift \iff Heketi \iff Gluster
Components of CNS

• In openshift/kubernetes:
 ○ dynamic glusterfs provisioner
 ○ glusterfs plugin

• Heketi:
 ○ high-level service interface for gluster volume lifecycle management
 ○ Running as a container in openshift

• glusterfs:
 ○ one or more glusterfs clusters
 ○ running as containers in openshift

• cns-deploy:
 ○ tool to deploy gluster and heketi into an existing openshift cluster
Open Source! \Rightarrow Upstream Bits

- https://github.com/gluster/gluster-kubernetes
- https://github.com/heketi/heketi
- https://github.com/kubernetes/kubernetes: pkg/volume/glusterfs/
- https://github.com/gluster/gluster
Glossary: OpenShift/Kube Storage

- **pod**: group of one or more containers that form an entity
- **persistent volume (PV)**: to be mounted by application pod
- **provisioner**: to provide PVs upon request
- **plugin**: mechanism to mount the PV, referenced in PV
- **persistent volume claim (PVC)**: mechanism for a user to request a PV
- Access types for volumes:
 - RWO - read write once (single node)
 - RWX - read write many (multiple nodes)
 - ROX - read only many (multiple nodes)
- Flavors of provisioning: dynamic and static
Dynamic Provisioning (OCP 3.4)

1. Submit Persistent Volume Claim
2. OpenShift requests volume to be created
3. Persistent volume is created by storage system and registered with OpenShift
4. OpenShift binds persistent volume to persistent volume claim request
PV creation: glusterfs dynamic provisioner

- PVC (created by user) references the glusterfs provisioner
 - glusterfs provisioner extracts details from PVC
 - provisioner tells heketi to create a volume of given size and type
 - heketi looks for a gluster cluster that can satisfy this request
 - if found, heketi tells the gluster instance to create the volume
 - gluster creates a volume
 - Heketi hands volume back to provisioner
 - provisioner creates PV and puts the gluster volume details into it
 - provisioner puts glusterfs as the mount plugin into the PV
 - Provisioner returns PV to the caller
- PVC is bound to the PV and can later be used in a pod by the user
What’s shipping Today
Container Storage Use Cases

Persistent Storage for Apps
Storage for OpenShift Infra (Registry)
OpenShift Registry on CNS

- Scalable
- Highly-Available
- Automated
- Integrated

RED HAT GLUSTER CONTAINER-NATIVE STORAGE

PERSISTENT VOLUME
CNS 3.4 (Jan 2017)

- Set it all up in a single command (cns-deploy)
- Dynamic provisioning
- Deploy Gluster cluster as a DaemonSet
- Basic scalability
 - Serving 100+ volumes from 3-node cluster
CNS 3.5 (April 2017)

- CNS volumes can now back the OpenShift Registry
- Day-2 maintenance operations: Remove/replace disk
- Enabled policy based workload provisioning
- Basic support for snapshots and replication
- Greatly enhanced scalability (in number of volumes)
 - Can serve 300+ volumes from 3-node cluster instead of 100
Reference Architecture & Demo
Reference Architecture Description

OpenShift with Container Native Storage on Amazon Web Services
Reference Architecture: https://access.redhat.com/articles/3018151
Demonstration II
What does the future look like?
Key Asks from Customers

Larger RHGS volume density per 3-node cluster
Proper support for RWO workloads
Lightweight S3 access for developers
Day-2 Maintenance
Roadmap

- Greatly improved scalability (1000+ ?)
- Proper RWO-support with gluster-block
- Day-2 maintenance continued: remove node, ...
- Gluster as registry backend native choice
- Lightweight S3 support for applications
- CNS deployment integrated with openshift-ansible
Gluster-Scale: Brick Multiplexing

- **Why?**
 - Radically lower CPU, memory and port consumption/usage
 - Order of magnitude increase in the number of volumes per cluster especially for OpenShift storage

- **What it is?**
 - Move from 1 brick per process to multiple bricks per process
 - Many bricks can consume one port, one set of global data structures, and one pool of global threads
 - Configurable number of bricks per Server Process
 - Provides more flexibility for I/O scheduling across volumes

- **When?**
 - Summer 2017 for container-storage use-cases
Better RWO support for OpenShift

● Why
 ○ Current Gluster-file volumes do not meet performance requirements of some RWO workloads

● What
 ○ iSCSI access to volumes with tcmu-runner and libgpfapi
 ○ Orchestration of block devices managed by gluster-block
 ○ New gluster-block provisioner for kubernetes

● When
 ○ Summer CY 2017
S3 support for OpenShift

- Why?
 - S3 support for building cloud-native apps

- What it is?
 - Gluster-s3 container provides a S3 interface to a gluster volume
 - Embedded as a micro-service inside OpenShift
 - Targeted for binary build archival, backups, and registry storage

- When?
 - 2-H CY 2017
THANK YOU

plus.google.com/+RedHat
linkedin.com/company/red-hat
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/RedHatNews
LEARN. NETWORK. EXPERIENCE OPEN SOURCE.