B

GPUs: HMM: Heterogeneous Memory
Management

Using HMM to Blur the Lines Between CPU and GPU
Programming

John Hubbard (NVIDIA), Jerome Glisse (Red Hat)
May 4, 2017

#redhat #rhsummit « - redhat



Agenda: Part 1: HMM Overview

e Why heterogeneous programming matters
e Introduction to us

e GPUs: 10 second overview

e GPUs, CPUs, and Busses: speeds

e (GPU programming: barriers to adoption

e HMM: your code, before and after

e (CPU and GPU Page faults

e Profiler: see the page faults in action



Agenda Part 2: HMM 1n depth

e Hardware approaches: CCIX/CAPI
e Software approaches: HMM

e HMM: On the horizon

e HMM: Do’s and Don’ts

e Programmer-level APIs

e HMM: Distant future

e HMM: Under the hood



Agenda Part 3: Q&A session

e (Questions and Answer session

e References



HMM Part 1: HMM Overview

John Hubbard
Principal Software Engineer, NVIDIA

#tredhat #rhsummit « - redhat



Agenda: Part 1

e Why heterogeneous programming matters
e Introduction to us

e GPUs: 10 second overview

e (GPUs, CPUs, and Busses: speeds

e GPU programming: barriers to adoption

e HMM: your code, before and after

e (CPU and GPU Page faults

e Profiler: see the page faults in action



GPU Programming: 10 second overview

e 10,000’s of threads

e Huge memory bandwidth

e Device driver required

e (CPU cannot directly read from GPU memory
e Separate CPU and GPU memory address space



Typical local memory and bus speeds (GB/s)
800

700

600

500

400

300

200

100

L

CPU: DDR4 GPU: Pascal PCle 3.0 NVLink 1.0

O Bandwidth



GPU Programming: Barriers to Adoption

e [anguages
e Libraries
e Long Tails: lots of rarer applications

e Programming model: see the next slide



Standard Unified Memory (CUDA 8.0)

#include <stdio.h>
#define LEN sizeof (int)

__global _ void
compute this(int *pDataFromCpu)
{

atomicAdd (pDataFromCpu, 1) ;
}

int main (void)

{
int *pData = NULL;
cudaMallocManaged (&pData, LEN) ;
*pData = 1;

// Run on GPU:
compute_ this<<<512,1000>>>(pData) ;
cudaDeviceSynchronize () ;

printf (“Results: %d\n”, *pData);
cudaFree (pData) ;
return 0;

Unified Memory + HMM

#include <stdio.h>
##define LEN sizeof (int)

__global _ void
compute_this(int *pDataFromCpu)
{

atomicAdd (pDataFromCpu, 1) ;
}

int main (void)

{
int *pData = (int*)JEWEEYs(LEN) ;
*pData = 1;

// Run on GPU:
compute this<<<512,1000>>>(pData) ;
cudaDeviceSynchronize () ;

printf (“Results: %d\n”, *pData);
free (pData) ;
return 0;



Anatomy of a CPU page fault (with HMM)

e *p=235;// page fault: page is not on CPU

e HMM sees that page is part of a mirrored address space
e HMM notifies the device driver about this matter

e Device driver copies page from GPU to CPU

e Device driver unmaps the page on the GPU (important)
e HMM maps the page on GPU

e Linux kernel replays the CPU page access:

e *p=235;// continues running



Anatomy of a GPU page fault (with HMM)

e *q=7;//In GPU code. Page fault because page is on CPU, not on GPU

e GPU raises a CPU interrupt, GPU device driver handles the interrupt

e GPU driver (UVM: Unified [Virtual] Memory driver) asks HMM for physical page
e HMM finds CPU physical page to match the virtual address that GPU faulted on

e HMM and GPU driver coordinate to copy page from CPU to GPU

e HMM unmaps page from CPU (important)

e GPU driver maps page on GPU, and replays the access

e *q=7;// continues running on GPU



Performance visibility: profiler

$ /usr/local/cuda/bin/nvprof --unified-memory-profiling per-process-device ./hmm app
==19835== NVPROF is profiling process 19835, command: ./hmm app

Results: 512001

==19835== Profiling application: ./hmm_app

==19835== Profiling result:

Time (%) Time Calls Avg Min Max Name

100.00% 1.2904ms 1 1.2904ms 1.2904ms 1.2904ms compute this (int*)

==19835== Unified Memory profiling result:

Device "GeForce GTX 1050 Ti (O)"
Count Avg Size Min Size Max Size Total Size Total Time Name
2 32.000KB 4.0000KB 60.000KB 64.00000KB 42.62400us Host To Device
2 32.000KB 4.0000KB 60.000KB 64.00000KB 37.98400us Device To Host
1 - - - -1.179410ms GPU Page fault groups

Total CPU Page faults: 2

==19835== API calls:
Time (%) Time Calls Avg Min Max Name
98.88% 388.41ms 1 388.41ms 388.41ms 388.41ms cudaMallocManaged

0.39% 1.5479ms 190 8.1470us 768ns 408.58us cuDeviceGetAttribute
0.33% 1.3125ms 1 1.3125ms 1.3125ms 1.3125ms cudaDeviceSynchronize
0.19% 739.71us 2 369.86us 363.81lus 375.90us cuDeviceTotalMem
0.13% 524.45us 1 524.45us 524.45us 524.45us cudaFree

0.04% 137.87us 1 137.87us 137.87us 137.87us cudalaunch

0.03% 126.84us 2 63.417us 58.109%us 68.726us cuDeviceGetName

0.00% 11.524us 1 11.524us 11.524us 11.524us cudaConfigureCall
0.00% 6.4950us 1 6.4950us 6.4950us 6.4950us cudaSetupArgument
0.00% 6.2160us 6 1.0360us 768ns 1.2570us cuDeviceGet

0.00% 4.5400us 3 1.5130us 838ns 2.6540us cuDeviceGetCount



HMM Part 2: HMM in depth

Jerome Glisse
Linux Kernel Engineer, Red Hat

#tredhat #rhsummit « - redhat



Hardware solution

e PowerPC architecture CAPI bus
e (CCIX consortium (ARM, AMD, ...)



Heterogeneous Memory Management
HMM

e Software solution
e Duplicate CPU page table on the device

e Allow migration of process memory from main memory to device memory



On the horizon

e Duplicate memory
e Migration of file back page (mmap of file)
e Multi-GPU improvements

e Performance optimization



DO

e Prefer large allocation (multi mega bytes)
e Use aligned allocation (posix_memalign()) (2MB alignment or bigger)

e Work on anonymous memory (malloc/calloc/newy/...)



DO NOT (better not to)

e fork
e Concurrent CPU and GPU access
e Small allocations

e (Changing memory protection (mprotect())



API for share virtual address space

e CUDA
e OpenCL
e Others



Distant future

e More seamless integration with language like C++ (for (par), ...)

e OpenMP



Under the hood

® Add struct page for device memory
e Most kernel code unaware of device memory specificities
e Use mmu_notifier to track CPU page table update

e Grow migrate mechanism to support migration to device memory



HMM Part 3: Question & Answer sess‘lon

« - redhat



HMM: References

e hitps://cgit.freedesktop.org/~glisse/linux/log/?h=hmm-v21 (Source code for the kernel patch)
e https://lkml.org/lkml/2017/4/24/747 HMM Patchset v21, in email discussion

e hitp:/www.nvidia.com/object/unix.html UVM (Unified Virtual Memory) drivers for NVIDIA
GPUs, that will use HMM kernel features

e https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
(How many "CUDA cores” in a Pascal GPU? And more)

e http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4g4BTGGsW NVIDIA CUDA C
Language Programming Guide




THANK YOU

Qs
in

You

#redhat #rhsummit

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

f

v

facebook.com/redhatinc

twitter.com/RedHatNews

- redhat.



BT

LEARN. NETWORK.
EXPERIENCE

OPEN SOURCE.

#redhat #rhsummit

redhat.



