
GPUs: HMM: Heterogeneous Memory 
Management

Using HMM to Blur the Lines Between CPU and GPU 
Programming

John Hubbard (NVIDIA), Jerome Glisse (Red Hat)
May 4, 2017



Agenda: Part 1: HMM Overview

● Why heterogeneous programming matters

● Introduction to us

● GPUs: 10 second overview

● GPUs, CPUs, and Busses: speeds

● GPU programming: barriers to adoption

● HMM: your code, before and after

● CPU and GPU Page faults

● Profiler: see the page faults in action



Agenda Part 2: HMM in depth

● Hardware approaches: CCIX/CAPI

● Software approaches: HMM

● HMM: On the horizon

● HMM: Do’s and Don’ts

● Programmer-level APIs

● HMM: Distant future

● HMM: Under the hood



Agenda Part 3: Q&A session

● Questions and Answer session

● References



HMM Part 1: HMM Overview

John Hubbard
Principal Software Engineer, NVIDIA



Agenda: Part 1

● Why heterogeneous programming matters

● Introduction to us

● GPUs: 10 second overview

● GPUs, CPUs, and Busses: speeds

● GPU programming: barriers to adoption

● HMM: your code, before and after

● CPU and GPU Page faults

● Profiler: see the page faults in action



GPU Programming: 10 second overview

● 10,000’s of threads

● Huge memory bandwidth

● Device driver required

● CPU cannot directly read from GPU memory

● Separate CPU and GPU memory address space



0

100

200

300

400

500

600

700

800

CPU: DDR4 GPU: Pascal PCIe 3.0 NVLink 1.0

Typical local memory and bus speeds (GB/s)

Bandwidth



GPU Programming: Barriers to Adoption

● Languages

● Libraries

● Long Tails: lots of rarer applications

● Programming model: see the next slide



#include <stdio.h>
#define LEN sizeof(int)

__global__ void
compute_this(int *pDataFromCpu)
{

atomicAdd(pDataFromCpu, 1);
}

int main(void)
{

int *pData = NULL;
cudaMallocManaged(&pData, LEN);
*pData = 1; 

// Run on GPU:
compute_this<<<512,1000>>>(pData);
cudaDeviceSynchronize();

printf(“Results: %d\n”, *pData);
cudaFree(pData);
return 0;

}

#include <stdio.h>
#define LEN sizeof(int)

__global__ void
compute_this(int *pDataFromCpu)
{

atomicAdd(pDataFromCpu, 1);
}

int main(void)
{

int *pData = (int*)malloc(LEN);
*pData = 1; 

// Run on GPU:
compute_this<<<512,1000>>>(pData);
cudaDeviceSynchronize();

printf(“Results: %d\n”, *pData);
free(pData);
return 0;

}

Standard Unified Memory (CUDA 8.0) Unified Memory + HMM



Anatomy of a CPU page fault (with HMM)

● *p = 5; // page fault: page is not on CPU

● HMM sees that page is part of a mirrored address space

● HMM notifies the device driver about this matter

● Device driver copies page from GPU to CPU

● Device driver unmaps the page on the GPU (important)

● HMM maps the page on GPU

● Linux kernel replays the CPU page access:

● *p = 5; // continues running



Anatomy of a GPU page fault (with HMM)

● *q = 7; // In GPU code. Page fault because page is on CPU, not on GPU

● GPU raises a CPU interrupt, GPU device driver handles the interrupt

● GPU driver (UVM: Unified [Virtual] Memory driver) asks HMM for physical page

● HMM finds CPU physical page to match the virtual address that GPU faulted on

● HMM and GPU driver coordinate to copy page from CPU to GPU

● HMM unmaps page from CPU (important)

● GPU driver maps page on GPU, and replays the access

● *q = 7; // continues running on GPU



Performance visibility: profiler
$ /usr/local/cuda/bin/nvprof --unified-memory-profiling per-process-device ./hmm_app
==19835== NVPROF is profiling process 19835, command: ./hmm_app
Results: 512001
==19835== Profiling application: ./hmm_app
==19835== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.2904ms 1 1.2904ms 1.2904ms 1.2904ms compute_this(int*)

==19835== Unified Memory profiling result:
Device "GeForce GTX 1050 Ti (0)"
Count Avg Size Min Size Max Size Total Size Total Time Name
2 32.000KB 4.0000KB 60.000KB 64.00000KB 42.62400us Host To Device
2 32.000KB 4.0000KB 60.000KB 64.00000KB 37.98400us Device To Host
1 - - - - 1.179410ms GPU Page fault groups

Total CPU Page faults: 2

==19835== API calls:
Time(%) Time Calls Avg Min Max Name
98.88% 388.41ms 1 388.41ms 388.41ms 388.41ms cudaMallocManaged
0.39% 1.5479ms 190 8.1470us 768ns 408.58us cuDeviceGetAttribute
0.33% 1.3125ms 1 1.3125ms 1.3125ms 1.3125ms cudaDeviceSynchronize
0.19% 739.71us 2 369.86us 363.81us 375.90us cuDeviceTotalMem
0.13% 524.45us 1 524.45us 524.45us 524.45us cudaFree
0.04% 137.87us 1 137.87us 137.87us 137.87us cudaLaunch
0.03% 126.84us 2 63.417us 58.109us 68.726us cuDeviceGetName
0.00% 11.524us 1 11.524us 11.524us 11.524us cudaConfigureCall
0.00% 6.4950us 1 6.4950us 6.4950us 6.4950us cudaSetupArgument
0.00% 6.2160us 6 1.0360us 768ns 1.2570us cuDeviceGet
0.00% 4.5400us 3 1.5130us 838ns 2.6540us cuDeviceGetCount



HMM Part 2: HMM in depth

Jerome Glisse
Linux Kernel Engineer, Red Hat



Hardware solution

● PowerPC architecture CAPI bus

● CCIX consortium (ARM, AMD, ...)



Heterogeneous Memory Management
HMM

● Software solution

● Duplicate CPU page table on the device

● Allow migration of process memory from main memory to device memory 



On the horizon

● Duplicate memory

● Migration of file back page (mmap of file)

● Multi-GPU improvements

● Performance optimization



DO

● Prefer large allocation (multi mega bytes)

● Use aligned allocation (posix_memalign()) (2MB alignment or bigger)

● Work on anonymous memory (malloc/calloc/new/...)



DO NOT (better not to)

● fork

● Concurrent CPU and GPU access

● Small allocations

● Changing memory protection (mprotect())



API for share virtual address space

● CUDA

● OpenCL

● Others



Distant future

● More seamless integration with language like C++ (for (par), ...)

● OpenMP



Under the hood

● Add struct page for device memory

● Most kernel code unaware of device memory specificities

● Use mmu_notifier to track CPU page table update

● Grow migrate mechanism to support migration to device memory



HMM Part 3: Question & Answer session



HMM: References

● https://cgit.freedesktop.org/~glisse/linux/log/?h=hmm-v21 (Source code for the kernel patch)

● https://lkml.org/lkml/2017/4/24/747 HMM Patchset v21, in email discussion

● http://www.nvidia.com/object/unix.html UVM (Unified Virtual Memory) drivers for NVIDIA 
GPUs, that will use HMM kernel features

● https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
(How many ”CUDA cores” in a Pascal GPU? And more)

● http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4g4BTGGsW NVIDIA CUDA C 
Language Programming Guide



THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews




