Enabling the healthcare enterprise

An agile story

Radu Craioveanu, CPHIMS
Director Software Development, Clinical Systems, IT Group
Fresenius Medical Care
Tuesday May 02, 2017
How Dialysis Works

In-center hemodialysis is the most common blood-cleansing therapy used by Americans with kidney failure. Patients typically are treated three times a week for three-to-four-hour sessions. Bloodlines can be attached to either a catheter or fistula.

CONNECTION TYPES

A Catheter
A tube inserted into a vein in the neck, chest or leg

B Fistula
A surgically created connection of an artery to a vein

1. Blood is pumped out of a patient’s catheter or fistula into the blood line.
2. Heparin, a blood thinner, is added to prevent clotting.
3. Blood flows into the dialyzer, where impurities, salt, and excess fluid are drawn into the dialysis solution.
4. Cleansed blood is returned.

Graphic by Al Granberg
Factors driving change at Fresenius

Advances in medicine and technology

All the research in the world is meaningless unless it turns into meaningful results for patients, which is why our research and development efforts are designed to quickly turn new findings into market-ready products. This quick time to market enables us to offer safer and more effective individualized treatment to each and every patient. We focus on technologies to reduce product size and simplify their use, while integrating various treatment elements to create holistic therapy systems.

Increase in concomitant diseases

Our society is aging overall and the risk of developing end-stage renal disease increases with age. As patients age they also experience a greater likelihood of developing concomitant diseases such as cardiac and vascular conditions. Treating these patients’ comorbidities is increasingly a focal point of our research and development efforts.

Sustained growth in patient numbers

It is estimated that by 2020, there will be 3.8 million kidney patients worldwide, fueled by an increase in the number of people who suffer from diseases such as high blood pressure and diabetes. As the number of kidney patients rises, health care systems across the globe will be challenged to find the resources to care for them. Meeting the resulting demand for safe, effective and efficient therapies and associated technologies and products is central to our research and development activities.

Rising cost pressure in health care

An aging population, growth in chronic illnesses, and the desire to offer new and improved technologies in patient care all present major long-term financial challenges to health care systems across the globe. For this reason, we believe successful product innovations must not be not only high quality, but also affordable. Based on our experience operating dialysis clinics, we consider these two priorities to be entirely compatible.
Ours is a typical healthcare enterprise

Oh wait… ours is a typical healthcare enterprise multiplied by 100 😊
Challenge: Disjointed User Experience

To perform their tasks, clinic staff use not only core clinical systems but also a large number of disparate information systems, each one with a different UI.

Challenge: Clinical Interoperability

Where we have multiple systems, the user is often responsible for managing the coordination of workflows across those systems, often with the help of additional reports.

Goal: Seamless User-Centric Workflow

Improve the clinic staff workflow by integrating the various touchpoints into a more seamless User-Centric workflow to eliminate redundant data entry and navigation.

Manage user/patient/location context across systems for a seamless workflow.

Minimize the number of UIs that users must master to perform their tasks

Enable clinic staff to manage data in the most appropriate system based on their task workflow
Challenge response

Fresenius FABRIC

a SMART Healthcare Application Platform for Patients, Clinicians, Physicians
Adheres to SMART concepts: Substitutable Medical Applications & Reusable Technologies (SMART)

Fresenius FABRIC is

- Collaborative app development
- Secure User and backend integration
- Transformative power of technology
- High performance and availability in all data centers

Fresenius FABRIC enables to

- Harness the Encourage user engagement
- Transform a system of record into a system of engagement
- Unleash back-end data
- Reduce development time and effort
Fabric concept

FMCNA Lines of Business
- Fresenius Kidney Partners
- Spectra & Shiel
- Fresenius Vascular Care
- National Cardiovascular Partners

Applications
- Enterprise Applications
- Web-based Applications (External & Local)
- Business Intelligence Reporting & Analytics
- Portal Services

FABRIC
- Workflow
- Rules Engine
- Data Transformation
- Services (Restful, FHIR, API...)
- Orchestration
- Development Platform

Applications
- Web-based Applications (External & Local)
- Business Intelligence Reporting & Analytics
- Portal Services

FMCNA Lines of Business
- Fresenius Health Care
- Fresenius Rx
- Medspring
- Sound Physicians

DATA
- Clinical
- Financial
- Pharmacy
- others
Fabric manifestation

Enterprise Data Access Framework

Workflow Complexity

User provision

Point of Care EHR

Patient Portal

Ordering

Charting

Care Coordination

Population Care Management

Clinician Portal

Admissions

SMART APPS

SMART DATA

SMART SOA

SMART ESB

SMART Container

SMART PaaS

SMART OS

CORE

#redhat #rhsummit
Fabric layers under the hood

Current Layers

SMART OS – RedHat 6.x

SMART PaaS - Platform as a Service (container manager) – FABRIC8

SMART Containers – OSGI, SPRING BOOT (JVM stacks – Oracle WebLogic, JBoss EAP, Tomcat, Node.js)

SMART ESB – Web Services Apache CXF, Apache Camel Routes, Persistence (Mongo DB), back ends MS SQL, Oracle DB..

SMART SOA – FHIR Healthcare API, User Authorization, Caching, Workflow

SMART DATA – FHIR Resources

SMART APPS – Angular Apps

Evolving Layers

SMART Paas – OpenShift 3.0

SMART Containers – Docker

SMART SOA – Data Virtualization

FLOW = (ESB + Platform as a Service)

- Workflow Engine (Business and Service)
- Orchestration
- Messaging
- Data Transformation
- Services (Restful, FHIR, API…)
- Development Platform

SECURITY – MONITORING – AUDITING _ DEPLOYMENT
Fabric components under the hood

Current Functions

- **JBoss Keycloak** - OpenID Connect, OAuth2.0 to AD & LDAP (OID, OAM)
- **JBoss Grid** – HA DR distributed WS cache
- **JBoss Fuse** - Lightweight ESB and SOA, HA DR
- **Apache Camel** - Routing and mediation rules, Orchestration HA DR
- **Apache CXF** - Services (HL7 FHIR, SOAP, XML/HTTP, RESTful HTTP)
- **Apache Active MQ** - Transport Protocols (HTTP, JMS, JBI) HA DR
- **MONGO** - Audit, Transaction storage and replay, HA DR
- **Fabric8** - CI/CD, Service registration and Discovery, HA, DR
- **OSGI** - Managed containers, service versioning, hot deployments
- **Jboss EAP** – JVM containers, service versioning, hot deployments
- **SpringBoot** - containers, service versioning, hot deployments
- **Monitoring** - Riverbed Opnet, BMC Coradient, Solarwinds

Evolving Functions

- **Jboss Data Virtualization** – HA DR distributed federated data
- **Apache Kafka** – Messaging System for containers/topics, HA DR
- **Apache Artemis MQ** - Transport Protocols (HTTP, JMS, JBI), HA DR
- **JBoss BPM** - Service and Business Rules develop and deploy, HA DR
- **OpenShift** - CI/CD, Service registration and Discovery, HA, DR
- **Docker** - Managed containers, service versioning, hot deployments
- **Monitoring** - OpenShift, Riverbed Opnet, BMC Coradient, Solarwinds

#redhat #rhsummit
Apps under the hood

SMART APPS

Light Angular, React, Mobile First, Mobile Ready
Flexible Swift, Android, Web, SMART on FHIR
Dual Data Center HA Active-Active

SPA advantages over MPA:
- Faster page loading times
- Improved user experience because the data is loading in the background form server
- No need to write the code to render pages on the server
- Decoupling of front-end and back-end development
- Simplified mobile development; you can reuse the same backend for web application and native mobile application

SPA disadvantages to MPA:
- Heavy client frameworks which are required to be loaded to the client
- UI code is not compiled, so it's harder to debug and it's exposed to potential malicious user
- SEO (search engine optimization) implications; since your pages are built in the browser, the search engine crawler will see a different version of the page than that of your users

SPA

- Point of Care EHR
- Care Coordination
- Population Care Management
- Clinician Portal
- Admissions
- User provision

SPA Service Container

- SPA
- Spring Boot Container
- SPA Service

MPA

- MPA
- Jboss EAP Container

Spring Boot Container

- SPA
- Spring Boot Container
- SPA Service

User

- Administration
- Clinical
- Diagnostics
- Medications
- Financial
- Security & Privacy
- Workflow
- Conformance
- Clinical Reasoning
SMART DATA FHIR

Dual Data Center HA Active-Active

FHIR Medical Ontology, REST API, Open Source HAPI FHIR JPA Server

Integrated BPM and CDS built in

- HL7 FHIR supports a range of clinical and administrative healthcare interoperability scenarios ranging from simple RESTful mobile solutions to clinical documents to complex messaging-based EHR infrastructures.
- Ease of implementation
- Leverages established IT standards
- Leverages Web 2.0+ standards
- Optimized for Cloud-based applications
- Interoperable support for document, message, REST and SOA architectures
FHIR stacks under the hood

SMART DATA FHIR

Dual Data Center HA Active-Active

FHIR Medical Ontology, REST API, Open Source HAPI FHIR JPA Server

Integrated BPM and CDS built in

Diagram

- **Done this**
- **May do this**
- **Done this**
- **Doing this**
BPM under the hood

SMART DATA BPM

FHIR Workflow, Business Process

Dual Data Center HA Active-Active

JBPM Suite, KIE Knowledge Is Everything
(Drools, jBPM, OptaPlanner)

BPMN 2.0, BEPL
User, Role and Credential Based
Authoring, Simulation
Data Modeler tied to FHIR Object Model
Deployment Management, Analytics
BPM and FHIR under the hood

SMART DATA BPM

FHIR Workflow, Business Process

Dual Data Center HA Active-Active

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Resource: Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patterns: Definition, Request, Event</td>
</tr>
<tr>
<td></td>
<td>Documentation: Overview, Overview, Communication Patterns, Ad-Hoc Patterns, Management Patterns & Examples</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Appointments: Appointment / AppointmentResponse</td>
</tr>
<tr>
<td></td>
<td>Availability: Schedule / Slot</td>
</tr>
<tr>
<td>Clinical Process</td>
<td>Referrals: ReferralRequest, ProcedureRequest</td>
</tr>
<tr>
<td></td>
<td>Orders: NutritionOrder, VisionPrescription</td>
</tr>
<tr>
<td></td>
<td>Definitions: ActivityDefinition, PlanDefinition</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous: ProcessRequest & ProcessResponse, DeviceRequest & DeviceUseStatement, SupplyRequest & SupplyDelivery</td>
</tr>
</tbody>
</table>

#redhat #rhsummit
Predictive, Descriptive Analytics under the hood

SMART DATA CLINICAL PRECISION

Dual Data Center HA Active-Active on FABRIC
Outputs FHIR based Decision Support and Clinical Quality Measures
Inputs FKC Data and Rules, CMS Data and Rules
Intelligent Compute Engine R Server executing on top of Apache Spark

CARE COORDINATION

- **FKC**
 - Patient, Physician Clinician Portal
 - Financial Admissions
 - Point of Care EHR
 - Clinical EHR
 - Real Time Reporting WebApp

- **FVC**
 - Financial Admissions
 - Point of Care EHR
 - Clinical EHR
 - Real Time Reporting WebApp

DATA WAREHOUSE

- **R Server**
 - APACHE SPARK
 - APACHE SPARK
 - APACHE SPARK
 - DATA LAKE CONNECTOR

SMART ID (OpenID Connect OAuth2)

CMS, other sources

National Provider Directory

SMART DATA

CLINICAL PRECISION

Dual Data Center

HA Active-Active on FABRIC

Outputs

FHIR based Decision Support and Clinical Quality Measures

Inputs

FKC Data and Rules, CMS Data and Rules

Intelligent Compute Engine

R Server executing on top of Apache Spark

CARE COORDINATION

Spring Boot Container

SPA

Jboss EAP Container

MPA

Financial Admissions

Point of Care EHR

Clinical EHR

Real Time Reporting WebApp

FKC

FVC

Patient, Physician Clinician Portal

Financial Admissions

Point of Care EHR

Clinical EHR

Real Time Reporting WebApp

R Server

APACHE SPARK

APACHE SPARK

APACHE SPARK

DATA LAKE CONNECTOR

DATA WAREHOUSE

Guidance Response, Measure, Measure Report

Data Lake Connector

National Provider Directory

R Server, other sources

SMART ID

OpenID Connect OAuth2

CMS, other sources

National Provider Directory

SMART DATA

CLINICAL PRECISION

Dual Data Center

HA Active-Active on FABRIC

Outputs

FHIR based Decision Support and Clinical Quality Measures

Inputs

FKC Data and Rules, CMS Data and Rules

Intelligent Compute Engine

R Server executing on top of Apache Spark

SMART DATA CLINICAL PRECISION

Dual Data Center HA Active-Active on FABRIC

Outputs FHIR based Decision Support and Clinical Quality Measures

Inputs FKC Data and Rules, CMS Data and Rules

Intelligent Compute Engine R Server executing on top of Apache Spark

Spark and mongoDB data lake under the hood
EMPI and FHIR under the hood

SMART SOA FHIR EMPI

Integrated Contextual, Organizational

Dual Data Center HA Active-Active

User, Role and Credential Based

System to System Access based on EMPI

Multi System Patient Search

System to System ID translation

```
{  
  "use": "official", // usual | official | temp | secondary (If known)  
  "type": "MRN", // Description of Identifier  
  "system": "www.hema.com", // The namespace for the identifier  
  "value": "5400812345", // The value that is unique  
  "period": ["01-01-2015", "12-25-2016"], // Time period when id is/was valid for use  
  "assigner": "Fresenius Kidney Care" // Organization that issued id (may be just text)  
}  
```

FKC

FVC

Fresenius Rx
SSO and OAuth under the hood

SMART SOA SMART ID

Integrated Contextual, Organizational, External
Dual Data Center HA Active-Active

RedHat SSO, Keycloak upstream
Single SignOn, Clustering
OpenID, Oauth 2.0, SAML 2.0
SMART SOA SMART ID

Integrated Contextual, Organizational, External

Dual Data Center HA Active-Active

FHIR, SMART on FHIR, Argonaut Security Use Cases

1. Patient uses provider-approved web application to access health data
2. Patient uses provider-approved mobile app to access health data
3. Clinician uses provider-approved web application to access health data
4. Clinician uses provider-approved mobile app to access health data
5. Clinician in organization A uses EHR A to access patient data in EHR B, operated by organization B

FHIR security under the hood

EHR launch sequence

Standalone launch sequence
Cache under the hood

SMART SOA FHIR CACHE

Dual Data Center HA Active-Active

- JBoss GRID, Infinispan
- In-memory local and clustered cache
- Clustering
- Expiration
- Eviction
- Built into the FHIR Service Resources
- Listeners
- Transactions
- Persistence
- Management and monitoring

#redhat #rhsummit
Cache under the hood

SMART SOA FHIR CACHE

Dual Data Center HA Active-Active

FHIR Resources cache
Multiple nodes
Shard and Cluster
ESB under the hood

SMART ESB FUSE

Dual Data Center **HA Active-Active**

JBoss FUSE
Web Services Apache CXF, Apache Camel Routes, Persistence (Mongo DB), back ends MS SQL, Oracle DB

Integration pattern between FHIR servers and other data and systems
ESB Camel under the hood

SMART ESB FUSE

Dual Data Center HA Active-Active

FUSE Camel Routes

FHIR calls based on resource (e.g. Medication, Medication Statement and Medication Order...)

#redhat #rhsu
ESB Endpoints under the hood

SMART ESB FUSE

Dual Data Center HA Active-Active

FUSE Camel Endpoints
(e.g. Procedure, MedicationOrder, Observation, Patient, Medication Statement...)

<table>
<thead>
<tr>
<th>State</th>
<th>Context</th>
<th>Endpoint URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmbedDomainCamelContext</td>
<td>sedoz/oncountmomo</td>
<td></td>
</tr>
<tr>
<td>EmbedDomainCamelContext</td>
<td>sedoz/procurerequestmomo</td>
<td></td>
</tr>
<tr>
<td>EmbedDomainCamelContext</td>
<td>sedoz/validateMongo</td>
<td></td>
</tr>
</tbody>
</table>
mongoDB under the hood

HA PERSISTENCE SMART ESB

Operational Persistence – Mongo DB

Dual Data Center Master-Slave to Triple Data Center Active-Active
Why all this tech?

Consumer Directed Exchange, Interop, ONC, CARIN, SMART on FHIR

- SMART App Gallery
 - https://apps.smarthealthit.org/
- Argonaut Interoperability Project

Argonaut Project Sponsors
- Accenture
- athenahealth
- Beth Israel Deaconess Medical Center
- Cerner
- Epic
- Intermountain Healthcare
- Mayo Clinic
- MEDITECH
- McKesson
- Partners HealthCare System
- SMART at the Boston Children’s Hospital Computational Health Informatics Program
- The Advisory Board Company
- Surescripts
Why all this tech?
THANK YOU

plus.google.com/+RedHat
linkedin.com/company/red-hat
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/RedHatNews