RED HAT

SUMMIT

CHALLENGES IN A MICROSER
MONITORING, LOGGING AND

Martin Etmajer
Technology Lead @Dynatrace
May 4, 2017

#tredhat #rhsum mit y \

WHY A CHALLER‘G 'x

\

################

Microservice A

Microservice B

Microservice C

Microservice A

Microservice B

Microservice C

Runtime Environment

Runtime Environment

Runtime Environment

Microservice A

Runtime Environment

Data
Store

Microservice B

Runtime Environment]

Data
Store

Microservice C

Data
Store

Runtime Environment

Microservice A

Runtime Environment

Data
Store

Microservice B

Runtime Environment]

Data
Store

Microservice C

Data
Store

Runtime Environment

Microservice A

Runtime Environment

Data
Store

Microservice B

Runtime Environment]

Data
Store

Microservice C

Data
Store

Runtime Environment

Load Balancing

e/l\

Microservice A

Runtime Environment

Data
Store

Load Balancing

e/l\

Microservice B

Runtime Environment]

Data
Store

Load Balancing

N\

Microservice C

Data
Store

Runtime Environment

Load Balancing

e/l\

Microservice A

Runtime Environment

Data
Store

Load Balancing

e/l\

Microservice B

Data
Store

Runtime Environment]

Load Balancing

N\

Microservice C

Data
Store

Runtime Environment

Load Balancing

e/l\

Microservice A

Runtime Environment

Data

Load Balancing

e/l\

Store

Microservice B

Data

Load Balancing

N\

Store

Runtime Environment]

Microservice C

Data
Store

Runtime Environment

C

Messaging System

)

5 L

Runtime Environment

Runtime Environment]

S e == =
API| Gateways
Load Balancing <— Load Balancing <— Load Balancing
e AN e N\ AN
Microservice A | Data Microservice B | Data Microservice C
Store Store

Data
Store

Runtime Environment

C

Messaging System

)

security

H [

load balancing (

application servers,

Data
Store

(] ° X
API Gateways
D discovery & routing
" Load Balancing Load Balancing <— Load Balancing
o @y 7N 7N
» | Microservice A | Data | &~ Microservice B | Data Microservice C
Store Store
' Runtime Environment messaging Runtime Environment Runtime Environment
&

container runtimes,... (

Messaging System

)

Red Hat - Hello world MSA (Microservices Architecture)

Browser as a client AP| Gateway

Service chaining Hystrix Dashboard

Zipkin Dashboard

Using Browser as a Client

Hola Service
(JAX-RS / WildFly Swarm)

Hola de hola-1-bcnbq

Bonjour Service
(NodeJS / Express)

Bonjour de bonjour-1-n3gnb

‘DRefresh Results

Ola Service
(Spring Boot)

Ola de ola-1-hg56h

Aloha Service
(Vert.x)

Aloha mai aloha-7-px0qgf

Browser

Internet

\

-<

'D Refresh Results

@1 T

| |

g Hola (JAX-RS)

4

<

/

» Bonjour n d ¢
™S\ Aha VERT.Y

N
N S— y

Red Hat - Hello world MSA (Microservices Architecture)

Browser as a client API| Gateway Service chaining Hystrix Dashboard Zipkin Dashboard

Using an API Gateway D Refresh Results

APl Gateway / . \
OPENSHIFT 4 Hola(JAX-RS) | M - et

* Aloha mai aloha-7-px0qf
* Hola de hola-1-bcnbg \
» Ola de ola-1-hg56h y N Bonjour PN d e
* Bonjour response (fallback) /

AP|
Browser Internet —> Gateway

Y)

‘DRefresh Results Aloha VERT.X

S =l

Red Hat - Hello world MSA (Microservices Architecture)

Browser as a client API Gateway Service chaining Hystrix Dashboard Zipkin Dashboard

Using Service chaining

'D Refresh Results

Service Chaining L Browser J
« 1-0l4de ola-1-hg56h 1
* 2-Holade hola-1-bcnbq
« 3- Aloha mai aloha-7-px0qf laternet
* 4 - Bonjour de bonjour-1-n3gqnb

R - = VERT.X nede
efresh Results

Ola «—>» Hola (JAX-RS) €——>» Aloha <> Bonjour

RED HAT
O OPENSHIFT

MONITORING /

Monitoring

container health checks with OpenShift Liveness Probes

What?
e aliveness probe periodically checks if a container is able to handle requests
e when a condition has not been met within a given timeout, the probe fails

e if a probe fails, the container is killed and subjected to its restart policy

Monitoring

container health checks with OpenShift Liveness Probes

How? set in spec.containers.livenessProbe of Pod config

[EEN

livenessProbe:
httpGet:
path: /health
port: 8080

initialDelaySeconds: 15

S Ul AW N

timeoutSeconds: 1

Monitoring

container health checks with OpenShift Liveness Probes

How? supports HTTP Get, Container Command and TCP Socket types

[EEN

livenessProbe:
httpGet:
path: /health
port: 8080

initialDelaySeconds: 15

S Ul AW N

timeoutSeconds: 1

Demo

Monitoring

container health checks with OpenShift Liveness Probes

How?

@ This container has no health checks to ensure your application is running correctly.
Add Health Checks

Monitoring

Where are the fancy dashboards?

"T———
N

o

_..-‘-) W. - Econom
~—— — y
Ror

—
7 f
é !
| N i
'«’.;)-: H

Monitoring

container, pod and node metrics with Heapster and Hawkular Metrics

Heapster Hawkular Metrics

) kubernetes / heapster ®Watch~ 116 Y Star 1,169 Y Fork 539
<> Code Issues 137 Pull requests 23 Projects 0 Wiki Pulse Graphs

Compute Resource Usage Analysis and Monitoring of Container Clusters

README.md

Heapster

Heapster enables Container Cluster Monitoring and Performance Analysis.

Heapster currently supports Kubernetes and CoreOS natively. Heapster is compatible with kubernetes versions
starting from v1.0.6 only

It can be extended to support other cluster management solutions easily.

Heapster collects and interprets various signals like compute resource usage, lifecycle events, etc, and exports
cluster metrics via REST endpoints. Note: Some of the endpoints are only valid in Kubernetes clusters

Heapster supports multiple sources of data. More information here.

Heapster supports a pluggable storage backend. It supports InfluxDB with Grafana, Google Cloud Monitoring,
ElasticSearch, Google Cloud Logging, Hawkular, Riemann and Kafka. We welcome patches that add additional
storage backends. Documentation on storage sinks here The current version of Storage Schema is documented here.

L] kubernetes /| heapster ®Watch~ 116 Y Star 1,169 Y Fork 539
<> Code Issues 137 Pull requests 23 Projects 0 Wiki Pulse Graphs

Compute Resource Usage Analysis and Monitoring of Container Clusters

README.md

Heapster

Heapster enables Container Cluster Monitoring and Performance Analysis.

collects resource usage data, etc.

Heapster currently supports Kubernetes and CoreOS natively. Heapster is confpatible with kubernetes versions
starting from v1.0.6 only

It can be extended to support other cluster management solutions easily.

Heapster collects and interprets various signals like compute resource usage, lifecycle events, etc, and exports
cluster metrics via REST endpoints. Note: Some of the endpoints are only valid in Kubernetes clusters

Heapster supports multiple sources of data. More information here.

Heapster supports a pluggable storage backend. It supports InfluxDB with Grafana, Google Cloud Monitoring,
ElasticSearch, Google Cloud Logging, Hawkular, Riemann and Kafka. We welcome patches that add additional
storage backends. Documentation on storage sinks here The current version of Storage Schema is documented here.

L] kubernetes /| heapster ®Watch~ 116 Y Star 1,169 Y Fork 539
<> Code Issues 137 Pull requests 23 Projects 0 Wiki Pulse Graphs

Compute Resource Usage Analysis and Monitoring of Container Clusters

README.md

Heapster
exposes metrics via REST

Heapster enables Container Cluster Monitoring and Performance Analysis.

Heapster currently supports Kubernetes and CoreOS natively. Heapster is compatible with kubernetes veksions
starting from v1.0.6 only

It can be extended to support other cluster management solutions easily.

Heapster collects and interprets various signals like compute resource usage, lifecycle events, etc, and exports
cluster metrics via REST endpoints. Note: Some of the endpoints are only valid in Kubernetes clusters

Heapster supports multiple sources of data. More information here.

Heapster supports a pluggable storage backend. It supports InfluxDB with Grafana, Google Cloud Monitoring,
ElasticSearch, Google Cloud Logging, Hawkular, Riemann and Kafka. We welcome patches that add additional
storage backends. Documentation on storage sinks here The current version of Storage Schema is documented here.

L] kubernetes /| heapster ®Watch~ 116 Y Star 1,169 Y Fork 539
<> Code Issues 137 Pull requests 23 Projects 0 Wiki Pulse Graphs

Compute Resource Usage Analysis and Monitoring of Container Clusters

README.md

Heapster

Heapster enables Container Cluster Monitoring and Performance Analysis.

Heapster currently supports Kubernetes and CoreOS natively. Heapster is compatible with kubernetes versions
starting from v1.0.6 only

supports various

It can be extended to support other cluster management solutions easily.
storage backends

Heapster collects and interprets various signals like compute resource usage, lifecycle events, etc, and exports
cluster metrics via REST endpoints. Note: Some of the endpoints are only valid in Kubernetes clusters

Heapster supports multiple sources of data. More information here.

Heapster supports a pluggable storage backend. It supports InfluxDB with Grafana, Google Cloud Monitoring,
ElasticSearch, Google Cloud Logging, Hawkular, Riemann and Kafka. We welcome patches that add additional
storage backends. Documentation on storage sinks here The current version of Storage Schema is documented here.

runs in a Pod
Heapster p
L I
oy

elasticsearch kafka

gathers metrics exposes metrics
heapster "

influxdb graphite

kubernetes % GC@M

»Google GCL

) kubernetes / heapster @Watchv 116 Y Star 1,175 YFork 541
<> Code Issues 139 Pull requests 25 Projects 0 Wiki Pulse Graphs
Compute Resource Usage Analysis and Monitoring of Container Clusters

README.md

e.g. Hawkular

Heapster

Heapster enables Container Cluster Monitoring ghd Performance Analysis.

Heapster currently supports Kubernetes and CoreOS natively. Heapster is compatible with kubernetes versions

starting from v1.0.6 only

It can be extended to support other cluster thanagement solutions easily.

Heapster collects and interprets various sighals like compute resource usage, lifecycle events, etc, and exports
cluster metrics via REST endpoints. Note: Yome of the endpoints are only valid in Kubernetes clusters

Heapster supports multiple sources of datd. More information here.

Heapster supports a pluggable storage backend. It supports InfluxDB with Grafana, Google Cloud Monitoring,
ElasticSearch, Google Cloud Logging, Hawkular, Riemann and Kafka. We welcome patches that add additional
storage backends. Documentation on storage sinks here The current version of Storage Schema is documented here.

Hawkular

A collection of open source monitoring components by Red Hat

Hawkular ¢

http://www.hawkular.org

Repositories People 10
Pinned repositories

hawkular-metrics

Time Series Metrics Engine based on Cassandra

@Java K145 Y62

hawkular-client-ruby

Ruby client for Hawkular

hawkular-apm

Distributed Tracing and Application Performance
Management

@Java K105 ¥36

hawkular-agent

Hawkular Agents that can be used to monitor
managed products

Monitoring services: Metrics, Alerting, Inventory, Application Performance Management

hawkular-alerts

Alerting subsystem for Hawkular

Q@Java K22 Y22

hawkular-openshift-agent

A Hawkular feed that collects metrics from
Prometheus and/or Jolokia endpoints deployed in
one or more pods within an OpenShift node.

Hawkular

A collection of open source monitoring components by Red Hat

Hawkular ¢

http://www.hawkular.org

Repositories People 10
Pinned repositories

hawkular-metrics

Time Series Metrics Engine based on Cassandra

@Java K145 Y62

hawkular-client-ruby

Ruby client for Hawkular

metrics storage engine

hawkular-apm

Distributed Tracing and Application Performance
Management

@Java K105 ¥36

hawkular-agent

Hawkular Agents that can be used to monitor
managed products

Monitoring services: Metrics, Alerting, Inventory, Application Performance Management

hawkular-alerts

Alerting subsystem for Hawkular

Q@Java K22 Y22

hawkular-openshift-agent

A Hawkular feed that collects metrics from
Prometheus and/or Jolokia endpoints deployed in
one or more pods within an OpenShift node.

Hawkular

A collection of open source monitoring components by Red Hat

Hawkular
Monitoring services: Metrics, Alerting, Inventory, Application Performance Management

http://www.hawkular.org

distributed tracing and
application performance management

Repositories People 10

Pinned repositories

hawkular-metrics hawkular-apm hawkular-alerts
Time Series Metrics Engine based on Cassandra Distributed Tracing and Application Performance Alerting subsystem for Hawkular
Management
@Java K145 Y62 @Java K105 ¥36 Q@Java K22 Y22
hawkular-client-ruby hawkular-agent hawkular-openshift-agent
Ruby client for Hawkular Hawkular Agents that can be used to monitor A Hawkular feed that collects metrics from
managed products Prometheus and/or Jolokia endpoints deployed in

one or more pods within an OpenShift node.

Hawkular

A collection of open source monitoring components by Red Hat

Hawkular ¢

Monitoring services: Metrics, Alerting, Inventory, Application Performance Management

http://www.hawkular.org

Repositories People 10 alerting
Pinned repositories

hawkular-metrics hawkular-apm hawkular-alerts

Time Series Metrics Engine based on Cassandra Distributed Tracing and Application Performance Alerting subsystem for Hawkular
Management

@Java K145 Y62 @Java K105 ¥36 Q@Java K22 Y22

hawkular-client-ruby hawkular-agent hawkular-openshift-agent

Ruby client for Hawkular Hawkular Agents that can be used to monitor A Hawkular feed that collects metrics from
managed products Prometheus and/or Jolokia endpoints deployed in

one or more pods within an OpenShift node.

Hawkular

A collection of open source monitoring components by Red Hat

Hawkular ¢
Monitoring services: Metrics, Alerting, Inventory, Application Performance Management

http://www.hawkular.org

Repositories People @ feed for Jolokia and Prometheus metrics

Pinned repositories

hawkular-metrics hawkular-apm hawkular-alerts
Time Series Metrics Engine based on Cassandra Distributed Tracing and Application Performance Alerting subsystem for Hawkular
Management
@Java K145 Y62 @Java K105 ¥36 Q@Java K22 Y22
hawkular-client-ruby hawkular-agent hawkular-openshift-agent
Ruby client for Hawkular Hawkular Agents that can be used to monitor A Hawkular feed that collects metrics from
managed products Prometheus and/or Jolokia endpoints deployed in

one or more pods within an OpenShift node.

£l hawkular / hawkular-metrics ®©Watch~ | 35 ¥ Star

<> Code Pull requests 10 Projects 0 Pulse Graphs

Time Series Metrics Engine based on Cassandra

monitoring metrics java alerting hawkular

README.adoc

Hawkular Metrics, a storage engine for metric data

build 'passing

passed 25 new defects a metrics storage engine

About
Hawkular Metrics is the metric data storage engine part of Hawkular community.
It relies on Apache Cassandra as a backend and is comprised of:

* acore library with a REST interface

e a REST/HTTP interface 4—/

Important Cassandra 3.0.12 or later is required.

146

¥ Fork

62

Monitoring

container, pod and node metrics with Heapster and Hawkular Metrics

visualizes metrics ﬁ sends metrics ﬁ gathers metrics

OOPENSH”'_T@ I} kubernetes

by Red Hat" »Google

helloworld Add to project

aloha http://aloha-helloworld.54.91.241.179.nip.io

aloha, #1

< Image: metmajer/redhatmsa-aloha:hawkular-apm
A

Ports: 8080/TCP and 2 others ,I
pod
Networking
aloha http://aloha-helloworld.54.91.241.179.nip.io
8080/TCP (8080-tcp) — 8080 and 2 others Route aloha, target port 8080

http://jolokia-aloha-helloworld.54.91.241.179.nip.io/jolokia/
Route jolokia-aloha, target port 8778

helloworld Add to project

aloha http://aloha-helloworld.54.91.241.179.nip.io
aloha, #1 2
500
< Image: metmajer/redhatmsa-aloha:hawkular-apm MiB Men
4~ Ports: 8080/TCP and 2 others 003 1
2.0 pod

Average Usage La

Networking
aloha http://aloha-helloworld.54.91.241.179.nip.io @
8080/TCP (8080-tcp) — 8080 and 2 others Route aloha, target port 8080

http://jolokia-aloha-helloworld.54.91.241.179.nip.io/jolokia/
Route jolokia-aloha, target port 8778

helloworld Add to project

Pods aloha-1-4t9m2

aloha-1-4t9m2 createa 2

app deployment deploymentconfig More labels...

Actions v

Details Environment Metrics Logs Terminal Events

Container: aloha Time Range: Last hour v About Compute Resources

Memory

Wed 20:14 Wed 20:20 Wed 20:26 Wed 20:32 Wed 20:38 Wed 20:44 Wed 20:50 Wed 20:56 Wed 21:02 Wed 21:08

helloworld

Add to project

Pods aloha-1-4t9m2

aloha-1-4t9m2 createa 2

app deployment deploymentconfig
Details Environment Metrics Logs Terminal
Container: aloha Time Range: Last hour v

CPU

0.03

cores

0.025

0.02
0.015
0.01
0.005

0
Wed 20:14 Wed 20:22 Wed 20:30

More labels...

Events

Wed 20:38

Wed 20:46

Wed 20:54

Wed 21:02

Actions v

About Compute Resources

Wed 21:10

helloworld Add to project

Pods aloha-1-4t9m2

a|Oha-1 -4t9m2 eated 4 hours a; Actions v
app deployment deploymentconfig More labels...
Details Environment Metrics Logs Terminal Events

Container: aloha Time Range: Last hour v About Compute Resources

Network
12 ¥
1.1 2
1 N
0.9 M/M/_/\/\/\
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Wed 20:23 Wed 20:29 Wed 20:35 Wed 20:41 Wed 20:47 Wed 20:53 Wed 20:59 Wed 21:05 Wed 21:11 Wed 21:17

B Sent M Received

Runner Import D Builder

) No Environment £ ®
https://metrics-opens

GET https://metrics-openshift-infra.54.91.241.179.nip.io/hawkular/metrics/metrics/ Params Save

Headers (2) ¢ r Code
Key Value Bulk Edit Presets v
Authorization Bearer O0kiYZOKhsyXq8ewIT2bLGe0IBwOUwNR]1rZOQtdiEl
Hawkular-Tenant helloworld
Body ki (6) Status: 2000K Time: 698 ms
Pretty view JSON -
1 [
2+ {
3 "id": "aloha/126ale2d-2e5f-11e7-b020-0eed4d1f6978/cpu/usage”,
4~ "tags": {
5 "container_base_image": "metmajer/redhatmsa-aloha:hawkular-apm",
6 "container_name": "aloha",
7 "descriptor_name": "cpu/usage",
8 "group_id": "aloha/cpu/usage",
9 "host_id": "localhost",
10 "hostname": "localhost",
11 "labels": "app:aloha,deployment:aloha-1,deploymentconfig:aloha,hystrix.enabled:true",
12 "namespace_id": "af346257-2e5b-11e7-b020-0eed4d1f6978",
13 "namespace_name": "helloworld",
14 "nodename": "localhost",
15 "pod_id": "126ale2d-2e5f-11e7-b020-0eed4d1f6978",
16 "pod_name": "aloha-1-z4fn@",
17 "pod_namespace": "helloworld",

18 "type": "pod_container",

Runner Import D Builder

. No Environment O
https://metrics-opens

GET https://metrics-openshift-infra.54.91.241.179.nip.io/hawkular/metrics/counters/aloha%2F126a1e2d-2e5f-11e7-b020-0eed4d 1f6978%2Fcpu%2Fusa... Params Save
Headers (2) ¢ r Code

Key Value Bulk Edit Presets v
Authorization Bearer O0kiYZOKhsyXq8ewIT2bLGe0IBwOUwNR]1rZOQtdiEl
Hawkular-Tenant helloworld
Body Lig (6) Status: 200 OK Time: 61 ms

Pretty view JSON =

i-[

2- {

3 "timestamp": 1493637430000,

4 "value": 46210284464

5 1,

6- {

7 "timestamp": 1493637420000,

8 "value": 46140226704

9 1,

10~ {

11 "timestamp": 1493637410000,

12 "value": 46086717612

13 1,

14~ {

15 "timestamp": 1493637400000,

16 "value": 46086717612

17 },

18+ {

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

Hawkular OpenShift Agent Jolokia Prometheus

] hawkular / hawkular-openshift-agent @Watchv 11 AStar 8 YFork 9
<> Code Issues 21 Pull requests 2 Projects 0 Wiki Pulse Graphs

A Hawkular feed that collects metrics from Prometheus and/or Jolokia endpoints deployed in one or more pods within
an OpensShift node.

README.adoc

Hawkular OpenShift Agent

feeds Jolokia/Prometheus metrics data into Hawkular
Introduction /

Hawkular OpenShift Agent is a Hawkular feed implemented in the Go Programming Language. Its main purpose is to
monitor a node within an OpenShift environment, collecting metrics from Prometheus and/or Jolokia endpoints
deployed in one or more pods within the node. It can also be used to collect metrics from endpoints outside of
OpenShift. The agent can be deployed inside the OpenShift node it is monitoring, or outside of OpenShift completely.

Watch this quick 10-minute demo to see the agent in action.

Note that the agent does not collect or store inventory at this time - this is strictly a metric collection and storage
agent that integrates with Hawkular Metrics.

Docker Image

Hawkular OpenShift Agent is published as a docker image on Docker hub at hawkular/hawkular-openshift-agent

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA) is deployed via a DaemonSet

ﬁ/

OOPENSH”'_T@ I} kubernetes

by Red Hat" »Google

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

runs

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

L 4

Hawkular

) Mgtrics

sends metrics gathers metrics

=% =%

= =

HOSA HOSA HOSA HOSA HOSA

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

L 4

Hawkular

gathers metrics

Metrics

% kubernetes

»Google

= = 2 = =

HOSA HOSA HOSA HOSA HOSA

OOPENSHIFT®

by Red Hat’

helloworld Add to project

Pods » api-gateway-2-55plk

api-gateway-2-55plk created 4 nour

app deployment deploymentconfig
Details Environment Metrics Logs Terminal Events
Container: api-gateway Time Range:| Last hour v
java.lang:type=Memory {1=HeapMemoryUsage,2=init}

1200000000
1100000000

More labels...

Actions v

About Compute Resources

1000000000
900000000
800000000
700000000
600000000
500000000
400000000
300000000
200000000
100000008

Thu 22:44 Thu 22:52 Thu 23:00 Thu 23:08

Thu 23:16

Thu 23:24

Thu 23:32

Thu 23:40

helloworld Add to project

Pods » api-gateway-2-55plk

api-gateway-2-55plK created -

app deployment deploymentconfig
Details Environment Metrics Logs Terminal Events
Container: api-gateway Time Range: Last hour v

java.lang:type=Memory {1=HeapMemoryUsage,2=used}

600000000
550000000
500000000

More labels...

Actions v

About Compute Resources

450000000
400000000
350000000
300000000
250000000
200000000
150000000
100000000
50000000

0

Thu 22:46 Thu 22:54 Thu 23:02 Thu 23:10

Thu 23:18

Thu 23:26

Thu 23:34

Thu 23:42

helloworld Add to project

Pods » api-gateway-2-55plk

api-gateway-2-55plK created 4 hous Actions
app deployment deploymentconfig More labels...
Details Environment Metrics Logs Terminal Events
Container: api-gateway Time Range: Last hour v About Compute Resources
java.lang:type=Memory {1=HeapMemoryUsage,2=max}
16000000000
14000000000
12000000000
10000000000
8000000000
6000000000
4000000000
2000000000
0
Thu 22:56 Thu 23:04 Thu 23:12 Thu 23:20 Thu 23:28 Thu 23:36 Thu 23:44 Thu 23:52

helloworld Add to project

Pods » api-gateway-2-55plk

api-gateway-2-55plK c.

app deployment deploymentconfig
Details Environment Metrics Logs Terminal Events
Container: api-gateway Time Range: Last hour v

java.lang:type=Threading {1=ThreadCount}

1600
1400

More labels...

Actions v

About Compute Resources

1200
1000
800
600
400
200

0
Thu 22:54 Thu 23:02 Thu 23:10 Thu 23:18

Thu 23:26

Thu 23:34

Thu 23:42

Thu 23:50

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

How?

~N

© 0 ~N o U W

10
11
12
13
14

ConfigMap defines agent configuration

kind: ConfigMap
apiVersion: v1
metadata:
name: my-hosa-config
data:
hawkular-openshift-agent: |
endpoints:
- type: jolokia
protocol: http
port: 8778
path: /jolokia/
metrics
- name: java.lang:type=Memory

type: gauge

15
16
17
18
19
20
21

- type: prometheus
protocol: http
port: 8080
path: /metrics/
metrics:
- hame: process_start_time_seconds

type: gauge

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

a volume named , hawkular-openshift-agent*tells HOSA to monitor this Pod

How?
1 spec:
2 volumes:
3 - name: hawkular-openshift-agent
4 configMap:
5 name: my-hosa-config

Demo

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

How?

~N

© 0 ~N o U W

10
11
12
13
14

kind: ConfigMap
apiVersion: v1
metadata:
name: my-hosa-config
data:
hawkular-openshift-agent: |
endpoints:
- type: jolokia
protocol: http
port: 8778
path: /jolokia/
metrics
- name: java.lang:type=Memory

type: gauge

Jolokia ?

15
16
17
18
19
20
21

- type: prometheus
protocol: http
port: 8080
path: /metrics/
metrics:
- hame: process_start_time_seconds

type: gauge

Jolokia

JMX on Capsaicin

] rhuss / jolokia ®Watch~ 62 Star 444 YFork
<> Code Issues 83 Pull requests 6 Projects 0 Wiki Pulse Graphs
JMX on Capsaicin https://www.jolokia.org

README.md

(Pyuintiz

maven central ' 2.0.0-M3 § build passing | coverage 73/9% [technical debt ratio '1.3%§ gitter "join chat

Jolokia is a fresh way to access JMX MBeans remotely. It is different from JSR-160 connectors in that it is an agent-
based approach which uses JSON over HTTP for its communication in a REST-stylish way.

access JMX MBeans remotely via REST

134

Jolokia

JMX on Capsaicin K installs a Jolokia WAR agent into Apache Tomcat

2. bash

$ mv $JOLOKIA_HOME/agents/jolokia.war $TOMCAT_HOME/webapps
$ $TOMCAT_HOME/bin/catalina.sh start

Monitoring

application level metrics with Hawkular OpenShift Agent (HOSA)

How?

~N

© 0 ~N o U W

10
11
12
13
14

kind: ConfigMap
apiVersion: v1
metadata:
name: my-hosa-config
data:
hawkular-openshift-agent: |
endpoints:
- type: jolokia
protocol: http
port: 8778
path: /jolokia/
metrics
- name: java.lang:type=Memory

type: gauge

15
16
17
18
19
20
21

Prometheus ?

- type: prometheus
protocol: http
port: 8080
path: /metrics/
metrics:
- hame: process_start_time_seconds

type: gauge

Prometheus

A monitoring system for metrics data

Prometheus ¢

https://prometheus.io

Repositories People 13

Pinned repositories

prometheus node_exporter

The Prometheus monitoring system and time Exporter for machine metrics
series database.

@®Go W93k ¥982 @®Go %58 ¥221

alertmanager

Prometheus Alertmanager

@ Go

w472 ¥ 222

Type: All v

Language: All v

Prometheus

A monitoring system for metrics data

Prometheus ¢

https://prometheus.io

metrics storage engine
Repositories People 13 g g

Pinned repositories

prometheus node_exporter alertmanager

The Prometheus monitoring system and time Exporter for machine metrics Prometheus Alertmanager
series database.

@®Go W93k ¥982 @®Go %58 ¥221 @®Go w472 Y222

Type: All v

Language: All v

Prometheus

A monitoring system for metrics data

Prometheus ¢

https://prometheus.io

Repositories People 13

Pinned repositories

prometheus

The Prometheus monitoring system and time
series database.

@®Go W93k ¥982

node_exporter

Exporter for machine metrics

@®Go

* 589

various exporters expose metrics from

nodes, database engines and cloud componentry

¥ 221

alertmanager

Prometheus Alertmanager

@®Go

w472 ¥ 222

Type: All v

Language: All v

Prometheus

A monitoring system for metrics data

Prometheus ¢

https://prometheus.io

Repositories People 13

Pinned repositories

prometheus node_exporter

The Prometheus monitoring system and time Exporter for machine metrics
series database.

@®Go W93k ¥982 @®Go %58 ¥221

alerting

alertmanager

Prometheus Alertmanager

@ Go

w472 ¥ 222

Type: All v

Language: All v

Prometheus

A monitoring system for metrics data

build.gradle # Application. java
1 dependencies { 1 public void registerMetricServliet() {
2 compile 'io.prometheus.simpleclient.0.0.21"' 2 // Expose Promtheus metrics.
3 compile 'io.prometheus.simpleclient_hotspot.0.0.21" 3 Contﬁ:‘x';ggi?gég:g?:g(%Tvkirﬁ:z},gﬁg..);
4 compile 'io.prometheus.simpleclient_servliet.0.0.21"' 4 // Add metrics about CPU, JVM memory etc.
5 } 5 DefaultExports.initialize();

6 1} ‘/
exposes default JMX metrics: CPU, Memory, Garbage Collection, etc.

Where to start?

L openshift / origin-metrics ®Watch~ 74 s Unstar 36 ¥ Fork
<> Code Issues 45 Pull requests 7 Projects 0 Pulse Graphs
No description, website, or topics provided.

README.adoc

origin-metrics

About

Origin Metrics is designed to gather container, pod and node metrics from across an entire OpenShift cluster. These
metrics can then be viewed in the OpenShift Console or exported to another system.

It achieves this goals via these main components:

Heapster

Heapster gathers the metrics from across the OpenShift cluster. It retrieves metadata associated with the cluster

67

LOGGING /

helloworld v Add to project ®+v A admin v

Pods turbine-server-1-4cbb2

turbine-server-1-4cbb2 Actions v

app deployment deploymentconfig

how to process all these data?
Details Environment Metrics Logs Terminal Events

Container:turbine-server — & Running View Archive | Save & | Expand (£

@ Only the previous 5000 log lines and new log messages will be displayed because of the large log size.

2017-04-29 08:52:57.348 INFO [bootstrap,,,] 1 —— [Timer-@0] c.n.t.monitor.instance.InstanceMonitor : Url for host:
default
2017-04-29 08:52:57.353 ERROR [bootstrap,,,] 1 -—— [InstanceMonitor] c.n.t.monitor.instance.InstanceMonitor : Could not initiate

connection to host, giving up: [<!DOCTYPE html>, <html lang="en">, <head>, <meta charset="utf-8">, <title>Error</title>, </head>,
<body>, <pre>Cannot GET /hystrix.stream</pre>, </body>, </html>]

2017-04-29 08:52:57.353 WARN [bootstrap,,,] 1 -—— [InstanceMonitor] c.n.t.monitor.instance.InstanceMonitor : Stopping
InstanceMonitor for: 172.17.0.19 default

com.netflix.turbine.monitor.instance.InstanceMonitor$MisconfiguredHostException: [<!DOCTYPE html>, <html lang="en">, <head>, <meta
charset="utf-8">, <title>Error</title>, </head>, <body>, <pre>Cannot GET /hystrix.stream</pre>, </body>, </html>]
at com.netflix.turbine.monitor.instance.InstanceMonitor.init(InstanceMonitor.java:318) ~[turbine-core-1.0.0.jar!/:nal
at com.netflix.turbine.monitor.instance.InstanceMonitor.access$100(InstanceMonitor.java:103) ~[turbine-core-1.0.0.jar!/:na]
at com.netflix.turbine.monitor.instance.InstanceMonitor$2.call(InstanceMonitor.java:235) [turbine-core-1.0.0.jar!/:nal
at com.netflix.turbine.monitor.instance.InstanceMonitor$2.call(InstanceMonitor.iava:229) [turbine-core-1.0.0.iar!/:nal

Logging

application events with Elasticsearch, Fluentd and Kibana (EFK)

Elasticsearch Fluentd Kibana

[fluent / fluentd @Watch~ 305 s Star 5,196 YFork 631

<> Code Issues 63 Pull requests 5 Projects 0 Wiki Pulse Graphs

Fluentd: Unified Logging Layer (project under CNCF) http://www.fluentd.org/

fluentd logging data-collector ruby log-collector cncf

README.md

Fluentd: Open-Source Log Collector
/- unifies your logging infrastructure; supports almost 200 plugins

Fluentd collects events from various data sources and writes them to files, RDBMS, NoSQL, laaS, SaaS, Hadoop and
so on. Fluentd helps you unify your logging infrastructure (Learn more about the Unified Logging Layer).

Access logs Alerting
Apache Nagios
App logs \ / Analysis
Frontend MongoDB
Backend MySQL
- / fluentd\ Hadoop
syslogd
Archiving

filter / buffer / routlng
Databases Amazon S3

Logging

application events with Elasticsearch, Fluentd and Kibana (EFK) is deployed via a DaemonSet

ﬁ/

OOPENSH”'_T@ I} kubernetes

by Red Hat" »Google

Logging

application events with Elasticsearch, Fluentd and Kibana (EFK)

deploys

Fluentd Fluentd Fluentd Fluentd Fluentd

Demo

Logging

application events with Elasticsearch, Fluentd and Kibana (EFK)

query /_\v

Kibana Elasticsearch Application

A

ingests log data watches container logs
via configuration

=¥ =¥

Fluentd Fluentd Fluentd Fluentd Fluentd

q .
'..‘ elastiC Products Cloud Services Customers Learn downloads Q &N

X-Pack Install

* X-Pack

One Pack. Loads of Possibilities.

On its own, the Elastic Stack is a force to be reckoned with. X-Pack takes it to a new level
by bundling powerful features into a single pack.

— “© . w v Gy

Security Alerting Monitoring Reporting Graph Machine Learning
(formerly Shield) (via Watcher) (formerly Marvel) (coming soon)

I openshift / origin-aggregated-logging ®Watchv 70 A Star 19 YFork 57
<> Code Issues 31 Pull requests 18 Projects 0 Pulse Graphs
No description, website, or topics provided.

README.md

Origin-Aggregated-Logging

This repo contains the image definitions for the components of the logging stack as well as tools for building and
deploying them. The logging subsystem consists of multiple components abbreviated as the "EFK" stack:
Elasticsearch, Fluentd, Kibana.

The primary features this integration provides:

« Multitenant support to isolate logs from various project namespaces
* Openshift OAuth2 integration

« Historical log discovery and visualization

* Log aggregation of pod and node logs

Information to build the images from github source using an OpenShift Origin deployment is found here. To deploy
the components from built or supplied images, see the deployer.

NOTE: If you are running OpenShift Origin using the All-In-One docker container method, you MUST add -v
/var/log:/var/log to the docker command line. OpenShift must have access to the container logs in order for Fluentd
to read and process them.

DISTRIBUTED T\R‘A «

\

################

Google Technical Report dapper-2010-1, April 2010

Abstract

Modern Internet services are often implemented as com-
plex, large-scale distributed systems. These applications
are constructed from collections of software modules
that may be developed by different teams, perhaps in
different programming languages, and could span many
thousands of machines across multiple physical facili-
ties. Tools that aid in understanding system behavior
and reasoning about performance issues are invaluable
in such an environment.

Here we introduce the design of Dapper, Google’s
production distributed systems tracing infrastructure,

D B R T

Dapper, a Large-Scale Distributed Systems Tracing Infrastructure

Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, Chandan Shanbhag

because large collections of small servers are a partic-
ularly cost-efficient platform for Internet services work-
loads [4]. Understanding system behavior in this context
requires observing related activities across many differ-
ent programs and machines.

A web-search example will illustrate some of the chal-
lenges such a system needs to address. A front-end ser-
vice may distribute a web query to many hundreds of
query servers, each searching within its own piece of
the index. The query may also be sent to a number
of other sub-systems that may process advertisements,
check spelling, or look for specialized results, includ-
ing images, videos, news, and so on. Results from all

design goals

impacted if even small parts of the system are not be-
ing monitored. In addition, monitoring should always
be turned on, because it is often the case that unusual or
otherwise noteworthy system behavior is difficult or im-
possible to reproduce. Three concrete design goals result
from these requirements:

o Low overhead: the tracing system should have neg-
ligible performance impact on running services. In
some highly optimized services even small monitor-
ing overheads are easily noticeable, and might com-
pel the deployment teams to turn the tracing system
off.

o Application-level transparency: programmers
should not need to be aware of the tracing system.
A tracing infrastructure that relies on active collab-
oration from application-level developers in order
to function becomes extremely fragile, and is often
broken due to instrumentation bugs or omissions,
therefore violating the ubiquity requirement. This
is especially important in a fast-paced development
environment such as ours.

e Scalability: it needs to handle the size of Google’s
services and clusters for at least the next few years.

An additional design goal is for tracing data to be
available for analysis quickly after it is generated: ide-
ally within a minute. Although a trace analysis system
operating on hours-old data is still quite valuable, the
availability of fresh information enables faster reaction
to production anomalies.

True application-level transparency, possibly our most
cha.llengmg de31gn goal was achieved by restricting

9 o a somall Acsmsss

' semmans & Py

Figure 1: The path taken through a simple serving
system on behalf of user request X. The letter-labeled
nodes represent processes in a distributed system.

point in their development, before there is an opportunity
to clearly evaluate important design choices. Since Dap-
per has been in production and operating at large scale
for years now, we decided it would be most appropri-
ate to focus this paper on what Dapper’s deployment has
taught us, how our design decisions played out, and in
what ways it has been most useful. The value of Dapper
as a platform for development of performance analysis
tools, as much as a monitoring tool in itself, is one of a
few unexpected outcomes we can identify in a retrospec-
tive assessment.

Although Dapper shares many of its high-level ideas
with systems such as Pinpoint and Magpie, our imple-
mentation contains a number of new contributions in this
space. For example, we have found sampling to be nec-

trace
(transaction)

Google Dapper

N spans
initiator (timed operatim
T) e

Frontend.Request
(no parent id) —

span id: 1

eplyX : : P

Request remote calls Backend.Call -
— ren 1
: psap:nliu: 2

processes A Pl SR N N
o Backend.Dosqmethlng .
* et > i
(Middle Tier) pooorinrs

parent id: 3
tati : R \—SP‘*" did |
fp03 I'pC4 annota IOI’IS, : HelperCaII -
event data FSpania:s
(Backend) : : : : : : : : :
20 22

24 26 28 30

Figure 1: The path taken through a simple serving Figure 2: The causal and temporal relationships be-
system on behalf of user request X. The letter-labeled tween five spans in a Dapper trace tree.

nodes represent processes in a distributed system.

ZipKin

A distributed tracing system timescale

Q Find a trace

Overview Timeline Dependencies Search term (service) Q . 112-819 ms

Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms

WEB CLUSTER O12.819 GET 3
QUICKIE SERVICE 11571 gimme_stuff
WEB SERVER 109.358 GET
¥ SOME SERVICE -
MEMCACHED B2rocet
2 MEMCACHED Baroiner

1 BIG ASS SERVICE
- getStuff

2 THINGIE 425 getvoar
OTHER DATA SERVICE -

& MEMCACHED Parsce
¥ MEMCACHED BB -
FINAL DATA SERVICE spans Bo2 et
& MEMCACHED B 2o cet
& MEMCACHED P22 ce
2 MEMCACHED 222 cet

000 bash

Start Zipkin locally
S docker run -d -p 94119411 openzipkin/zipkin

S export DOCKER_IP="docker-machine ip $(docker-machine active)*

S cd SGOPATH/src

Grab a simple, self-contained OpenTracing example
S go get github.com/opentracing-contrib/examples/go
S cd githubcom/opentracing-contrib/examples/go

S go run /trivialgo SDOCKER _IP

Visualize the tracing instrumentation in Zipkin by
clicking on *Find Traces" in the UL
$ open http//SDOCKER_IP:9411/

Read the sourcel
S vim trivialgo

v/— a standard API for reporting distributed traces

Libraries available in 6 languages

Go, JavaScript, Java, Python, Objective-C, C++

A\ with various client libraries

OpenTracing

A vendor-neutral open standard for distributed tracing

The problem?
e instrumentation is challenging: tracing context must propagate within and between processes

e unreasonable to ask all vendor and FOSS software to be intrumented by a single tracing vendor

The solution?
e allow developers to instrument their own code using OpenTracing client libraries

e have the application maintainer choose the tracing technology via configuration change

Hawkular APM

Distributed Tracing and Application Performance Management

The members of the Hawkular APM team have been contributing to the OpenTracing
standard, getting involved in discussions around the API, as well as contributing Java
A framework integrations and a Java Agent. In April 2017, the team also began actively
contributing to the Jaeger project, as this project provides a more "OpenTracing"
native infrastructure. Further information can be found in this blog. This means that
the focus on the Hawkular APM project has been de-emphasized in favour of Jaeger.

£l uber / jaeger
<> Code Issues 16 Pull requests 3 Projects 0 Wiki Pulse

Jaeger, a Distributed Tracing System http://uber.github.io/jaeger/

distributed-tracing opentracing

README.md

Jaeger - a Distributed Tracing System

Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system
released as open source by Uber Technologies. It can be used for
monitoring microservice-based architectures:

¢ Distributed context propagation

¢ Distributed transaction monitoring
¢ Root cause analysis

¢ Service dependency analysis

¢ Performance / latency optimization

® Watch~v 61

Graphs

Y Star

634

¥ Fork

56

Jaeger

A distributed tracing system

M e no®de @

4 golang Java

OPENTRACING

Host or Container

Application

" Trace
Reporting

i
S0 | Thrift over
- TChannel
i
1
i
i
1

Trace Reporting
Thrift over UDP

Control Flow

Source: Jaeger Architecture — jaeger.readthedocs.io

SOLVED THE C/A AL

= @ O, Searchyourenvionment...

Smartscape ~ Services

O Applications

&y 9

O Services
l/ 30/3304

)
¥ Processes

l/ 2110424

[
M Hosts

I/ 142

6’1 Datacenters

&y 7

16 & &

O (Sjefe)ele2 B~ N ()
O g (0050,
\
o gl%\%\éx OXO m
@ EER | WA 125 T el (Eie)
SO O livewo sy
R ERT LT L
9)'023__;8. s &)

R\ @ “% ‘a%‘»w)
= L OIROADNI e =)
o R P AERG

(0o
SIS0

(or) TS P
7 =R\ C (
s 1@?‘\-\ OISHS

Q60=0

Dynatrace

v

dynatrace/oneagent

ﬁ/

GOPENSH”'_T@ =3 kubernetes

by Red Hat" »Google

All-in-one monitoring, now!

Dynatrace

°1°1°
nll

LUu

s

LUy

Bed

' LUy

) O

e Lt

F O

u uuu
S

= £J OPENSHIFT

OpenShift Commons Briefing #52: Monitoring
Microservices at Scale on OpenShift with Dynatrace

OCTOBER 24, 2016 BY DIANE MUELLER

¥ Tveot [0

OpenShift Commons Briefing #52: Monitoring Microservices at Scale on Open.. @ #

RED HAT
OPFNSHIFT

Commons Briefing #52

Monitoring Microservices at Scale on OpenShift w/ Dynatrace
feat. Martin Etmajer from Dynatrace

MY ACCOUNT ¥

Search the blog

CATEGORIES

Educators (19)

Events (410)

News (556)

OpenShift Ecosystem (93)

Products (855)
OpenShift Container Platform (342)
OpenShift Dedicated (118)
OpenShift Online (545)
OpenShift Origin (386)

Technologies (468)
NET (12)
Java (132)
JBoss (77)
Jenkins (29)
MongoDB (85)
MySQL (37)
Node.js (75)
Perl (6)
PHP (70)

NAactrmar~CMONl IO

SIGN UP FOR FREE

MENU

£33 OPENSHIFT

Author Archives: The Dynatrace Team

OpenShift Ecosystem: Monitoring OpenShift Apps with Dynatrace (Part 2)

OCTOBER 17, 2016 BY THE DYNATRACE TEAM

[URRNNI | this article, we'll explore various alternatives to monitoring your OpensShift
PRIMED applications when installing Dynatrace OneAgent on your cluster nodes isn't an

option. This situation arises when using managed cloud offerings, such as OpenShift

' ' Dedicated or the OpenShift Online Developer Preview.

Read More...
dynatrace

OpenShift Ecosystem: Monitoring OpenShift Apps with Dynatrace

AUGUST 1, 2016 BY THE DYNATRACE TEAM

USRI Dynatrace is an all-in-one, zero-config monitoring platform, powered by artificial
PRIMED intelligence that identifies performance problems and pinpoints their root causes in

seconds.

' ' Read More...

dynatrace

MY ACCOUNT ¥

Search the blog

CATEGORIES

Educators (19)

Events (410)

News (556)

OpensShift Ecosystem (93)

Products (855)
OpenShift Container Platform (342)
OpenShift Dedicated (118)
OpenShift Online (545)
OpenShift Origin (386)

Technologies (468)
.NET (12)
Java (132)
JBoss (77)
Jenkins (29)
MongoDB (85)
MySQL (37)
Node.js (75)
Perl (6)
PHP (70)

SIGN UP FOR FREE

RED HAT

SUMMIT

THANK YC

- youtube.com/user/RedHatVid

N\

#redhat #rhsummit

[[&

RED HAT '

SUMMIT

LEARN. NET
EXPERIENCE

################

