
CHALLENGES IN A MICROSERVICES AGE:
MONITORING, LOGGING AND TRACING ON OPENSHIFT

Martin Etmajer
Technology Lead @Dynatrace
May 4, 2017

WHY A CHALLENGE?

Microservice A Microservice B Microservice C

Microservice B

Runtime Environment Runtime Environment Runtime Environment

Microservice A Microservice C

Microservice B Data
Store

Runtime Environment Runtime Environment Runtime Environment

Microservice A Data
Store

Microservice C Data
Store

Microservice A Data
Store

Microservice B Data
Store

Microservice C Data
Store

Runtime Environment Runtime Environment Runtime Environment

3 6

+3+2

5 9

Microservice A Microservice B Microservice C

Runtime Environment Runtime Environment Runtime Environment

-3-2

Data
Store

3

Data
Store

6

Data
Store

5 9

Microservice A

Load Balancing

Microservice B

Load Balancing

Microservice C

Runtime Environment Runtime Environment Runtime Environment

Load Balancing

Data
Store

Data
Store

Data
Store

3 6

Microservice A

Load Balancing

Microservice B

Load Balancing

Microservice C

Runtime Environment Runtime Environment Runtime Environment

Load Balancing

Data
Store

Data
Store

Data
Store

3 6

Microservice A

Load Balancing

Microservice B

Load Balancing

Microservice C

Runtime Environment Runtime Environment Runtime Environment

Load Balancing

Data
Store

Data
Store

Data
Store

Messaging System

3 6

Microservice A

Load Balancing

Microservice B

Load Balancing

Microservice C

Runtime Environment Runtime Environment Runtime Environment

Load Balancing

Messaging System

API Gateways

Data
Store

Data
Store

Data
Store

3 6

Microservice A

Load Balancing

Microservice B

Load Balancing

Microservice C

Runtime Environment Runtime Environment Runtime Environment

Load Balancing

Messaging System

API Gateways

Data
Store

Data
Store

Data
Store

languages

application servers,
container runtimes,…

load balancing

discovery & routing

security

messaging

storage
3 6

RED HAT „Hello World“ MSA

Demo

MONITORING

Monitoring
container health checks with OpenShift Liveness Probes

What?

● a liveness probe periodically checks if a container is able to handle requests

● when a condition has not been met within a given timeout, the probe fails

● if a probe fails, the container is killed and subjected to its restart policy

Monitoring
container health checks with OpenShift Liveness Probes

How?

…

1 livenessProbe:

2 httpGet:

3 path: /health

4 port: 8080

5 initialDelaySeconds: 15

6 timeoutSeconds: 1

…

set in spec.containers.livenessProbe of Pod config

Monitoring
container health checks with OpenShift Liveness Probes

How?

…

1 livenessProbe:

2 httpGet:

3 path: /health

4 port: 8080

5 initialDelaySeconds: 15

6 timeoutSeconds: 1

…

supports HTTP Get, Container Command and TCP Socket types

Monitoring
container health checks with OpenShift Liveness Probes

How?

Demo

Monitoring
Where are the fancy dashboards?

Source: d3js.org - Data-Driven Documents

Heapster Hawkular Metrics

Monitoring
container, pod and node metrics with Heapster and Hawkular Metrics

collects resource usage data, etc.

exposes metrics via REST

supports various
storage backends

Heapster

gathers metrics

runs in a Pod

exposes metrics

influxdb

GCL

elasticsearch

GCM

graphite

kafka

e.g. Hawkular

Hawkular
A collection of open source monitoring components by Red Hat

Hawkular
A collection of open source monitoring components by Red Hat

metrics storage engine

Hawkular
A collection of open source monitoring components by Red Hat

distributed tracing and
application performance management

Hawkular
A collection of open source monitoring components by Red Hat

alerting

Hawkular
A collection of open source monitoring components by Red Hat

feed for Jolokia and Prometheus metrics

a metrics storage engine

with a REST interface

Monitoring
container, pod and node metrics with Heapster and Hawkular Metrics

! ! ! ! !

gathers metricssends metricsvisualizes metrics

Demo

Hawkular OpenShift Agent Jolokia Prometheus

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

feeds Jolokia/Prometheus metrics data into Hawkular

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

! ! ! ! !

is deployed via a DaemonSet

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

! ! ! ! !
HOSA HOSA HOSA HOSA HOSA

runs

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

! ! ! ! !
HOSA HOSA HOSA HOSA HOSA

gathers metricssends metrics

applications

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

! ! ! ! !
HOSA HOSA HOSA HOSA HOSA

gathers metrics

application containers

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

How?

1 kind: ConfigMap

2 apiVersion: v1

3 metadata:

4 name: my-hosa-config

5 data:

6 hawkular-openshift-agent: |

7 endpoints:

8 - type: jolokia 15 - type: prometheus

9 protocol: http 16 protocol: http

10 port: 8778 17 port: 8080

11 path: /jolokia/ 18 path: /metrics/

12 metrics 19 metrics:

13 - name: java.lang:type=Memory 20 - name: process_start_time_seconds

14 type: gauge 21 type: gauge

ConfigMap defines agent configuration

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

How?

…

1 spec:

2 volumes:

3 - name: hawkular-openshift-agent

4 configMap:

5 name: my-hosa-config

…

a volume named „hawkular-openshift-agent“ tells HOSA to monitor this Pod

Demo

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

How?

1 kind: ConfigMap

2 apiVersion: v1

3 metadata:

4 name: my-hosa-config

5 data:

6 hawkular-openshift-agent: |

7 endpoints:

8 - type: jolokia 15 - type: prometheus

9 protocol: http 16 protocol: http

10 port: 8778 17 port: 8080

11 path: /jolokia/ 18 path: /metrics/

12 metrics 19 metrics:

13 - name: java.lang:type=Memory 20 - name: process_start_time_seconds

14 type: gauge 21 type: gauge

Jolokia ?

Jolokia
JMX on Capsaicin

access JMX MBeans remotely via REST

$ mv $JOLOKIA_HOME/agents/jolokia.war $TOMCAT_HOME/webapps
$ $TOMCAT_HOME/bin/catalina.sh start

Jolokia
JMX on Capsaicin installs a Jolokia WAR agent into Apache Tomcat

Monitoring
application level metrics with Hawkular OpenShift Agent (HOSA)

How?

1 kind: ConfigMap

2 apiVersion: v1

3 metadata:

4 name: my-hosa-config

5 data:

6 hawkular-openshift-agent: |

7 endpoints:

8 - type: jolokia 15 - type: prometheus

9 protocol: http 16 protocol: http

10 port: 8778 17 port: 8080

11 path: /jolokia/ 18 path: /metrics/

12 metrics 19 metrics:

13 - name: java.lang:type=Memory 20 - name: process_start_time_seconds

14 type: gauge 21 type: gauge

Prometheus ?

Prometheus
A monitoring system for metrics data

Prometheus
A monitoring system for metrics data

metrics storage engine

Prometheus
A monitoring system for metrics data

various exporters expose metrics from
nodes, database engines and cloud componentry

Prometheus
A monitoring system for metrics data

alerting

build.gradle # Application.java

1 dependencies { 1 public void registerMetricServlet() {

2 compile 'io.prometheus.simpleclient.0.0.21' 2 // Expose Promtheus metrics.

3 compile 'io.prometheus.simpleclient_hotspot.0.0.21' 3 context.addServlet(new ServletHolder
(new MetricsServlet()), "/metrics");

4 compile 'io.prometheus.simpleclient_servlet.0.0.21' 4 // Add metrics about CPU, JVM memory etc.

5 } 5 DefaultExports.initialize();

6 }

Prometheus
A monitoring system for metrics data

exposes default JMX metrics: CPU, Memory, Garbage Collection, etc.

Where to start?

LOGGING

how to process all these data?

Logging
application events with Elasticsearch, Fluentd and Kibana (EFK)

FluentdElasticsearch Kibana

unifies your logging infrastructure; supports almost 200 plugins

! ! ! ! !

is deployed via a DaemonSet

Logging
application events with Elasticsearch, Fluentd and Kibana (EFK)

! ! ! ! !

deploys

Fluentd Fluentd Fluentd Fluentd Fluentd

Logging
application events with Elasticsearch, Fluentd and Kibana (EFK)

application events with Elasticsearch, Fluentd and Kibana (EFK)

! ! ! ! !

watches container logs

Fluentd Fluentd Fluentd Fluentd Fluentd

ingests log data
via configuration

Logging

query

ElasticsearchKibana Application

Demo

DISTRIBUTED TRACING

design goals

Google Dapper
trace

(transaction)

initiator

processes

remote calls

Source: Google Dapper Paper

spans
(timed operations)

annotations,
event data

ZipKin
A distributed tracing system timescale

spans

a standard API for reporting distributed traces

with various client libraries

OpenTracing
A vendor-neutral open standard for distributed tracing

The problem?

● instrumentation is challenging: tracing context must propagate within and between processes

● unreasonable to ask all vendor and FOSS software to be intrumented by a single tracing vendor

The solution?

● allow developers to instrument their own code using OpenTracing client libraries

● have the application maintainer choose the tracing technology via configuration change

Hawkular APM
Distributed Tracing and Application Performance Management

Jaeger
A distributed tracing system

Source: Jaeger Architecture – jaeger.readthedocs.io

SOLVED THE CHALLENGE?

Dynatrace
All-in-one monitoring, now!

! ! ! ! !

dynatrace/oneagent

Dynatrace
All-in-one monitoring, now!

! ! ! ! !

deploys

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

