B

Ansible-Powered Red Hat Storage One

A hands-on experience

Dustin Black / Marko Karg
Storage Solution Architecture
2018-05-08

About This Workshop

e Hybrid Presentation Format

Hrhsummit

O

O
O
O

Slides

Audience-Driven Demos
Hands-On Opportunity
Attempts at Humor

Please jump in with questions at any time

Q rednat.

DEPLOYMENT

AND PACKAGING

APPLICATION

INFRASTRUCTURE

STORAGE

DEVELOPMENT APPLICATION
MODEL ARCHITECTURE
—
5 -8
: —
Waterfall 2 Monolithic
Ny : Ny
~
Agile N-Tier
Ny Ny
DEVOPS : MICROSERVICES

#redhat #Hrhsummit

sooos
ooooo o

Bare Metal

Virtual Services

v

&

CONTAINERS

Data Center

W

Hosted
Ny

Fall

HYBRID CLOUD

Scale Out

SOFTWARE-DEFINED
STORAGE

Q. rednat.

3 ah — > - = 4 — —ap
— - wa\“.i.l&'bvrl'oﬂ»]' e B

The Storage Architecture Team

"Simplicity on ; ;
the Other Side of

Complexity"

#redhat #rhsummit ‘ rednat.

DIY Software-Defined Storage

Jhd
4000
10010
110001

Evaluate storage Evaluate storage Optimize for Conduct proof
software servers target workload of concept
(3 Y
4 >ED > QN > o
S el
70N
Procure and license Install Manually Multiple support
at scale deploy contracts

#redhat #Hrhsummit

> {3 > G

Q. rednat.

DEMO 1 - MANUAL DEPLOYMENT

#redhat #rhsummit

Foundational Storage Stack

#redhat #Hrhsummit

Filesystem

LVM LV

x86 Server

Q rednat.

Foundational Storage Stack

#redhat #Hrhsummit

Filesystem

LVM LV

x86 Server

Data Alignment

Q rednat.

Multiplying the Complexity

Gluster Storage Volume

Q rednat.

Foundational Storage Stack

Let's Focus Here

A volunteer from the
audience for LVM
configuration?

#redhat #rhsummit ‘ rednat.

Demonstration Desired configuration:

Manual LVM set
- P ® A separate LVM stack with a thin-pool

[root@localhost ~1# |}

for every backing-device

® Proper data alignment to a 256 KB
RAID stripe at all layers

e Fast device configured as LVMcache in
writethrough mode

® XFS filesystem with proper data
alignment

® Filesystem mounted with appropriate
parameters

® Repeat for 24 nodes and 288 backing
devices!

#redhat #rhsummit ’ rednat.

Demonstration

Manual LVM setup

Thin Provisioning:

Physical extents are assigned from the PV to the thin pool instead of to the LV directly
LVs are created instead with logical extents and arbitrary sizes
Logical extents are mapped to physical extents only as writes occur

This enables near-instantaneous copy-on-write snapshots and over-provisioning

#redhat #rhsummit ’ rednat.

Demonstration

Manual LVM setup

LVMcache

A "fast" device is configured as a LVM cache pool

The cache pool is then associated with a thick LV or with a thin pool

LVM then intelligently buffers writes and keeps hot blocks in the cache for reads
High-transaction workloads can be greatly improved

Both writethrough and writeback modes are supported

#redhat #rhsummit ’ rednat.

Demonstration

Manual LVM setup

Data Alignment

e At the lowest block level, bytes are written in chunks of a particular size (generally 512
bytes for HDDs)

® RAID typically has a larger fundamental block size that is a multiple of the disks' block size

e Aligning the LVM and filesystem layers above to the RAID stripe size ensures transactions
at the file level effecienly propogate to the disks, reducing latency

#redhat #rhsummit ’ rednat.

A Good LVM Structure is Non-Trivial

1sblk /dev/sda -o NAME,SIZE,TYPE # 1sblk /dev/vda -o NAME,SIZE,TYPE
NAME SIZE NAME SIZE
sda 5G vda 30G
—DATA-cpool cdata 5G |—DATA-data_thinpool_tmeta 512M
LpATA-data_thinpool_ tdata | LDATA-data_thinpool-tpool 29G
LpATA-data_thinpool-tpool | |-DATA-data_thinpool pele
-DATA-data_thinpool | LDpATA-data_thinvolume 20G
LpATA-data_thinvolume LpATA-data_thinpool tdata _corig 29G
—DATA-cpool cmeta LpATA-data_thinpool_tdata 29G
LpATA-data_thinpool_tdata LpATA-data_thinpool-tpool pXele
LpATA-data_thinpool-tpool -DATA-data_thinpool 29G
-DATA-data_thinpool LpATA-data_thinvolume 20G

LpATA-data_thinvolume

#iredhat #rhsummit ‘ rednat.

DEMO 2 - AUTOMATION WITH ANSIBLE

#redhat #rhsummit

Ansible

Python Modules
#!/usr/bin/python LN] u [l

from __future__ import
absolute_import, division,
print_function
__metaclass__ = type e un

ANSIBLE_METADATA =
{'metadata_version': '1.1', u n

‘status’: o0

RED HAT"
ANSIBLE -
YAML Playbooks Automation \

- hosts: gluster_nodes [X) u[l
become: yes

tasks:
- name: Create Gluster vol un

{{ volname }}"
: "{{ bricks }}"
hosts: "{{ play_hosts }}"

#redhat #rhsummit ’ rednat.

Automation! \ More to learn!

#iredhat #rhsummit ‘ redhat.

Ansible

Repetitive tasks are formulated and executed in parallel

Agentless architecture means any system is a potential Ansible target
Complicated actions fueled by simple YAML playbooks

Modules do the heavy lifting and are (generally) designed for idempotence

Does not limit your need to be an expert in whatever you are automating
o And you need to know Ansible, too!

Your tasks are simpler, not easier!

#redhat #rhsummit ’ rednat.

Demonstration

Ansible deployment for the LVM setup

[root@localhost ~1# ||

#redhat #Hrhsummit

Desired configuration:

Automate the LVM stack and
filesystem configuration from the first
demo

Add arbiter brick filesystems carved
from the fast devices

Use the remaining fast device space
for LVMcache

Set the tuned profiles

Is your playbook idempotent?

Q rednat.

Demonstration

Ansible deployment for the LVM setup

YAML
® YAML Ain't Markup Language
e Human-friendly data serialization
e Whitespace indentation used for structure denotation
® Lists and arrays easily interpreted between languages like python
® Ansible plays are relatively easy to construct and understand

#redhat #rhsummit ’ rednat.

Demonstration

Ansible deployment for the LVM setup

Arbiter Bricks

Even replica geometries risk split-brain problems

Adding an odd replica to prevent problems can be prohibitively expensive

Gluster I/O operations are tracked in metadata with the files

Arbiter bricks serve as metadata-only stores, providing a lightweight investment for

split-brain protection
® Can be separate nodes or chained

#redhat #rhsummit ’ rednat.

Demonstration

Ansible deployment for the LVM setup

"Tune-D" profiles

Linux has always had a lot of knobs to turn for tuning

Left on your own, tuning can be daunting if not near impossible

With tuned, workload-based engineering knowledge has been codified
Applying a pre-defined tuned profile can make dozens of on-the-fly adjustments

#redhat #rhsummit ’ rednat.

Anatomy of an Ansible Playbook

- hosts: gluster_nodes e Hosts to act on

become: yes
any_errors_fatal: True

/ Tasks to perform on hosts
tasks:

- name: Create data volume group

vg:

action: create
disks: "/dev/vda"
vgname: "DATA"
diskcount: 10
disktype: RAID
stripesize: "256"
dalign: "256"

- name: Create data thin pools
lvol:
vg: "DATA"
lv: "data_thinpool™
size: "100%FREE"
opts: "--thin --chunksize

#redhat #Hrhsummit

Task module

Play

Module parameters

Plays are ordered, and
each play runs in
parallel on all hosts

256k --poolmetadatasize 1G"

Q redhat.

DEMO 3 - AUTOMATION WITH GDEPLOY

#redhat #rhsummit

Gdeploy

Ansible-backed

Gluster-specific modules

Order-less configuration file

The power of Ansible with the context of Gluster
No need for Ansible expertise

With simplicity comes limited flexibility

Hrhsummit

Q rednat.

Ansible vs. Gdeploy

Ansible YAML

- hosts: gluster_nodes
become: yes
tasks:
- lvg:
vg: DATA
pvs: /dev/vda

- lvol:
vg: DATA
thinpool: data thinpool
size: 29g

- 1lvol:

vg: DATA
lv: data_lv

#redhat #Hrhsummit

Gdeploy config

[hosts]
192.168.122.19

[vel]
action=create
vgname=DATA
pvhame=vda

[1vl]

action=create
vgname=DATA
poolname=data_thinpool
lvtype=thinpool
size=29GB

Q redhat.

Demonstration Desired configuration:

Using gdeploy frontend for Ansible .
® Automate everything from demo 2

® Create a 4-node Gluster trusted
storage pool

[root@localhost ~1# ||

® Create a Gluster distribute-replicate
volume with chained arbiter bricks

® Configure NFS-Ganesha with high-
availability

e Are your arbiter bricks on the correct
nodes?

#redhat #rhsummit ‘ rednat.

Demonstration

Using gdeploy frontend for Ansible

Trusted Storage Pools

Gluster nodes have a "peering" system to establish and modify pools of storage servers
Peers must be established before volumes can be created
Peers share status via TCP protocols

Peers maintain on-disk "volfile" definitions of the translator stacks making up volumes

#redhat #rhsummit ’ rednat.

Demonstration

Using gdeploy frontend for Ansible

Chained Arbiters

® Instead of a dedicated arbiter node, we can use arbiter chaining for better efficiency

® In a 2x replica volume with more than 2 nodes, an arbiter brick for each subvolume is
placed on a node that is not part of the replica set

e The arbiter brick should be as fast as your fastest device (including cache)

#redhat #rhsummit ’ rednat.

Demonstration

Using gdeploy frontend for Ansible

PCS High-Availability

Pacemaker/Corosync Configuration System
Used to enable VIP migration and session failover for NFS-Ganesha
Configuration is non-trivial, but aided by built-in Gluster tooling

High availability and load balancing are not the same thing

#redhat #rhsummit ’ rednat.

All of That Just to Get a Good Volume Config

gluster vol info

Volume Name: myvol

Type: Distributed-Replicate

Volume ID: cc1lb8e90-26c6-46c0-9302-58801b608263

Status: Started

Snapshot Count: @

Number of Bricks: 2 x (2 + 1) = 6

Transport-type: tcp

Bricks:

Brickl: 192.168.122.19:/gluster/brickl/brickl

Brick2: 192.168.122.20:/gluster/brickl/brickl

Brick3: 192.168.122.21:/gluster/arbiter-brickl/arbiter-brickl (arbiter)
Brick4: 192.168.122.21:/gluster/brickl/brickl

Brick5: 192.168.122.22:/gluster/brickl/brickl

Brick6: 192.168.122.20:/gluster/arbiter-brickl/arbiter-brickl (arbiter)
Options Reconfigured:

transport.address-family: inet

nfs.disable: on

#iredhat #rhsummit ‘ rednat.

INTRODUCING

RED HAT
STORAGE ONE

« rednat.

WHAT IS RED HAT STORAGE ONE?

A hardware/software/support offering pre-configured for a target workload

4-24 servers
pre-configured for a workload personality

30 minutes or less
to get up-and-running

Fulfilled by Supermicro

or accredited reseller

Pre-loaded Red Hat® Gluster Storage®

and a workload-specific quick-deploy utility

Shipped and supported (L1/L2)

by Supermicro

<] 1398]

#redhat #rhsummit ‘ rednat.

SIMPLIFYING SDS DEPLOYMENT

Traditional “DIY” software-defined storage

RED HAT

STORAGE ONE

Jbl
4000
10010
110003

Evaluate storage Evaluate storage
software servers
y e
n"
Procure and license Install
at scale

#redhat #Hrhsummit

Optimize for Conduct proof
target workload of concept

Optimization-tested,
self-configuring,
and ready in minutes

ANiT e s

Manually Multiple support
deploy contracts

120TB to 1.5PB (usable)

of resilient
Red Hat® Gluster Storage

Single part number
for hardware software and support

Q. rednat.

#redhat #Hrhsummit

CURRENT WORKLOAD IDENTITIES

General NAS and content repositories

General
NAS

User directories,

mix of small and large files
in NFS, SMB, GlusterFS-
native folders

Content

repositories

Photos, rich images,
and videos at large scale

Q. rednat.

RHS One Intro

e Software-defined storage isn’t simple
e Compare responsibilities with traditional storage:

Traditional Storage Software-Defined Storage

Storage Admins OS Admins? Storage Admins?
Day-to-Day Operation Storage Admins End-user? Customer?

#redhat #rhsummit ‘ redhat.

SDS Isn't Simple?

e Optimal setup is tricky
O A myriad of "compatible" hardware choices
O LVM stack and data alignment is complicated
o Multiple Gluster geometries to choose from
o 311 volume options with Gluster

® Easier to define the expected workload
O Large files
O Video streams
o Small files
o Databases

#redhat #rhsummit ’ rednat.

RHS One is Built on Experience

® Endless test cycles to refine workload categories and
performance characteristics

e Massive amounts of data collected on which to base
architectural decisions

® Years of experience in critical enterprise deployments

e Extremely close feedback loop with engineering and support

#redhat #rhsummit ’ rednat.

What's in the Box?

The RHS One Quick-Deploy System is Built On:

Ansible

Gdeploy

Python

YAML
gluster-zeroconf

Hrhsummit

Q rednat.

DEMO 4 - RED HAT STORAGE ONE

#redhat #rhsummit

Extra Challenges for RHS One

Networking (bonding, device naming, subnets, hostnames)
LVM stack with variable disk sizes and backends

Node discovery

Calculated arbiter sizes and locations

Efficient fast device allocation

Portability among hardware models

Variable client access method

Simplified step-by-step Ul

#redhat #rhsummit ’ rednat.

The Gluster Colonizer Deployment Model

User Input Gdeploy Modules

MID FI Fil i
(0] avor File Ansible Templates

gluster-colonizer /
OEMID Verify File
/ Ansible Automation

gluster-zeroconf

Host Inventory

#redhat #rhsummit ‘ redhat.

See the Code Upstream Op¢ 240

https://github.com/gluster/gluster-colonizer
® The Gluster Colonizer project is the technical basis for RHS One
® Currently handles:
O Rep 2 + Chained Arbiter
O Disperse 4+2 (erasure coding)

e New OEMID file sets can enable more hardware models, deployment types, and
workloads

#redhat #rhsummit ’ rednat.

https://github.com/gluster/gluster-colonizer

Demonstration

Complete workload-based deployment automation

Desired configuration:

4-Node deployment

Hostnames and IPs configured

Proper foundational storage stack with data alignment

Data bricks backed with lvmcache

Gluster replica deployment with chained arbiter bricks on fast devices
Key and password updates

NFS-Ganesha with HA

#redhat #rhsummit ’ rednat.

[root@gl-fresh ~]# gluster-colonizer.py -f /usr/share/gluster-colonizer/oemid/gl-id-kvm-nas.yml

/ NS \

/I 111NN I\ \

/AR AN SN A A A B A A A B B |
[V N N

Welcome to the deployment tool!

This node will be configured as the deployment master for your
Gluster storage pool. Before proceeding, please ensure that
all RHS One Gluster nodes are connected to the manage
network infrastructure and are booted.

Do you wish to continue? [Y/n] |

HANDS-ON OPPORTUNITY

Hands-On with RHS One

Get the simulation demo in this GitHub private branch:

https://github.com/dustinblack/gluster-colonizer/tree/demo

Requirements: Demo Inputs:

® python 2.7 v/ Linux As this is a simulation, the inputs are arbitrary and up to
® python netaddr v Mac you. A few selections, such as Client method, have been
e python pyyaml -:An.droid locked to one option. Validations are active, so entries
e asciinema (in SPATH) ; :’(\;'S”dOWS like hostnames and IP addresses must be in correct

. formats.

Answering 'no' at most Y/N prompts will abort. Ctrl-c will
also abort.

Run from resources/demo/:

./gluster-colonizer-demo.py -f gl-demo.yml

The simulation will not make any system changes.

#redhat #rhsummit ’ rednat.

https://github.com/dustinblack/gluster-colonizer/tree/demo

THANK YOU

plus.google.com/+RedHat n facebook.com/redhatinc
m linkedin.com/company/red-hat u twitter.com/RedHat

youtube.com/user/RedHatVideos

