
Ansible-Powered Red Hat Storage One

A hands-on experience

Dustin Black / Marko Karg
Storage Solution Architecture
2018-05-08

About This Workshop

● Hybrid Presentation Format

○ Slides

○ Audience-Driven Demos

○ Hands-On Opportunity

○ Attempts at Humor

Please jump in with questions at any time

DEVELOPMENT
MODEL

APPLICATION
ARCHITECTURE

DEPLOYMENT
AND PACKAGING

APPLICATION
INFRASTRUCTURE

STORAGE

Waterfall

Agile

DEVOPS

Monolithic

N-Tier

MICROSERVICES

Virtual Services

CONTAINERS

Bare Metal

Hosted

HYBRID CLOUD

Data Center

Scale Out

SOFTWARE-DEFINED
STORAGE

Scale Up

The Storage Architecture Team

"Simplicity on
the Other Side of

Complexity"

DIY Software-Defined Storage

Evaluate storage
software

Evaluate storage
servers

Optimize for
target workload

Conduct proof
of concept

Procure and license
at scale

Install Manually
deploy

Multiple support
contracts

DEMO 1 - MANUAL DEPLOYMENT

Foundational Storage Stack

x86 Server

HDD / SSD

RAID

LVM PV

NVMe

LVM VG

LVM ThinP

LVM LV

Filesystem

Mountpoint

Cache

Foundational Storage Stack

x86 Server

HDD / SSD

RAID

LVM PV

NVMe

LVM VG

LVM ThinP

LVM LV

Filesystem

Mountpoint

Cache

Data Alignment

Gluster Storage Volume

Multiplying the Complexity

Foundational Storage Stack

x86 Server

HDD / SSD

RAID

LVM PV

NVMe

LVM VG

LVM ThinP

LVM LV

Filesystem

Mountpoint

Cache

Let's Focus Here

A volunteer from the
audience for LVM

configuration?

Demonstration
Manual LVM setup

Desired configuration:

● A separate LVM stack with a thin-pool

for every backing-device

● Proper data alignment to a 256 KB

RAID stripe at all layers

● Fast device configured as LVMcache in

writethrough mode

● XFS filesystem with proper data

alignment

● Filesystem mounted with appropriate

parameters

● Repeat for 24 nodes and 288 backing

devices!

Demonstration
Manual LVM setup

Thin Provisioning:

● Physical extents are assigned from the PV to the thin pool instead of to the LV directly

● LVs are created instead with logical extents and arbitrary sizes

● Logical extents are mapped to physical extents only as writes occur

● This enables near-instantaneous copy-on-write snapshots and over-provisioning

Demonstration
Manual LVM setup

LVMcache

● A "fast" device is configured as a LVM cache pool

● The cache pool is then associated with a thick LV or with a thin pool

● LVM then intelligently buffers writes and keeps hot blocks in the cache for reads

● High-transaction workloads can be greatly improved

● Both writethrough and writeback modes are supported

Demonstration
Manual LVM setup

Data Alignment

● At the lowest block level, bytes are written in chunks of a particular size (generally 512

bytes for HDDs)

● RAID typically has a larger fundamental block size that is a multiple of the disks' block size

● Aligning the LVM and filesystem layers above to the RAID stripe size ensures transactions

at the file level effecienly propogate to the disks, reducing latency

lsblk /dev/sda -o NAME,SIZE,TYPE
NAME SIZE TYPE
sda 5G disk
├─DATA-cpool_cdata 5G lvm
│ └─DATA-data_thinpool_tdata 29G lvm
│ └─DATA-data_thinpool-tpool 29G lvm
│ ├─DATA-data_thinpool 29G lvm
│ └─DATA-data_thinvolume 20G lvm
└─DATA-cpool_cmeta 8M lvm
└─DATA-data_thinpool_tdata 29G lvm
└─DATA-data_thinpool-tpool 29G lvm

├─DATA-data_thinpool 29G lvm
└─DATA-data_thinvolume 20G lvm

lsblk /dev/vda -o NAME,SIZE,TYPE
NAME SIZE TYPE
vda 30G disk
├─DATA-data_thinpool_tmeta 512M lvm
│ └─DATA-data_thinpool-tpool 29G lvm
│ ├─DATA-data_thinpool 29G lvm
│ └─DATA-data_thinvolume 20G lvm
└─DATA-data_thinpool_tdata_corig 29G lvm
└─DATA-data_thinpool_tdata 29G lvm
└─DATA-data_thinpool-tpool 29G lvm

├─DATA-data_thinpool 29G lvm
└─DATA-data_thinvolume 20G lvm

A Good LVM Structure is Non-Trivial

DEMO 2 - AUTOMATION WITH ANSIBLE

Ansible

#!/usr/bin/python

from __future__ import
absolute_import, division,
print_function
__metaclass__ = type

ANSIBLE_METADATA =
{'metadata_version': '1.1',

'status':

Python Modules

- hosts: gluster_nodes
become: yes

tasks:
- name: Create Gluster vol
volume:
action: create
volume: "{{ volname }}"
bricks: "{{ bricks }}"
hosts: "{{ play_hosts }}"

YAML Playbooks

Automation! More to learn!

Ansible

● Repetitive tasks are formulated and executed in parallel

● Agentless architecture means any system is a potential Ansible target

● Complicated actions fueled by simple YAML playbooks

● Modules do the heavy lifting and are (generally) designed for idempotence

● Does not limit your need to be an expert in whatever you are automating

○ And you need to know Ansible, too!

Your tasks are simpler, not easier!

Demonstration
Ansible deployment for the LVM setup

Desired configuration:

● Automate the LVM stack and

filesystem configuration from the first

demo

● Add arbiter brick filesystems carved

from the fast devices

● Use the remaining fast device space

for LVMcache

● Set the tuned profiles

● Is your playbook idempotent?

Demonstration
Ansible deployment for the LVM setup

YAML

● YAML Ain't Markup Language

● Human-friendly data serialization

● Whitespace indentation used for structure denotation

● Lists and arrays easily interpreted between languages like python

● Ansible plays are relatively easy to construct and understand

Demonstration
Ansible deployment for the LVM setup

Arbiter Bricks

● Even replica geometries risk split-brain problems

● Adding an odd replica to prevent problems can be prohibitively expensive

● Gluster I/O operations are tracked in metadata with the files

● Arbiter bricks serve as metadata-only stores, providing a lightweight investment for

split-brain protection

● Can be separate nodes or chained

Demonstration
Ansible deployment for the LVM setup

"Tune-D" profiles

● Linux has always had a lot of knobs to turn for tuning

● Left on your own, tuning can be daunting if not near impossible

● With tuned, workload-based engineering knowledge has been codified

● Applying a pre-defined tuned profile can make dozens of on-the-fly adjustments

- hosts: gluster_nodes
become: yes
any_errors_fatal: True

tasks:
- name: Create data volume group
vg:
action: create
disks: "/dev/vda"
vgname: "DATA"
diskcount: 10
disktype: RAID
stripesize: "256"
dalign: "256"

- name: Create data thin pools
lvol:

vg: "DATA"
lv: "data_thinpool"
size: "100%FREE"
opts: "--thin --chunksize 256k --poolmetadatasize 1G"

Anatomy of an Ansible Playbook

Hosts to act on

Tasks to perform on hosts

Task module

Module parameters
Play

Playbook

Plays are ordered, and
each play runs in
parallel on all hosts

DEMO 3 - AUTOMATION WITH GDEPLOY

Gdeploy

● Ansible-backed

● Gluster-specific modules

● Order-less configuration file

● The power of Ansible with the context of Gluster

● No need for Ansible expertise

● With simplicity comes limited flexibility

- hosts: gluster_nodes
become: yes
tasks:

- lvg:
vg: DATA
pvs: /dev/vda

- lvol:
vg: DATA
thinpool: data_thinpool
size: 29g

- lvol:
vg: DATA
lv: data_lv

...

[hosts]
192.168.122.19

[vg1]
action=create
vgname=DATA
pvname=vda

[lv1]
action=create
vgname=DATA
poolname=data_thinpool
lvtype=thinpool
size=29GB

...

Ansible vs. Gdeploy

Ansible YAML Gdeploy config

Demonstration
Using gdeploy frontend for Ansible

Desired configuration:

● Automate everything from demo 2

● Create a 4-node Gluster trusted

storage pool

● Create a Gluster distribute-replicate

volume with chained arbiter bricks

● Configure NFS-Ganesha with high-

availability

● Are your arbiter bricks on the correct

nodes?

Demonstration
Using gdeploy frontend for Ansible

Trusted Storage Pools

● Gluster nodes have a "peering" system to establish and modify pools of storage servers

● Peers must be established before volumes can be created

● Peers share status via TCP protocols

● Peers maintain on-disk "volfile" definitions of the translator stacks making up volumes

Demonstration
Using gdeploy frontend for Ansible

Chained Arbiters

● Instead of a dedicated arbiter node, we can use arbiter chaining for better efficiency

● In a 2x replica volume with more than 2 nodes, an arbiter brick for each subvolume is

placed on a node that is not part of the replica set

● The arbiter brick should be as fast as your fastest device (including cache)

Demonstration
Using gdeploy frontend for Ansible

PCS High-Availability

● Pacemaker/Corosync Configuration System

● Used to enable VIP migration and session failover for NFS-Ganesha

● Configuration is non-trivial, but aided by built-in Gluster tooling

● High availability and load balancing are not the same thing

gluster vol info

Volume Name: myvol
Type: Distributed-Replicate
Volume ID: cc1b8e90-26c6-46c0-9302-58801b608263
Status: Started
Snapshot Count: 0
Number of Bricks: 2 x (2 + 1) = 6
Transport-type: tcp
Bricks:
Brick1: 192.168.122.19:/gluster/brick1/brick1
Brick2: 192.168.122.20:/gluster/brick1/brick1
Brick3: 192.168.122.21:/gluster/arbiter-brick1/arbiter-brick1 (arbiter)
Brick4: 192.168.122.21:/gluster/brick1/brick1
Brick5: 192.168.122.22:/gluster/brick1/brick1
Brick6: 192.168.122.20:/gluster/arbiter-brick1/arbiter-brick1 (arbiter)
Options Reconfigured:
transport.address-family: inet
nfs.disable: on

All of That Just to Get a Good Volume Config

INTRODUCING

WHAT IS RED HAT STORAGE ONE?

A hardware/software/support offering pre-configured for a target workload

4-24 servers
pre-configured for a workload personality

30 minutes or less
to get up-and-running

Fulfilled by Supermicro
or accredited reseller

Pre-loaded Red Hat® Gluster Storage®

and a workload-specific quick-deploy utility

Shipped and supported (L1/L2)
by Supermicro

SIMPLIFYING SDS DEPLOYMENT

Traditional “DIY” software-defined storage

Evaluate storage
software

Evaluate storage
servers

Optimize for
target workload

Conduct proof
of concept

Procure and license
at scale

Install Manually
deploy

Multiple support
contracts

Optimization-tested,
self-configuring,

and ready in minutes

120TB to 1.5PB (usable)
of resilient

Red Hat® Gluster Storage

Single part number
for hardware software and support

CURRENT WORKLOAD IDENTITIES

General NAS and content repositories

General

NAS
User directories,
mix of small and large files
in NFS, SMB, GlusterFS-
native folders

Content

repositories
Photos, rich images,
and videos at large scale

RHS One Intro

● Software-defined storage isn’t simple

● Compare responsibilities with traditional storage:

Traditional Storage Software-Defined Storage

Setup Vendor OS Admins?

Administration Storage Admins OS Admins? Storage Admins?

Day-to-Day Operation Storage Admins End-user? Customer?

SDS Isn't Simple?

● Optimal setup is tricky

○ A myriad of "compatible" hardware choices

○ LVM stack and data alignment is complicated

○ Multiple Gluster geometries to choose from

○ 311 volume options with Gluster

● Easier to define the expected workload

○ Large files

○ Video streams

○ Small files

○ Databases

RHS One is Built on Experience

● Endless test cycles to refine workload categories and

performance characteristics

● Massive amounts of data collected on which to base

architectural decisions

● Years of experience in critical enterprise deployments

● Extremely close feedback loop with engineering and support

What's in the Box?

The RHS One Quick-Deploy System is Built On:

● Ansible

● Gdeploy

● Python

● YAML

● gluster-zeroconf

DEMO 4 - RED HAT STORAGE ONE

Extra Challenges for RHS One

● Networking (bonding, device naming, subnets, hostnames)

● LVM stack with variable disk sizes and backends

● Node discovery

● Calculated arbiter sizes and locations

● Efficient fast device allocation

● Portability among hardware models

● Variable client access method

● Simplified step-by-step UI

The Gluster Colonizer Deployment Model

gluster-colonizer

OEMID Flavor File

OEMID Verify File

User Input

Ansible Templates

Gdeploy Modules

Ansible Automation

gluster-zeroconf
Host Inventory

See the Code Upstream

● The Gluster Colonizer project is the technical basis for RHS One

● Currently handles:

○ Rep 2 + Chained Arbiter

○ Disperse 4+2 (erasure coding)

● New OEMID file sets can enable more hardware models, deployment types, and

workloads

https://github.com/gluster/gluster-colonizer

https://github.com/gluster/gluster-colonizer

Demonstration
Complete workload-based deployment automation

Desired configuration:

● 4-Node deployment

● Hostnames and IPs configured

● Proper foundational storage stack with data alignment

● Data bricks backed with lvmcache

● Gluster replica deployment with chained arbiter bricks on fast devices

● Key and password updates

● NFS-Ganesha with HA

HANDS-ON OPPORTUNITY

Hands-On with RHS One

Demo Inputs:

As this is a simulation, the inputs are arbitrary and up to
you. A few selections, such as Client method, have been
locked to one option. Validations are active, so entries
like hostnames and IP addresses must be in correct
formats.

Answering 'no' at most Y/N prompts will abort. Ctrl-c will
also abort.

The simulation will not make any system changes.

Get the simulation demo in this GitHub private branch:

https://github.com/dustinblack/gluster-colonizer/tree/demo

Requirements:

● python 2.7

● python netaddr

● python pyyaml

● asciinema (in $PATH)

Run from resources/demo/:

./gluster-colonizer-demo.py -f g1-demo.yml

Linux
Mac
Android
Windows
IOS

https://github.com/dustinblack/gluster-colonizer/tree/demo

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

