
Eclipse MicroProfile with
Thorntail (formerly WildFly Swarm)

John Clingan
Senior Principal Product Manager

Ken Finnigan
Senior Principal Software Engineer

Support Services

> Smart Routing
> API Management
> Caching Service
> Configuration
> Messaging
> SSO
> Registry

2

Application Logic

> Client-side Load Balancing
> Service Registration
> Circuit Breaker
> Distributed Tracing

EVOLUTION OF MICROSERVICES (2014 - ?)

2014 Config Server

NETFLIX
Ribbon

WHAT WE ARE HEARING FROM CUSTOMERS

1. Cloud and microservices distributed architectures leads to the need for multiple runtimes,
frameworks and languages

2. Microservices and distributed application development is hard. Need a platform that can
abstract away complexity and simplify development.

3. While enterprise developers want choice of runtime/framework, the enterprise needs a way to
standardize, support, and plan

4. Cannot just turn off or replace existing(legacy) apps. Need modernization ramp to harvest
more value from existing apps.

5. Do not want cloud lock-in and restricted to specific application framework, architecture style,
languages etc.

3

4

RED HAT OPENSHIFT

RED HAT OPENSHIFT APPLICATION RUNTIMES

APPLICATIONS LIFECYCLE MANAGEMENT

CONTAINER ORCHESTRATION & MANAGEMENT (KUBERNETES)

Amazon Web Services Microsoft Azure Google CloudOpenStackDatacenterLaptop

YOUR INFRASTRUCTURE

YOUR APPS AND SERVICES

SUPPORTING MIDDLEWARE SERVICES

Reactive
Vert.x

MicroProfile
WildFly Swarm

Spring Boot
Tomcat

JavaScript
Node.js

Java EE JBoss
EAP

Launch Service
✓ Simplified

development

✓ Strategic
flexibility

✓ DevOps
automation

RED HAT OPENSHIFT APPLICATION RUNTIMES
Providing curated set of integrated runtimes and frameworks that standardizes Cloud Native App

Support Services

> Smart Routing
> API Management
> Caching Service
> Configuration
> Messaging
> SSO
> Registry

5

Application Logic

> Client-side Load Balancing
> Service Registration
> Circuit Breaker
> Distributed Tracing

Application Logic

> Client-side Load Balancing
> Circuit Breaker

Support Services

> Distributed Tracing
> API Management
> Caching Service
> Messaging
> SSO

> Registry
> Configuration
> Server-side Load Balancing

EVOLUTION OF MICROSERVICES (2014 - Current)

2014 Current

Support Services

> Smart Routing
> API Management
> Caching Service
> Configuration
> Messaging
> SSO
> Registry

6

Application Logic

> Client-side Load Balancing
> Service Registration
> Circuit Breaker
> Distributed Tracing

Application Logic

> Client-side Load Balancing
> Circuit Breaker

Support Services

> Distributed Tracing
> API Management
> Caching Service
> Messaging
> SSO

> Registry
> Configuration
> Server-side Load Balancing

EVOLUTION OF MICROSERVICES (NEAR FUTURE)

Support Services

> API Management
> Caching Service
> Messaging
> SSO

Application Logic

> Registry
> Configuration
> Server-side Load Balancing
> Client-side Load Balancing
> Distributed Tracing
> Circuit Breaker
> Fault Injection

2014 Current Near Future

For Java EE, how does this change how I
write my code?

Architecture vs API vs Implementation

9

Microservices is an architectural approach

Java EE and MicroProfile are specifications
enabling innovation on implementation

Java EE applications can be built as collaborating
microservices on a lightweight runtime

Jakarta

Jakarta

10

● Defines open source Java microservices specifications
● Industry Collaboration - Red Hat, IBM, Payara, Tomitribe, London Java Community,

SouJava, Oracle, Hazelcast, Fujitsu, SmartBear...
● WildFly Swarm is Red Hat’s implementation
● Minimum footprint for Enterprise Java cloud-native services (v1.3) :

JSON-P 1.0

Health
CheckCDI 1.2 JAX-RS 2.0

JWT
Propagation

Fault
Tolerance Metrics

Config

Open
Tracing

OpenAPI REST
Client

Common
Annotations

Thorntail (formerly WildFly Swarm)

● Formerly WildFly Swarm

● Rename process in community

● New name announced last week

● Rename work still to be done

What’s Thorntail?

Demo

● Showcases Eclipse MicroProfile specifications

● Three services: Greeting, Boring Name, Cute Name

https://github.com/kenfinnigan/RedHatSummit-2018

What’s in the Demo?

https://github.com/kenfinnigan/RedHatSummit-2018

What’s in the Demo?

Greeting

Boring Name

Cute Name

Greeting

Eclipse MicroProfile

● January 2018 - 1.3
○ MP 1.2 + OpenTracing + OpenAPI + Type Safe REST Client

● June 2018 - 1.4/2.0
○ MP 1.4

■ Updates to Config, JWT Propagation, Fault Tolerance, OpenTracing

○ MP 2.0

■ MP 1.4 + Java EE 8 base for CDI, JAX-RS, JSON-P, (+JSON-B?)

Roadmap

Config

@Inject

@ConfigProperty(name = "myapp.default-name")

private String defaultName;

@Health
@ApplicationScoped
public class GoodHealthCheck implements HealthCheck {
 public HealthCheckResponse call() {
 return HealthCheckResponse
 .named("MyHealthCheck")
 .withData("someKey", "aValue")
 .up()
 .build();
 }
}

Health Check

● @Counted

● @Gauge

● @Metered

● @Timed

Metrics

@Counted(name = "hCount",
 absolute = true,
 description = "# calls to /myendpoint",
 monotonic = true)

@GET

@Path("/myendpoint")

Public Response myEndpoint {}

Metrics

● @OpenAPIDefinition

● @Operation

● @APIResponse

● @Content

● @Parameter

Open API

@OpenAPIDefinition(info = @Info(

 title = "My REST Application",

 version = "1.0"

))

@Operation(

 operationId = "getSomething",

 summary = "Get some data over REST"

)

Open API

● @Asynchronous
● @Retry
● @Fallback
● @Timeout
● @CircuitBreaker
● @Bulkhead

Fault Tolerance

@Retry(maxRetries = 2)
@Fallback(fallbackMethod = "greetingFallback")
public Response greeting() {}

public Response greetingFallback() {
 return Response.ok()
 .entity(new Greeting("Greetings from a
fallback")).build();

}

Fault Tolerance

● Define interface of external service. As JAX-RS would

● RestClientBuilder instead of JAX-RS ClientBuilder

Type Safe REST Client

@Path("/api")

public interface CuteNameService {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 @Path("/name")

 String getName();

}

Type Safe REST Client

CuteNameService service =

RestClientBuilder.newBuilder()

.baseUrl(new URL(NAME_SERVICE_URL))

.build(CuteNameService.class);

String name = service.getName();

Type Safe REST Client

● Add jaeger-core dependency to activate

● @Traced for fine grain control

● Set jaeger configuration

Open Tracing

@Inject
private JsonWebToken jwtPrincipal;

@Inject
@Claim(standard = Claims.raw_token)
private ClaimValue<String> rawToken;

JWT Propagation

Thorntail

● “org.wildfly.swarm” -> “io.thorntail”

● 2018.6.0 -> 2.0.0.Final

● Update documentation, examples, etc

● Follow Google Group community for updates

Thorntail Rename

Not current
WildFly Swarm!

● 2.0.0.Final release in June

● PoC -> Thorntail 4.x [timing tbd]

● JDK 10 / 11 support

● Java EE 8 / Jakarta EE

● MicroProfile 1.4 / 2.0

Thorntail Roadmap

QUESTIONS

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

THANK YOU

