
Hitachi & Red Hat collaborate:
Container migration guide
In open source, we feel strongly that to do something well,
you have to get a lot of people involved - Linus Torvalds

Tatsuya Yamada & Scott McCarty
Hitachi & Red Hat
May 10th, 2018

Why Hitachi & Red Hat Collaborate
Hitachi had a unique perspective on how to operationalize checklists as well as upstream

Kubernetes contributions, and Red Hat had a lot of experience migrating applications in

engineering and consulting.

● Collaborated on philosophy of how to tackle the problem

of migrations

● Developed set of runbook like checklists around

architecture, security & performance

● Published free e-Book: https://red.ht/2EkVdkJ

https://red.ht/2EkVdkJ

Basic Philosophy

Purpose & Mission
To create a piece of content that would give teams easy, but crucial technical guidance

● Make the guide operational - teams can use it day to day

● Help teams leverage their existing technical knowledge

● Add additional knowledge around how to architect applications in containers

● Highlight characteristics of containerized applications

○ Architecture

○ Performance

○ Security

Technical Guidance

Three Pillars
Breaking the problem down

Architecture
Code, Configuration, Data and more….

Performance
Virtualization & Containers are additive technologies to bare metal

Security
Thinking about levels of isolation….

The Challenges with Developing
Solutions

DockerDocker

VM

Docker
Registry

Test
environment

Test
environment

Kubernetes

Portal

Github
Enterprise

Hitachi Server
VMware® ESXi™

VM VM
Linux®

VM VM
Linux®Linux®

VM

DaaS

VM
IDE

VM
IDE

VM
IDE

Test
environment

On-premise

Developers

(1) Commit source
codes

(2) Deploy &
Test

(4) Check & manage test
results

Active
Directory

Manage On-premise
and AWS environments

(3) Notify test results

Jenkins

Docker

Redmine

Docker

Hubot

Docker

Rocket.
Chat

Docker Docker

・Hitachi currently provides customers with following DevOps services:
1. Hitachi’s own DevOps Stack with Kubernetes and Docker
2. OpenShift on Hitachi server

Kubernetes :
- Master: 1
- Node: 3

Pod: 20+
User: about 1,000

Hitachi
Middleware

DB

Application

Amazon Web Services

1-1. Hitachi’s DevOps Approach

Admin

© Hitachi, Ltd. 2018. All rights reserved.

© Hitachi, Ltd. 2018. All rights reserved.

DockerDocker

VM

Docker
Registry

Test
environment

Test
environment

Kubernetes

Portal

Github
Enterprise

Hitachi Server
VMware® ESXi™

VM VM
Linux®

VM VM
Linux®Linux®

VM

DaaS

VM
IDE

VM
IDE

VM
IDE

Test
environment

On-premise

Developers

(1) Commit source codes

(2) Deploy & Test

(4) Check & manage test results

Active
Directory

Manage On-premise
and AWS environments

(3) Notify test results

Jenkins

Docker

Redmine

Docker

Hubot

Docker

Rocket.
Chat

Docker Docker

・Hitachi currently provides customers with following DevOps services:
1. Hitachi’s own DevOps Stack with Kubernetes and Docker
2. OpenShift on Hitachi server

Kubernetes :
- Master: 1
- Node: 3

Pod: 20+
User: about 1,000

Amazon Web Services

1-1. Hitachi’s DevOps Approach

Admin

We found several problems during

containerization of Hitachi middleware.

Hitachi
Middleware

DB

Application

Container

LU
Persistent
Volume

AP DB
raw

(/dev/sda)

sys_*
Kernel

parameters

Kernel
parameters

Kernel
parameters

Baremetal and VM

Backend Storage

OS

Docker

namespace

middleware

seccomp

#1 #2

#3

#1: Depending on system requirements, some
middleware needs to tune kernel parameters.
However, some kernel parameters cannot be
configured on each container, independently.

#2: Some middleware executes system calls. For
example, DB executes system call when locking a
memory. However, some system calls cannot be
executed on a container because it is restricted
by seccomp.

#3: During containerization, customer expects
that block volume can be used same as
Baremetal or VM. However block volume cannot
be mapped to container with Kubernetes volume.

1-2. Prerequisite of Middleware

© Hitachi, Ltd. 2018. All rights reserved.

Technical Challenges

Problems Category

1 Some kernel parameters cannot be configured on each
container, independently.

Performance

2 Some system calls cannot be executed on a container. Security

3 Block volume cannot be mapped to container with
Kubernetes volume.

Performance

- The table shows 3 problems of middleware containerization we found.
- They are categorized into Performance and Security.

2-1. Problems of Middleware Containerization

© Hitachi, Ltd. 2018. All rights reserved.

2-1. Problems of Middleware Containerization

Problems Category

1 Some kernel parameters cannot be configured on each
container, independently.

Performance

2 Some system calls cannot be executed on a container. Security

3 Block volume cannot be mapped to container with
Kubernetes volume.

Performance

- The table shows 3 problems of middleware containerization we found.
- They are categorized into Performance and Security.

© Hitachi, Ltd. 2018. All rights reserved.

These 3 types of kernel parameters are available for container’s configuration.

Parameters Range Detail

Node level Node This can be set for each node, but can not be set for each container.

Safe Pod This can be set for each container, and does not affect other container.

Unsafe Pod This can be set for each container, but may affect other containers.

• Containerized middleware like DB needs to set kernel parameters even if it’s in container.

• However setting Node level sysctls or unsafe.sysctls may affect another containers.

Hardware or VM

namespace

OS

Docker

Safe

DB

Kernel
parameters

namespace

AP

Kernel
parameters

SafeSafe

⚫ OpenShift Container Platform 3.9 - sysctls
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/cluster_administration/admin-guide-sysctls

2-2. Problem of Kernel Parameters Configuration

Hardware or VM

namespace

OS

Docker

Node level

Kernel parameters

DB

Kernel
parameters

namespace

AP

Kernel
parameters

Node level
Hardware or VM

namespace

OS

Docker

Unsafe

DB

namespace

AP

Unsafe

Kernel
parameters

© Hitachi, Ltd. 2018. All rights reserved.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/cluster_administration/admin-guide-sysctls

Kubernetes Node-1(Safety)

Linux

AP1
namespace

AP2
namespace

Kubernetes Node-2(Dedicated)

Linux

DB
namespace

Unsafe.sysctl

Kernel parameter A

Kernel
parameters

Kernel
parameters

Kernel
Parameter B

safe.sysctl safe.sysctl

2-3. Solution of Kernel Parameters Configuration

Node level sysctl

Place Pod with safe.sysctl on “Safety” node.

Safe.sysctl can configure each Pods without influence
of unsafe and Node level.

Place Pods with unsafe.sysctl or Node level sysctl on
“Dedicated” node.

a. Configure “Kubernetes Taints” to dedicated nodes
beforehand, so that only specific Pods can be placed on
“Dedicated” node.

b. Set sysctl settings to the “Dedicated” nodes.

c. Create a Pod with “Kubernetes Tolerate” so that the pod is
placed on the Taint Node like Kubernetes Node-2.

© Hitachi, Ltd. 2018. All rights reserved.

Problems Category

1 Some kernel parameters cannot be configured on each
container, independently.

Performance

2 Some system calls cannot be executed on a container. Security

3 Block volume cannot be mapped to container with
Kubernetes volume.

Performance

2-4. Problem of Middleware Containerization

© Hitachi, Ltd. 2018. All rights reserved.

• Inside a container, some system calls are restricted by default.

• As a result, operations of a container application are restricted.

• Ex. Core Dump
Container cannot issue “ulimit” command. Therefore core dump of
the application doesn’t get dumped.

Hardware
Host OS

Hypervisor

Hardware or VM

OS

Docker

…

Baremetal or Virtual Machine Container

Virtual Machine

Guest OS

DB

…

Hardware

Host OS

DB

sys_*

seccomp

sys_*

seccomp

Virtual Machine

Guest OS

AP

sys_*

seccomp

sys_*

seccomp

namespace

DB

namespace

AP

2-5. Problem of System Calls

© Hitachi, Ltd. 2018. All rights reserved.

• To make system call executable,

1. Set “seccomp=unconfined”

2. Add specified Linux Capabilities.

seccomp.security.alpha.kubernetes.io/pod: unconfined
securityContext:

capabilities:
add:

- NET_ADMIN
- SYS_RESOURCE
- IPC_LOCK
- IPC_OWNER

seccomp.security.alpha.kubernetes.io/pod: unconfined
securityContext:

capabilities:
add:

- NET_ADMIN
- SYS_RESOURCE
- IPC_LOCK
- IPC_OWNER
- LEASE

Hardware or VM

OS

Docker

…

Container

sys_*

seccomp

namespace

DB

namespace

AP
DB

manifest

AP

manifestomit “CAP_”

Capabilities

- CAP_NET_ADMIN

- CAP_SYS_RESOURCE

- CAP_IPC_LOCK

- CAP_IPC_OWNER

- CAP_LEASE …etc

omit “CAP_”

2-6. Solution of System Calls

© Hitachi, Ltd. 2018. All rights reserved.

Problems Category

1 Some kernel parameters cannot be configured on each
container, independently.

Performance

2 Some system calls cannot be executed on a container. Security

3 Block volume cannot be mapped to container with
Kubernetes volume.

Performance

2-7. Problems of Middleware Containerization

© Hitachi, Ltd. 2018. All rights reserved.

• During containerization, customer expects that block volume can be used same as

Baremetal or Virtual Machine because block volume provides consistent I/O

performance and low latency compared to filesystem volume.

• However, before version 1.8, Kubernetes didn’t support attaching block volume to
container from backend storage.

Hardware

Host OS

Hardware

Guest OS

Host OS

Hypervisor

Guest OS
…

Hardware or VM

Linux

Docker

…

Baremetal or Virtual Machine Container

LU
Persistent
Volume

Backend StorageBackend Storage

LU LU

raw
(/dev/sda)

namespace

DB

namespace

AP

DB

Virtual Machine

DB

Virtual Machine

AP

raw
(/dev/sda)

raw
(/dev/sda)

2-8. Problem of Block Volume support

© Hitachi, Ltd. 2018. All rights reserved.

• Hitachi developed a feature that enables to use block volume support in cooperation with Red
Hat at Kubernetes community.

• This feature enables to attach block volume directly to the container.

• New parameters “volumeMode”, “volumeDevices” and “devicePath” were added to configure
block volume support. Ex: volumeMode=“Filesystem” or “Block”.

apiVersion: v1
kind: PersistentVolume
metadata:
name: block-pv001

spec:
capacity:
storage: 1Gi

accessModes:
- ReadWriteOnce
volumeMode: Block
persistentVolumeReclaimPolicy: Retain
fc:
targetWWNs: [‘28000001ff0414e2‘]
lun: 0

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: block-pvc001

spec:
accessModes:
- ReadWriteOnce
volumeMode: Block
resources:
requests:
storage: 1Gi

apiVersion: v1
kind: Pod
metadata:
name: blockvolume-pod

spec:
containers:
- name: blockvolume-container

…

volumeDevices:
- name: data

devicePath: /dev/xvda
volumes:
- name: data
persistentVolumeClaim:

claimName: block-pvc001
readOnly: false

Persistent Volume Persistent Volume Claim Pod

2-9. Solution of Block Volume support

© Hitachi, Ltd. 2018. All rights reserved.

© Hitachi, Ltd. 2018. All rights reserved.

• Hitachi developed a feature that enables to use block volume support in cooperation with Red
Hat at Kubernetes community.

• This feature enables to attach block volume directly to the container.

• New parameters “volumeMode”, “volumeDevices” and “devicePath” were added to configure
block volume support. Ex: volumeMode=“Filesystem” or “Block”.

apiVersion: v1
kind: PersistentVolume
metadata:
name: block-pv001

spec:
capacity:
storage: 1Gi

accessModes:
- ReadWriteOnce
volumeMode: Block
persistentVolumeReclaimPolicy: Retain
fc:
targetWWNs: [‘28000001ff0414e2‘]
lun: 0

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: block-pvc001

spec:
accessModes:
- ReadWriteOnce
volumeMode: Block
resources:
requests:
storage: 1Gi

apiVersion: v1
kind: Pod
metadata:
name: blockvolume-pod

spec:
containers:
- name: blockvolume-container

…

volumeDevices:
- name: data

devicePath: /dev/xvda
volumes:
- name: data
persistentVolumeClaim:

claimName: block-pvc001
readOnly: false

Persistent Volume Persistent Volume Claim Pod

2-9. Solution of Block Volume support

Future Work
• Block volume is Alpha version in Kubernetes v1.10,

therefore more unit tests and e2e test cases are
required to improve reliability.

Solution Summary

Problems Our approach

1 Some kernel parameters cannot be
configured on each container,
independently.

Pros: Divide node for each purpose.
Cons: Container hosts are increase.

2 Some system calls cannot be
executed on a container.

Pros: Use seccomp and Linux
Capabilities for configuration
of each application container.

3 Block volume cannot be mapped to
container with Kubernetes volume.

Pros: Block volume support were
merged at Kubernetes v1.9.

3. Conclusion

© Hitachi, Ltd. 2018. All rights reserved.

Learn How to Migrate

Check Out the Guide

Download the e-Book:

https://red.ht/2EkVdkJ

https://red.ht/2EkVdkJ

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

THANK YOU

• HITACHI is a registered trademark of Hitachi, Ltd.
• Red Hat and OpenShift are trademarks or a registered trademarks of Red Hat Inc. in the United States and

other countries.
• Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
• Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States

and/or other countries.
• Kubernetes is a registered trademark of The Linux Foundation.
• Amazon Web Services is a trademark of Amazon.com, Inc. or its affiliates in the United States and/or other

countries.
• VMware, ESXi are registered trademarks or trademarks of VMware, Inc. in the United States and other

jurisdictions.
• Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United

States and/or other countries.
• Other company and product names mentioned in this document may be the trademarks of their respective

owners.

Trademarks

© Hitachi, Ltd. 2018. All rights reserved.

