RED HAT

SUMMIT

Hitachi & Red Hat collaborate:
Container migration guide

In open source, we feel strongly that to do something well,
you have to get a lot of people involved - Linus Torvalds

Tatsuya Yamada & Scott McCarty
Hitachi & Red Hat
May 10th, 2018

Why Hitachi & Red Hat Collaborate

Hitachi had a unique perspective on how to operationalize checklists as well as upstream
Kubernetes contributions, and Red Hat had a lot of experience migrating applications in
engineering and consulting.

& rednat

o Collaborated on philosophy of how to tackle the problem
of migrations

o Developed set of runbook like checklists around
architecture, security & performance

e Published free e-Book: https://red.ht/2EkVdkJ

BEST PRACTICES FOR MIGRATING TO
CONTAINERIZED APPLICATIONS

#tiredhat #rhsummit ‘ redhat.

https://red.ht/2EkVdkJ

Basic Philosophy

#tredhat #rhsummi « redhat

Purpose & Mission

To create a piece of content that would give teams easy, but crucial technical guidance

o« Make the guide operational - teams can use it day to day
o Helpteams leverage their existing technical knowledge
o Add additional knowledge around how to architect applications in containers
o Highlight characteristics of containerized applications
o Architecture
o Performance
o Security

#redhat #rhsummit ‘ redhat.

rrrrrrrrrr

mmmmm

Technical Guidance

« redhat

Three Pillars

Breaking the problem down

Architectural Performance

Figure 1. Application requirements

#redhat #rhsummit ’ redhat.

Architecture

Code, Configuration, Data and more....

TABLE 1. TYPICAL WORKLOADS SEEN IN THE DATACENTER

MODERATE

DIFFICULT

EASY
Completely isolated
Code A
(single process)
Configuration One file
Data Saved in single space
Secrets Static files
Network HTTP, HTTPs
Installation Packages, source
Licensing Open source

Somewhat isolated
(multiple processes)

Several files

Saved in several places

Network

TCP, UDP

Installer and understood
configuration

Proprietary

Self-modifying
(e.g. actor model)

Anywhere in file system
Anywhere in file system

Dynamic generation of
certifcations

IPSEC, highly isolated

Installers (install.sh)

Restrictive and proprietary

#redhat #rhsummit

Q redhat.

Performance

Virtualization & Containers are additive technologies to bare metal

TABLE 2. WORKLOAD PLATFORM COMPARISON

BARE METAL +CONTAINERS +VIRTUALIZATION

CPU intensive Fast Fast Fast
Memory intensive Fast Fast Fast

Disk 1/0 latency Fast Fast Medium
Disk 1/0 throughput Fast Fast Fast

Network latency Fast Fast Medium
Network throughput Fast Fast Fast

Deployment speed Slow Fast Medium
Uptime (live migration) No No Yes
Alternative OS Yes Some Yes

#redhat #rhsummit

Q redhat.

Security

Thinking about levels of isolation....

peeeeemcaas . : |
se e ') L H
" ' ! H
' ' H i
' ' . H
') i '
>_ ' ' 0 H
N] 1 r
' K "
. ' | 0o|:
Vesssasssse ’ W
Process Container Virtual server

Physical server

Rack

Datacenter

Figure 2. The tenancy scale

#redhat #rhsummit

Q redhat.

rrrrrrrrrr

mmmmm

The Challenges with Developing
Solutions

« redhat

1-1. Hitachi’s DevOps Approach

- Hitachi currently provides customers with following DevOps services:
Hitachi’s own DevOps Stack with Kubernetes and Docker

1.

2. OpenShift on Hitachi server
f @ ﬁManage On-premise Developers
and AWS environments
(1) Commit source @ @ @
Github || Docker T Dagp
ithu ocker
(4) Check & manage test
Enterprise/| Regqistry redults IDE IDE IDE
Hitachi (3) Notify test results VM || VM || VM
Portal Middleware J [L
— . . Rocket. Test
Active Appllcatloy Jenkins ||[Redmine <| Hubot Chat | lenvironment
Directory o J| ||| Dodker || Docker | | Docker | | Docker | | Dofker
: : Kubernetes |
Y Linux® Linux®| |Linux® (Ti)stDep'W& Kubernetes :
VM ﬂ | VM | VM VM VM -mazter;
® 1™ - Node:
VMware® ESXi A

Hitachi Server

Hredhat #rhsummit

On-premise

Amazon Web Services

User: about 1,000

© Hitachi, Ltd. 2018. All rights reserved.

) redhat.

1-1. Hitachi’s DevOps Approach

- Hitachi currently provides customers with following DevOps services:
1. Hitachi’s own DevOps Stack with Kubernetes and Docker

2. OpenShift on Hitachi server

Admin

FOx

(1) Commit source codes

Manage On-premise
and AWS environments

@

Developers

@

@

G'tﬁ b Docker Daa§
Iithu (4) Check & manage test results
Enterprise| Registry ' < IDE IDE IDE
Hitachi _ VM VM VM
Portal Middleware We found several problems during =
: " containerization of Hitachi middleware. [. Test
ACt'Ve M) environment
Directory, DB) Dodker || Docker | | Docker | | Docker | | Doéker
: : Kubernetes |
Y Linux® Linux®| |Linux® (2) Deploy & Test Kubernetes :
VM ﬂ | VM | VM VM VM -L/Iazte?
® 1™ - Node:
VMware® ESXi Sod: 204

Hitachi Server
On-premise

Hredhat #rhsummit

Amazon Web Services

© Hitachi, Ltd. 2018. All rights reserved.

User: about 1,000

) redhat.

1-2. Prerequisite of Middleware

middleware

0S

Baremetal and VM

Backend Storage

#redhat #rhsummit

AP DB |
: T raw
Kernel] Kernel ! (/devisda)
parameters = | parameters : *
5 A B
e ——— .
1
—
#1 : .S 42
I (seccomp.
I l-.
| -_..'
- i
Kernel H
parameters :]

LU
Persistent
Volume

Container

#1: Depending on system requirements, some
middleware needs to tune kernel parameters.
However, some kernel parameters cannot be
configured on each container, independently.

#2: Some middleware executes system calls. For
example, DB executes system call when locking a
memory. However, some system calls cannot be
executed on a container because it is restricted
by seccomp.

#3: During containerization, customer expects
that block volume can be used same as
Baremetal or VM. However block volume cannot
be mapped to container with Kubernetes volume.

Q redhat.

© Hitachi, Ltd. 2018. All rights reserved.

rrrrrrrrrr

mmmmm

Technical Challenges

« redhat

2-1. Problems of Middleware Containerization

- The table shows 3 problems of middleware containerization we found.
- They are cateqgorized into Performance and Security.

Problems Category

1 | Some kernel parameters cannot be configured on each | Performance
container, independently.

Some system calls cannot be executed on a container. | Security

3 | Block volume cannot be mapped to container with Performance
Kubernetes volume.

#redhat #rhsummit ‘ redhat.
© Hitachi, Ltd. 2018. All rights reserved.

2-1. Problems of Middleware Containerization

- The table shows 3 problems of middleware containerization we found.
- They are cateqgorized into Performance and Security.

Problems Category

1 | Some kernel parameters cannot be configured on each | Performance
container, independently.

Some system calls cannot be executed on a container. | Security

3 | Block volume cannot be mapped to container with Performance
Kubernetes volume.

#redhat #rhsummit ‘ redhat.
© Hitachi, Ltd. 2018. All rights reserved.

2-2. Problem of Kernel Parameters Configuration

These 3 types of kernel parameters are available for container’s configuration.

Parameters Range Detail

Node level Node | This can be set for each node, but can not be set for each container.
Safe Pod This can be set for each container, and does not affect other container.
Unsafe Pod This can be set for each container, but may affect other containers.

Containerized middleware like DB needs to set kernel parameters even if it’s in container.
However setting Node level sysctls or unsafe.sysctls may affect another containers.

Safe Safe
DB AP \ DB AP / DB AP
Kernel Kernel | Kernel Kernel | Kernel
paraméters para;neters parameters parameters / parameters
namesﬁage napTespace namespace namespace U f namespace namespace
-- nsatre
Docker’ Docker Docker
0«.
/——05—— Kernel parameters 0S ON
Hardware or VM Hardware or VM Hardware or VM
Node level
Node [evel Safe Unsafe
_ ® OpensShift Container Platform 3.9 - sysctls
#redhat Hrhsummit |\, o- /3 ccess.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/cluster_administration/admin-guide-sysctls Qredhat.

© Hitachi, Ltd. 2018. All rights reserved.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/cluster_administration/admin-guide-sysctls

2-3. Solution of Kernel Parameters Configuration

safe.sysctl safe.sysctl
Place Pod with safe.sysctl on “Safety” node. AP1 AP2)
o q o namespace namespace
Safe.sysctl can configure each Pods without influence \. Kernel Kernel
of unsafe and Node level. parameters) | \parameters
Linux

Kubernetes Node-1(Safety)

Place Pods with unsafe.sysctl or Node level sysctl on

“Dedicated” node. Unsafe.sysctl Node level sysctl
|

a. Configure “Kubernetes Taints” to dedicated nodes DB |

beforehand, so that only specific Pods can be placed on P

“Dedicated” node. Kernel _

P ter B

b. Set sysctl settings to the “Dedicated” nodes. —_— Linux
c. Create a Pod with “Kubernetes Tolerate” so that the pod is Kernel parameter A

placed on the Taint Node like Kubernetes Node-2. Kubernetes Node-2(Dedicated)

#redhat #rhsummit gredhat.

© Hitachi, Ltd. 2018. All rights reserved.

2-4. Problem of Middleware Containerization

Problems Category

1 | Some kernel parameters cannot be configured on each | Performance
container, independently.

2 | Some system calls cannot be executed on a container. | Security

3 | Block volume cannot be mapped to container with Performance
Kubernetes volume.

#redhat #rhsummit

Q redhat.

© Hitachi, Ltd. 2018. All rights reserved.

2-5. Problem of System Calls

* Inside a container, some system calls are restricted by default.
« As aresult, operations of a container application are restricted.

« Ex.Core Dump
Container cannot issue “ulimit” command. Therefore core dump of
the application doesn’t get dumped.

#redhat #rhsummit

Baremetal or Virtual Machine

DB AP
DB AP
namekpace | namespace
__os &
Guest OS Guest OS n..,_“oci"_er
Virtual Machine| | Virtual Machine B
Hypervisor 0S i
Host 05 Host OS
Hardware Hardware Hardware or VM

Container

© Hitachi, Ltd. 2018. All rights reserved.

Q redhat.

2-6. Solution of System Calls

« To make system call executable,
1. Set “seccomp=unconfined”
2. Add specified Linux Capabilities.

seccomp.security.alpha.kubernetes.io/pod: unconfined seccomp.security.alpha.kubernetes.io/pod: unconfined
securityContext: securityContext:
capabilities: capabilities:
add: add:
- NET_ADMIN - NET_ADMIN
- SYS_RESOURCE - SYS_RESOURCE
- IPC_LOCK - IPC_LOCK
- IPC_OWNER - IPC_OWNER
- LEASE ~
N
DB AP
omit “CAP_”|manifest D_B A_P manifestf omit “CAP_”
— nam(®)ace | nan{@pace |
Capabilities -Docker
- CAP_NET_ADMIN C,D
- CAP_SYS_RESOURCE 0S .]
- CAP_IPC_LOCK L
o - CAP_IPC_OWNER Hardware or VM o
#redhat #rhsummit .
(CAP_LEASE et Conta iner © Hitachi, Ltd. 2018. All rights reserved. ol

2-7. Problems of Middleware Containerization

Problems Category

1 | Some kernel parameters cannot be configured on each | Performance
container, independently.

2 | Some system calls cannot be executed on a container. | Security

3 | Block volume cannot be mapped to container with Performance
Kubernetes volume.

#redhat #rhsummit ‘ redhat.
© Hitachi, Ltd. 2018. All rights reserved.

2-8. Problem of Block Volume support
« During containerization, customer expects that block volume can be used same as
Baremetal or Virtual Machine because block volume provides consistent I/O
performance and low latency compared to filesystem volume.
« However, before version 1.8, Kubernetes didn’t support attaching block volume to
container from backend storage.

DB AP
Guest OS Guest OS DB AP
Virtual Machine Virtual Machine namespace | | namespace
DB (/dég)g’da) Hypervisor (,dés)’s"da) DOt_:ker
Host OS Host OS X Linux
Hardware Hardware Hardware or VM
raw x
‘ (/dev/sda) |
LY
LU LU Persistent
Volume
Backend Storage Backend Storage
Baremetal or Virtual Machine Container P
= re at.

#redhat #rhsummit

© Hitachi, Ltd. 2018. All rights reserved.

2-9. Solution of Block Volume support

New parameters “volumeMode

Hitachi developed a feature that enables to use block volume support in cooperation with Red
Hat at Kubernetes community.

This feature enables to attach block volume directly to the container.
volumeDevices” and “devicePath” were added to configure

block volume support. Ex: volumeMode=“Filesystem” or “Block”.

Persistent Volume

lun: O

#redhat #rhsummit

Persistent Volume Claim Pod

apiVersion: vl apiVersion: v1 apiVersion: vi

kind: PersistentVolume kind: PersistentVolumeClaim kind: Pod

metadata: metadata: metadata:

name: block-pv001 name: block-pvc001 name: blockvolume-pod
spec: spec: spec:

capacity: accessModes: containers:

storage: 1Gi - ReadWriteOnce - name: blockvolume-container
accessModes: volumeMode: Block .

- ReadWriteOnce resources: volumeDevices:
volumeMode: Block requests: - name: data
persistentVolumeReclaimPolicy: Retain storage: 1Gi devicePath: /dev/xvda
fc: volumes:

targetWWNs: [‘28000001ff04142"] - name: data

persistentVolumeClaim:
claimName: block-pvc001
readOnly: false

+
= rearmil

© Hitachi, Ltd. 2018. All rights reserved.

2-9. Solution of Block Volume support

« Hitachi developed a feature that enables to use block volume support in cooperation with Red
Hat at Kubernetes community.

* This feature enables to attach block volume directly to the container.

99 ¢

 New parameters “volumeMode”, “volumeDevices” and “devicePath” were added to configure
block vo"

Persister
apiversion: Future Work
Kind: Persis . . .
metadata: * BloCk volume is Alpha version in Kubernetes v1.10,
cec: "¢ therefore more unit tests and e2e test cases are
capacity: required to improve reliability. |
storage: 1(Ltainer
accessMod
- ReadWrite.
volumeMode: Block requests: e
persistentVolumeReclaimPolicy: Retain storage: 1Gi IdeV|cePath:/dev/xvda
fc: volumes:
targetWWNs: [‘28000001ff0414e2°] - namii d?:t/a | i
: persistentVolumeClaim:
wri claimName: block-pvc00T1
#tredhat #rhsummit readOnIy: false

© Hitachi, Ltd. 2018. All rights reserved.

Solution Summary

#tredhat #rhsummi « redhat

3. Conclusion

|Problems | Ourapproach

1

Some kernel parameters cannot be Pros: Divide node for each purpose.

configured on each container, Cons: Container hosts are increase.
independently.

Some system calls cannot be Pros: Use seccomp and Linux
executed on a container. Capabilities for configuration

of each application container.

Block volume cannot be mapped to Pros: Block volume support were
container with Kubernetes volume. merged at Kubernetes v1.9.

#iredhat #rhsummit ‘ redhat.

© Hitachi, Ltd. 2018. All rights reserved.

Learn How to Migrate

#tredhat #rhsummi « redhat

Check Out the Guide

#redhat #rhsummit

Download the e-Book:
https://red.nt/2EkVdkJ

Q redhat

BEST PRACTICES FOR MIGRATING TO
CONTAINERIZED APPLICATIONS

Q redhat.

https://red.ht/2EkVdkJ

RED HAT

SUMMIT '

THANK YOU

&+ plus.google.com/+RedHat f facebook.com/redhatinc

in linkedin.com/company/red-hat W twitter.com/RedHat

s youtube.com/user/RedHatVideos

Trademarks

HITACHI is a registered trademark of Hitachi, Ltd.

Red Hat and OpenShift are trademarks or a registered trademarks of Red Hat Inc. in the United States and
other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States
and/or other countries.

Kubernetes is a registered trademark of The Linux Foundation.

Amazon Web Services is a trademark of Amazon.com, Inc. or its affiliates in the United States and/or other
countries.

VMware, ESXi are reqistered trademarks or trademarks of VMware, Inc. in the United States and other
jurisdictions.

Active Directory is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.

Other company and product names mentioned in this document may be the trademarks of their respective
owners.

#redhat #rhsummit ‘ redhat.
© Hitachi, Ltd. 2018. All rights reserved.

