
How to build a European scale
instant payments platform
SIA and Red Hat

Giovanni Fulco, Giuseppe Bonocore, Ugo Landini

May 2018

Giovanni Fulco
Software Architect

 Ugo Landini
Principal Solution Architect

 Mattia Ronchi
Senior Technical Analyst

Giuseppe Bonocore
Solution Architect

SIA in a nutshell

CARDS 6.1 billion operations

PAYMENTS 3.3 billion transactions

CAPITAL MARKETS 56.2 billion financial transactions

NETWORK 784 terabytes of data carried

“Everyone will be able
to use their own
money anytime,
anywhere, simply and
securely.”

SIA Vision

“Open unlocks the
world’s potential.”

Red Hat Vision

SIA & Red Hat

2000 - First application
delivered on linux OS

2004 - New Trading
platform on RHEL 2.1

2010 - Real Time
Kernel Adoption

2013 - Partnership to
develop JDG Library

2016 - Instant
Payment Platform

Wire transfer without
Instant Payments

My Bank

New
 Wire Transfer

1 2 3

My Bank

Select Recipient:

Giovanni
Fulco

Mattia
Ronchi

Giuseppe
Bonocore

Ugo
Landini

1 2 3

My Bank

100 €

SEND

Select amount:

1 2 3

…

…

My Homebanking Search...

Wire Account
Received:

100 €
OK

_ x

Wire transfer with
Instant Payments

My Bank

New
 Wire Transfer

1 2 3

My Bank

Select Recipient:

Giovanni
Fulco

Mattia
Ronchi

Giuseppe
Bonocore

Ugo
Landini

1 2 3

My Bank

100 €

SEND

Select amount:

Instant Payment:

1 2 3

< 50mS

My Homebanking Search...

Wire Account
Received:

100 €
OK

_ x

What’s under the hood

What’s under the hood
● JDG, In Memory Data Grid

○ Scalable and elastic grid for exceptional performances
● AMQ

○ High performance messaging
● FIS, Camel on OpenShift

○ Superdynamic integrations
● CASSANDRA, NoSQL DB

○ Store transaction history for non repudiation / antifraud

Request sent to bankBank

BankReceiver

Site A Site B

1 2

3

4

567

1

2

3

4

5

6

7

Sender
Bank calls Instant Payments

Request is stored in JDG

JDG replicates cross site

Req is stored in Cassandra

Tx is propagated to bank

Receiver asked for confirm

Fuse

JDG

Instant Payments

Fuse

JDG

Bank Confirms PaymentBank

BankReceiver

Site A Site B

6 5

2
3

41

1

2

3

4

5

6

Sender
Confirmation is stored in JDG

JDG replicates cross site

Req is stored in Cassandra

Tx is propagated to bank

Sender is notified

Fuse

JDG

Instant Payments

Fuse

JDG

< 50mS !

JDG, In Memory Data Grid

Memory is the new disk

JDG: JBoss Data Grid

In-memory data = all data needed is to be kept in memory
Grid = too big for one node, data is distributed in cluster

See "memory" across machines as a unified data store

Read-through, write-through, write-behind

• Polyglot
• Extreme Performance
• Linear Scalability
• Fault Tolerant
• Event driven

Memory cluster

Distributed mode (typically 1 replica)

Adding a value
PUT(K1,V)

Adding a value
PUT(K1,V)

K1 K1

Values are distributed
PUT(K2,V)

K1 K1

Values are distributed
PUT(K2,V)

K2K1 K1 K2

Keys are distributed consistently through the cluster

K2K1 K1 K2

K4 K5

K3

K5 K4

K3

Consistent Hashing

Given the same topology (i.e. number of nodes), same keys are always hashed on the
same nodes. Consistent hashing can be calculated on clients too, so they can reach
the right node for any given key

So reads go directly on the “right” node...

K2K1 K1 K2

K4 K5

K3

K5 K4

K3

GET(K2)

K2K1 K1 K2

K4 K5

K3

K5 K4

K3

GET(K5)

... thx to consistent hashing

K2K1 K1 K2

K4 K5

K3

K5 K4

K3

If you lose or add a node (topology change)...

K2K1 K1 K2

K4K5 K3K5 K4

K3

…keys are automatically redistributed

GET(K5)

The client gets the new topology too...

K2K1 K1 K2

K4K5 K3K5 K4

K3

Data Affinity

Data affinity means co-locating data together to improve performance and scalability

Data affinity means co-locating computing code with data too

Data Affinity
“Grouping” together all the affine
data, for example:

● All Customer data
● All Credit card data
● Whatever partitioning criteria is

better

Gives:

● Highest possible performance
● Lowest possible round trips

Same color == same group

K2K1 K4 K2

K4 K6

K3

K5 K5

K3

K1 K6

K7

K7K8 K8

Project Requirements

 Euro Banking Association - RT1

RT1 is an instant payment system that will provide the European payments industry
with a pan-European infrastructure platform for real-time payments in euro from
day one of the SEPA Instant Credit Transfer Scheme.

Constraints

5,000 tx/sec Active/Active geo sites

27 Mln Payments/day 0 Message loss

< 900 ms Roundtrip 24/7/365 Availability

Challenges and Solutions

Challenge

Due to low latency and
replica requirements, we
could not adopt a traditional
db-centric application

Solution

We adopted a full in-memory
solution relying on
Jboss DataGrid

Non DB Centric application

Challenge

Cross-site replica needs to
be synchronous, and
the number of remote
operations must be low

Solution

DataGrid key affinity:
Each transaction is handled by
the node which owns the
relevant data.

Minimize remote communication

Challenge

Incoming messages need to
be managed in an highly
available, cross site
infrastructure

Solution

AMQ Network of brokers
allow highly available, zero
message loss topologies (site
disaster resilient)

Highly available messaging

Challenge

Multi site active-active
increases the risks of split
brains

Solution

Datagrid owner distribution
between sites allow to
operate in case of network
split

Avoid split brain

Next Steps

Next Steps

Adoption of EnMasse
(Messaging As A Service in
OpenShift), to streamline the
management of queues

EnMasse

Next Steps

Containerization with
OpenShift to allow safer
releases of newer version and
instances

Release and scale, without service disruption

Next Steps

Federate other payment
circuits, in order to reach more
customers

Broader Circuit

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

