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Low Risk 
“The existence of more than one possibility. The “true” outcome/state/result/value is not know” 

“A state of uncertainty where some of the possibilities involve a loss, catastrophe, or other  
undesirable outcome” 

- Douglas Hubbard  
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Monolith 

An existing large application developed over the course of many years by different  
teams that provides proven business value. Its structure has eroded insofar it  
has become very difficult to update and maintain.  
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Microservice 

A highly distracting word that serves to confuse developers, architects, 
and IT leaders into believing that we can actually have a utopian application 
architecture. 
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Microservice 

A highly distracting word that serves to confuse developers, architects, 
and IT leaders into believing that we can actually have a utopian application 
architecture. 

An architecture optimization that treats the modules of an application 
as independently owned and deployed services for the purposes of 
increasing an organization’s velocity 
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We can now assert with confidence that high IT 
performance correlates with strong business 
performance, helping to boost productivity, 
profitability and market share. 

https://puppet.com/resources/whitepaper/2014-state-devops-report 
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https://puppet.com/resources/whitepaper/2015-state-devops-report 
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https://puppet.com/resources/whitepaper/state-of-devops-report 
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Goal 

We want to use microservices architecture, where it makes sense, to help  
speed up an organization’s development velocity while lowering the chances of 
bad things happening or being able to understand and recover quickly if it does. 



MEET OUR CASE STUDY 
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https://developers.redhat.com/ticket-monster/ 
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Some pain maintaining a monolith: 

•  Making changes in one place negatively affects unrelated areas 
•  Low confidence making changes that don’t break things 

•  Spend lots of time trying to coordinate work between team members 

•  Structure in the application has eroded or is non-existant 

•  We have no way to quantify how long code merges will take 
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Some pain maintaining a monolith: 
•  Development time is slow simply because the project is so big (IDE 

bogs down, running tests is slow, slow bootstrap time, etc) 

•  Changes to one module force changes across other modules 

•  Difficult to sunset outdated technology 

•  We’ve built our new applications around old premises like batch 
processing 

•  Application steps on itself at runtime managing resources, allocations, 

computations 



QUICK INTERLUDE: 
WHEN TO DO MICROSERVICES 
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Microservices is about optimizing for speed 
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So, do we microservices all the way down? 
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Ask a very honest, and critical, question: 

Is our application architecture the bottleneck  

for being able to go faster? 
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“No”, “Not really”, “Not yet”… then stop 

 

Go find out what is. Improve that. Then come back. 



MEANWHILE… 
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How do you break this thing up? 
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Some ramblings… 
•  Do one thing and do it well 
•  Single responsibility principle 

•  Organize around nouns 

•  Organize around verbs 

•  Bounded context 
•  Products not projects 

•  Unix philosophy 
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Reminds me of yesteryear 

https://www.infoq.com/presentations/SOA-Business-Autonomous-Components 
 



@christianposta 

Try one more time… 
•  Identify modules, boundaries 
•  Align to business capabilities 

•  Identify data entities responsible for features/modules 

•  Break out these entities and wrap with an API/service 

•  Update old code to call this new API service 
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Identify modules Break out API Rinse, repeat 
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Generally good; misses a lot of detail! 
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Try one more time… 
•  Not easy to “re-modularize” a monolith 
•  Tight coupling/integrity constraints between normalized tables 
•  Difficult to understand which modules use which tables 
•  We cannot stop the world to perform migrations 
•  there will be some ugly migration steps that cannot just be wished 

away 
•  there is probably a point of diminishing returns where it doesn’t 

make sense to break things out of the monolith 
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Make sure… 
•  You have test coverage for existing project (ie, passing tests, CI 

processes, etc)  
•  Consider Arquillian for integration testing 
•  Make sure you have some level of monitoring to detect issues / 

exceptions / etc 
•  Have some level of black-box system tests in place / load testing 

(JMeter, Gattling) 
•  Can deploy reliable to an environment (ideally OpenShift/

Kubernetes!) 
•  Have some kind of CI/CD to be able to make changes economical 



OUR MONOLITH 
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Our monolith  
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Break out UI (if applicable) 
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Deployment v release gives us flexibility 



QUICK INTERLUDE: 
DEPLOYMENT VS RELEASE 
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Decoupling deployment from release 

Here, we’ve deployed Orders v1.1 

Orders v1.1 does NOT take traffic 
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Decoupling deployment from release 

Here, we’ve begun a release of Orders v1.1 

Using traffic control, we can  
direct a fraction of traffic to v1.1 



Meet	Istio.io	
http://istio.io 
 

An	open-source	service	mesh	
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A	service	mesh	is	decentralized	application-	
networking	infrastructure	between	your	services		
that	provides	resiliency,	security,	observability,		
and	routing	control.		
	
A	service	mesh	is	comprised	of	a	data	plane	
and	control	plane.	

Time	for	de=initions:	

@christianposta 
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MEANWHILE… 
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Let’s call it backend now… 
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Introduce a new Orders service 
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Introducing new service API 
•  We want to focus on the API design / boundary of our extracted 

service 
•  This may be a re-write from what exists in the monolith 
•  We should iterate on the API and share with our collaborators 
•  We can stub out the service with Microcks/Hoverfly 
•  This service will have its own data storage 
•  This service will not receive any traffic at this point 
•  Put in place “walking skeleton” to exercise CI/CD pipeline 
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apicur.io for designing the API 
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Create an implementation 
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Shared data 
•  New service will share concepts with monolith 
•  We will need a way to reify that data within the microservice 
•  The monolith probably doesn’t provide an API at the right level  
•  Shaping the data from the monolith’s API requires boiler plate 

code 
•  Could create a new API for the monolith 
•  Could copy the data 
•  Could connect right up (yuck!) 
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Virtualize the data? 
•  Focus on the new service’s domain model 
•  Eliminate any boiler plate code 
•  Read only virtual view of the monolith’s data 
•  Read/write our own database, without changing data model 
•  Part of a series of steps that ends with eliminating the virtual view 
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Virtualize the data? 



QUICK INTERLUDE: 
BOILERPLATE DATA INTEGRATION 
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http://teiid.jboss.org 
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https://github.com/teiid/teiid-spring-boot 
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Set up Spring Boot 
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MEANWHILE… 
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Mirror traffic to new service 



@christianposta 

Mirror traffic to new service 



QUICK INTERLUDE: 
TRAFFIC MIRRORING 
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Mirror traffic with Istio 
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Traffic compare/tap with Diffy 

https://github.com/twitter/diffy 
 



MEANWHILE… 
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Feature flags for runtime kill switch 
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Async Change Data Capture with Debezium.io? 
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Eliminate dependency on monolith DB 
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Recap 
•  Write lots of tests (for monolith if you can; especially new service) 
•  Use advanced deployment techniques (canarying, tap compare, 

mirroring) 
•  Use fine-grain traffic control to separate deployment from release 
•  Reduce boiler plate code for data integration in initial service 

implementation 
•  Use technical debt to your advantage 
•  Have lots of monitoring in place 
•  Leverage your deployment and release infrastructure to 

experiment and learn! 



Quick demo? 

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ☺ 
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Follow up links: 
•  http://openshift.io 
•  http://launch.openshift.io 
•  http://blog.openshift.com 
•  http://developers.redhat.com/blog 
•  https://www.redhat.com/en/open-innovation-labs 
•  https://www.redhat.com/en/technologies/jboss-middleware/3scale 
•  https://www.redhat.com/en/technologies/jboss-middleware/fuse 
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