
LOWERING THE RISK OF
MONOLITH TO MICROSERVICES
One organization’s journey to microservices

@christianposta
Chief Architect, Cloud applications
8 May, 2018

Christian Posta
Chief Architect, cloud application development

 Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

•  Author “Microservices for Java developers”,

“Introducing Istio Service Mesh”, and other

•  Committer/contributor to open-source projects
•  Blogger, speaker, writer

http://bit.ly/istio-book

@christianposta

LOW RISK
MONOLITH

MICROSERVICES

@christianposta

Low Risk
“The existence of more than one possibility. The “true” outcome/state/result/value is not know”

“A state of uncertainty where some of the possibilities involve a loss, catastrophe, or other
undesirable outcome”

- Douglas Hubbard

@christianposta

Monolith

An existing large application developed over the course of many years by different
teams that provides proven business value. Its structure has eroded insofar it
has become very difficult to update and maintain.

@christianposta

Microservice

A highly distracting word that serves to confuse developers, architects,
and IT leaders into believing that we can actually have a utopian application
architecture.

@christianposta

Microservice

A highly distracting word that serves to confuse developers, architects,
and IT leaders into believing that we can actually have a utopian application
architecture.

An architecture optimization that treats the modules of an application
as independently owned and deployed services for the purposes of
increasing an organization’s velocity

@christianposta

We can now assert with confidence that high IT
performance correlates with strong business
performance, helping to boost productivity,
profitability and market share.

https://puppet.com/resources/whitepaper/2014-state-devops-report

@christianposta

https://puppet.com/resources/whitepaper/2015-state-devops-report

@christianposta

https://puppet.com/resources/whitepaper/state-of-devops-report

@christianposta

Goal

We want to use microservices architecture, where it makes sense, to help
speed up an organization’s development velocity while lowering the chances of
bad things happening or being able to understand and recover quickly if it does.

MEET OUR CASE STUDY

@christianposta

https://developers.redhat.com/ticket-monster/

@christianposta

@christianposta

Some pain maintaining a monolith:

•  Making changes in one place negatively affects unrelated areas
•  Low confidence making changes that don’t break things

•  Spend lots of time trying to coordinate work between team members

•  Structure in the application has eroded or is non-existant

•  We have no way to quantify how long code merges will take

@christianposta

Some pain maintaining a monolith:
•  Development time is slow simply because the project is so big (IDE

bogs down, running tests is slow, slow bootstrap time, etc)

•  Changes to one module force changes across other modules

•  Difficult to sunset outdated technology

•  We’ve built our new applications around old premises like batch
processing

•  Application steps on itself at runtime managing resources, allocations,

computations

QUICK INTERLUDE:
WHEN TO DO MICROSERVICES

@christianposta

Microservices is about optimizing for speed

@christianposta

So, do we microservices all the way down?

@christianposta

Ask a very honest, and critical, question:

Is our application architecture the bottleneck

for being able to go faster?

@christianposta

“No”, “Not really”, “Not yet”… then stop

Go find out what is. Improve that. Then come back.

MEANWHILE…

@christianposta

How do you break this thing up?

@christianposta

Some ramblings…
•  Do one thing and do it well
•  Single responsibility principle

•  Organize around nouns

•  Organize around verbs

•  Bounded context
•  Products not projects

•  Unix philosophy

@christianposta

Reminds me of yesteryear

https://www.infoq.com/presentations/SOA-Business-Autonomous-Components

@christianposta

Try one more time…
•  Identify modules, boundaries
•  Align to business capabilities

•  Identify data entities responsible for features/modules

•  Break out these entities and wrap with an API/service

•  Update old code to call this new API service

@christianposta

Identify modules Break out API Rinse, repeat

@christianposta

Generally good; misses a lot of detail!

@christianposta

Try one more time…
•  Not easy to “re-modularize” a monolith
•  Tight coupling/integrity constraints between normalized tables
•  Difficult to understand which modules use which tables
•  We cannot stop the world to perform migrations
•  there will be some ugly migration steps that cannot just be wished

away
•  there is probably a point of diminishing returns where it doesn’t

make sense to break things out of the monolith

@christianposta

Make sure…
•  You have test coverage for existing project (ie, passing tests, CI

processes, etc)
•  Consider Arquillian for integration testing
•  Make sure you have some level of monitoring to detect issues /

exceptions / etc
•  Have some level of black-box system tests in place / load testing

(JMeter, Gattling)
•  Can deploy reliable to an environment (ideally OpenShift/

Kubernetes!)
•  Have some kind of CI/CD to be able to make changes economical

OUR MONOLITH

@christianposta

Our monolith

@christianposta

Break out UI (if applicable)

@christianposta

Deployment v release gives us flexibility

QUICK INTERLUDE:
DEPLOYMENT VS RELEASE

@christianposta

Decoupling deployment from release

Here, we’ve deployed Orders v1.1

Orders v1.1 does NOT take traffic

@christianposta

Decoupling deployment from release

Here, we’ve begun a release of Orders v1.1

Using traffic control, we can
direct a fraction of traffic to v1.1

Meet	Istio.io	
http://istio.io

An	open-source	service	mesh	

@christianposta

A	service	mesh	is	decentralized	application-	
networking	infrastructure	between	your	services		
that	provides	resiliency,	security,	observability,		
and	routing	control.		
	
A	service	mesh	is	comprised	of	a	data	plane	
and	control	plane.	

Time	for	de=initions:	

@christianposta

@christianposta

MEANWHILE…

@christianposta

Let’s call it backend now…

@christianposta

Introduce a new Orders service

@christianposta

Introducing new service API
•  We want to focus on the API design / boundary of our extracted

service
•  This may be a re-write from what exists in the monolith
•  We should iterate on the API and share with our collaborators
•  We can stub out the service with Microcks/Hoverfly
•  This service will have its own data storage
•  This service will not receive any traffic at this point
•  Put in place “walking skeleton” to exercise CI/CD pipeline

@christianposta

apicur.io for designing the API

@christianposta

Create an implementation

@christianposta

Shared data
•  New service will share concepts with monolith
•  We will need a way to reify that data within the microservice
•  The monolith probably doesn’t provide an API at the right level
•  Shaping the data from the monolith’s API requires boiler plate

code
•  Could create a new API for the monolith
•  Could copy the data
•  Could connect right up (yuck!)

@christianposta

Virtualize the data?
•  Focus on the new service’s domain model
•  Eliminate any boiler plate code
•  Read only virtual view of the monolith’s data
•  Read/write our own database, without changing data model
•  Part of a series of steps that ends with eliminating the virtual view

@christianposta

Virtualize the data?

QUICK INTERLUDE:
BOILERPLATE DATA INTEGRATION

@christianposta

http://teiid.jboss.org

@christianposta

https://github.com/teiid/teiid-spring-boot

@christianposta

Set up Spring Boot

@christianposta

@christianposta

MEANWHILE…

@christianposta

Mirror traffic to new service

@christianposta

Mirror traffic to new service

QUICK INTERLUDE:
TRAFFIC MIRRORING

@christianposta

Mirror traffic with Istio

@christianposta

Traffic compare/tap with Diffy

https://github.com/twitter/diffy

MEANWHILE…

@christianposta

Feature flags for runtime kill switch

@christianposta

Async Change Data Capture with Debezium.io?

@christianposta

Eliminate dependency on monolith DB

@christianposta

Recap
•  Write lots of tests (for monolith if you can; especially new service)
•  Use advanced deployment techniques (canarying, tap compare,

mirroring)
•  Use fine-grain traffic control to separate deployment from release
•  Reduce boiler plate code for data integration in initial service

implementation
•  Use technical debt to your advantage
•  Have lots of monitoring in place
•  Leverage your deployment and release infrastructure to

experiment and learn!

Quick demo?

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ☺

Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Follow up links:
•  http://openshift.io
•  http://launch.openshift.io
•  http://blog.openshift.com
•  http://developers.redhat.com/blog
•  https://www.redhat.com/en/open-innovation-labs
•  https://www.redhat.com/en/technologies/jboss-middleware/3scale
•  https://www.redhat.com/en/technologies/jboss-middleware/fuse

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

