B

LOWERING THE RISK OF
MONOLITH TO MICROSERVICES

One organization’s journey to microservices

@christianposta
Chief Architect, Cloud applications
8 May, 2018

Christian Posta & rednat
Chief Architect, cloud application development

Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

O'REILLY"

T - ” Microservices
Author “Microservices for Java developers”,

for Java Developers
“Introducing Istio Service Mesh”, and other

A Hands-On Introduction
to Frameworks & Containers

Committer/contributor to open-source projects
Blogger, speaker, writer

.
W
'
7
¥
@
21!

http://bit.ly/istio-book

O'REILLY

Introducing Istio
Service Mesh for
Microservices

Build and Deploy Resilient, Fault-Tolerant
Cloud-Native Applications

N\"\“‘“lnum:; gy

,m%

Christian Posta & Burr Sutter

Q. redhat

3 @christianposta

LOW RISK
MONOLITH
MICROSERVICES

#redhat #rhsummit o redhat

Low Risk

“The existence of more than one possibility. The “true” outcome/state/result/value is not know”

“A state of uncertainty where some of the possibilities involve a loss, catastrophe, or other
undesirable outcome”

- Douglas Hubbard

3y @christianposta ‘ redhat

Monolith

An existing large application developed over the course of many years by different

teams that provides proven business value. Its structure has eroded insofar it
has become very difficult to update and maintain.

3 @christianposta

Q rednat

Microservice

A highly distracting word that serves to confuse developers, architects,
and IT leaders into believing that we can actually have a utopian application
architecture.

3 @christianposta ‘ redhat

MicroservicesS

A highly distra
and IT leaders into beli
archit

opers, architects,
have a utopian application

An architecture optimization that treats the modules of an application
as independently owned and deployed services for the purposes of
increasing an organization’s velocity

3 @christianposta ‘ redhat

“ We can now assert with confidence that high IT
performance correlates with strong business

performance, helping to boost productivity,
profitability and market share.??

https://puppet.com/resources/whitepaper/2014-state-devops-report

3 @christianposta ‘ redhat

3 @christianposta

Figure 1

Comparison of IT performance metrics between high' and low performers

2015 (Super High vs. Low)

Deployment Frequency

30x

Deployment Lead Time

200x

https://puppet.com/resources/whitepaper/2015-state-devops-report

Q. redhat

Table 1: Changes in IT performance of high performers, 2016 to 2017

IT performance metrics 2016 2017
Deployment frequency 200x more frequent 46x more frequent
Lead time for changes 2,555x faster 440x faster
Mean time to recover (MTTR) 24x faster 96x faster
Change failure rate 3x lower (1/3 as likely) 5x lower (1/5 as likely)

https://puppet.com/resources/whitepaper/state-of-devops-report

3 @christianposta ‘ redhat

Goal

We want to use microservices architecture, where it makes sense, to help
speed up an organization’s development velocity while lowering the chances of
bad things happening or being able to understand and recover quickly if it does.

3y @christianposta ‘ redhat

MEET OUR CASE STUDY

#redhat #rhsummit

' TicketMonster.

A]JBoss Example.

TicketMonster is an online ticketing demo
application that gets you started with JBoss

https://developers.redhat.com/ticket-monster/

3 @christianposta ‘ redhat

For |

ML

qu Cerve ¢

3 @christianposta

Q redhat

Some pain maintaining a monolith:

 Making changes in one place negatively affects unrelated areas
 Low confidence making changes that don’t break things

 Spend lots of time trying to coordinate work between team members
e Structure in the application has eroded or is non-existant

* We have no way to quantify how long code merges will take

3 @christianposta ‘ rednat

Some pain maintaining a monolith:

« Development time is slow simply because the project is so big (IDE
bogs down, running tests is slow, slow bootstrap time, etc)

 Changes to one module force changes across other modules

« Difficult to sunset outdated technology

* We've built our new applications around old premises like batch
processing

* Application steps on itself at runtime managing resources, allocations,

computations

3 @christianposta ‘ rednat

QUICK INTERLUDE:
WHEN TO DO MICROSERVICES

#redhat #rhsummit

Microservices is about optimizing for speed

3 @christianposta ‘ redhat

S0, do we microservices all the way down?

3 @christianposta ‘ redhat

Ask a very honest, and critical, question:

Is our application architecture the bottleneck

for being able to go faster?

3 @christianposta ‘ redhat

7 14

“No”, “Not really”, “Not yet"... then stop

Go find out what is. Improve that. Then come back.

3 @christianposta ‘ redhat

MEANWHILE...

#redhat #rhsummit

How do you break this thing up?

3 @christianposta ‘ redhat

Some ramblings...

Do one thing and do it well
Single responsibility principle
Organize around nouns
Organize around verbs
Bounded context

Products not projects

Unix philosophy

3 @christianposta

Q rednat

Reminds me of yesteryear

https://www.infog.com/presentations/SOA-Business-Autonomous-Components

3 @christianposta ‘ redhat

Try one more time...

* |dentify modules, boundaries

* Align to business capabilities

* |dentify data entities responsible for features/modules
 Break out these entities and wrap with an APIl/service

* Update old code to call this new API service

3 @christianposta ‘ rednat

|[dentify modules Break out API Rinse, repeat

=

>

3 @christianposta ‘ redhat

Generally good; misses a lot of detail!

3 @christianposta ‘ redhat

Try one more time...

* Not easy to “re-modularize” a monolith

* Tight coupling/integrity constraints between normalized tables

e Difficult to understand which modules use which tables

 We cannot stop the world to perform migrations

* there will be some ugly migration steps that cannot just be wished

away
* there is probably a point of diminishing returns where it doesn’t

make sense to break things out of the monolith

3 @christianposta ‘ rednat

Make sure...

* You have test coverage for existing project (ie, passing tests, Cl
processes, etce)

* Consider Arquillian for integration testing

* Make sure you have some level of monitoring to detect issues /
exceptions / etc

* Have some level of black-box system tests in place / load testing
(JMeter, Gattling)

 Can deploy reliable to an environment (ideally OpenShift/
Kubernetes!)

* Have some kind of Cl/CD to be able to make changes economical

W @christianposta @ rednat

OUR MONOLITH

#redhat #rhsummit

Our monolith

3 @christianposta

Mom [

Q redhat

Break out Ul (if applicable)

3 @christianposta

Mom [

Q redhat

Deployment v release gives us flexibility

(e

hiret
vwone|ith

3 @christianposta ‘ redhat

QUICK INTERLUDE:
DEPLOYMENT VS RELEASE

#redhat #rhsummit

Decoupling deployment from release

Load Balancer
\

Orders v1.1 does NOT take traffic

v y

Orkevs ul. i %er&' v |.0

Here, we've deployed Orders v1.1

3 @christianposta ‘ redhat

Decoupling deployment from release

Load Balancer

Using traffic control, we can 1
direct a fraction of traffic to v1.1

v v

Oikers Rl Orders v |.0

Here, we've begun a release of Orders v1.1

3 @christianposta ‘ redhat

Meet Istio.10
http://istio.io

A

g—

An open-source service mesh

3 @christianposta O redhat

Time for definitions:

A service mesh is decentralized application-
networking infrastructure between your services
that provides resiliency, security, observability,
and routing control.

A service mesh is comprised of a data plane
and control plane.

3 @christianposta ‘ redhat

N ‘ Edae :Cv\g_rcs

Service
Mesh
Conrol
Plane
Novth-South
Traffic

< East ’V\’“J{ > ‘ redhat

3 @christianposta “‘vaffic

MEANWHILE...

#redhat #rhsummit

Let’s call it backend now...

3 @christianposta

Backend

Q. redhat

Introduce a new Orders service

3 @christianposta

Backend

Ovrders

Q. redhat

Introducing new service API

We want to focus on the APl design / boundary of our extracted
service

This may be a re-write from what exists in the monolith

We should iterate on the APl and share with our collaborators
We can stub out the service with Microcks/Hoverfly

This service will have its own data storage

This service will not receive any traffic at this point

Put in place “walking skeleton” to exercise Cl/CD pipeline

3y @christianposta

Q. redhat

apicur.io for designing the API
(AP|CUR|O Download Documentation Roadmap ~ Contact

Design beautiful, functional APIs
with zero coding, using OpenAPI

@ TryLive | & Download | Version: Beta 2.8 O Clone or fork on GitHub

* <[> v

Web Based Code-optional Design Open Source
Design your OpenAPI based APIs in an Don't know the OpenAPI specification The Apicurio Studio is fully open source,
Angular2 based web application - no inside and out? Now you don't have to! hosted on GitHub and actively maintained. ‘

’@Ch rIStIanpOSta installation necessary.

Create an implementation

Backend

| Orders l
| i

3 @christianposta ‘ redhat

Shared data

* New service will share concepts with monolith

* We will need a way to reify that data within the microservice

* The monolith probably doesn’t provide an API at the right level

e Shaping the data from the monolith’s API requires boiler plate
code

* Could create a new API for the monolith

e Could copy the data

e Could connect right up (yuck!)

W @christianposta ‘ redhat

Virtualize the data”?

* Focus on the new service’s domain model

* Eliminate any boiler plate code

* Read only virtual view of the monolith’s data

* Read/write our own database, without changing data model

* Part of a series of steps that ends with eliminating the virtual view

3y @christianposta ‘ redhat

Virtualize the data? ——

3 @christianposta

Backend

Virie| DB

J

Q. redhat

QUICK INTERLUDE:
BOILERPLATE DATA INTEGRATION

#redhat #rhsummit

—
T0 B ¢ ¢

The data you want from the'data$ou Héve:

http://teiid.jboss.org

3 @christianposta

TEITID

Business intelligence tools
and analytical applications

DATA CONSUMERS

Mobile and enterprise
applications

==

Enterprise service bus (ESB),
extract transform load (ETL)

L

Service-oriented architecture
(SOA) applications and portals

S

A

CONSUME

COMPOSE

CONNECT

Provision data via any interface
JDBC, ODBC, REST, OData, SOAP etc.

Unified, reusable, virtual data layer

Access data from any source

Design tools

Dashboard

Optimization

Caching

Security

Metadata

NoSQL

Hadoop

Databases and
data warehouse

v v

salesforce @

Enterprise
applications

DATA SOURCES

v v v

Excel, CSV SaaS$ and cloud
or XML files applications

RED HAT ' JBOSS’

DATA GRID

Q. redhat

The data yo:\;v;ﬁt't.rdm ‘;h;'datai‘i/c;ﬁ Hive. S.—Pf, 'BDG-/— AW
https://github.com/teiid/teiid-spring-boot J,
JPA

1 T
Teiid Vichal DR

3 @christianposta O redhat

Set up Spring Boot
<dependency> é/ |70

<groupld>org.teiid.spring</groupld>
<artifactId>teiid-spring-boot-starter</artifactId>
<version>1.0.0-SNAPSHOT</version>

</dependency> ﬂW/l [ﬂjL/(O/[— Pf 0

m. xm!

Iogr—rL’.C(

/

spring.datasource.legacyDS.url=jdbc:mysql://localhost:3306/ticketmonster?useSSL=false
spring.datasource.legacyDS.username=ticket
spring.datasource.legacyDS.password=monster
spring.datasource.legacyDS.driverClassName=com.mysql. jdbc.Driver

spring.datasource.ordersDS.url=jdbc:mysql://localhost:3306/orders?useSSL=false
spring.datasource.ordersDS.username=ticket
spring.datasource.ordersDS.password=monster
spring.datasource.ordersDS.driverClassName=com.mysqgl.jdbc.Driver

3 @christianposta O redhat

@SelectQuery("SELECT s.id, s.description, s.name, s.numberOfRows
e
AS number of rows, s.rowCapacity AS row_capacity, venue_id, v.name

AS venue_ name FROM legacyDS.Section § e c_fm U‘M DB

JOIN legacyDS.Venue v ON s.venue_ id=v.id;")

. AL " from onderr lexcy

@Table(name = "section”, uniqueConstraints=@UniqueConstraint(columnNames={"name", "venue_id"}))
public class Section implements Serializable {

@xd
@GeneratedvValue(strategy = IDENTITY)
private Long id;

Nornat| J P4

@NotEmpty
private String name;

@NotEmpty
private String description;

@NotNull
@Embedded

private Venueld venueld;

@Column(name = "number of rows"”)
private int numberOfRows;

@Column(name = "row capacity”)

. . Pprivate int rowCapacity;
Y @christianposta O .

@SuppressWarnings("serial™)
@SelectQuery("SELECT id, CAST(price AS double), number, rowNumber AS row_number, section_id, ticketCategory_id AS ticket_category_id, ticke
"UNION ALL SELECT id, price, number, row_number, section_id, ticket_category_id, booking id FROM ordersDS.ticket")
@InsertQuery("FOR EACH ROW \n"+
"BEGIN ATOMIC \n" +
"INSERT INTO ordersDS.ticket (id, price, number, row_number, section_id, ticket_category_id) values (NEW.id, CAST(NEW.price as flo
"END")
@UpdateQuery("FOR EACH ROW\n" +
"BEGIN\n" +
" IF(changing.booking_id) \n" +
" BEGIN\n" +
" UPDATE ordersDS.ticket set booking_id=NEW.booking_id where id = old.id;\n" +
" END\n" +
"END")
@Entity
@Table(name = "ticket")

public class Ticket implements Serializable {
/* Declaration of fields */

@TableGenerator(name = "ticket",
table = "id_generator”,
pkColumnName = "idKey",
valueColumnName = "idvalue",

pkColumnValue = "ticket",

YW @christianpsta™ ™ - " ‘ redhat.

MEANWHILE...

#redhat #rhsummit

Mirror traffic to new service

Backend
i i

ST Backend |7

vl
K,
y
‘ Ovrders
fomerans]

3 @christianposta ‘ redhat

Mirror traffic to new service

Backend
i =

Jres

- \ Backend |~

144
| Orders
oozl

3 @christianposta ‘ redhat

QUICK INTERLUDE:
TRAFFIC MIRRORING

#redhat #rhsummit

Mirror traffic with Istio

3 @christianposta ‘ redhat

Traffic compare/tap with Diffy

Teaplic

hHpbin
https://qithub.com/twitter/diffy vl

3 @christianpo ‘ redhat

MEANWHILE...

#redhat #rhsummit

Feature flags for runtime kill switch

3 @christianposta

ey

Backend

vl

\

{ Orders

Q. redhat

Async Change Data Capture with Debezium.io?

3 @christianposta

froy

Backend
vl

‘ Orders

Q. redhat

Eliminate dependency on monolith DB

3 @christianposta

Backend

\n

| Orders
G

Q. redhat

Recap

* Write lots of tests (for monolith if you can; especially new service)

* Use advanced deployment techniques (canarying, tap compare,
mirroring)

* Use fine-grain traffic control to separate deployment from release

* Reduce boiler plate code for data integration in initial service
iImplementation

* Use technical debt to your advantage

* Have lots of monitoring in place

* Leverage your deployment and release infrastructure to
experiment and learn!

W @christianposta @ rednat

Quick demo?

Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Follow up links:
e http://openshift.io
* http://launch.openshift.io
« http://blog.openshift.com
» http://developers.redhat.com/blog
e https://www.redhat.com/en/open-innovation-labs
* https://www.redhat.com/en/technologies/jpboss-middleware/3scale
» https://www.redhat.com/en/technologies/jboss-middleware/fuse

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ©

THANK YOU

plus.google.com/+RedHat n facebook.com/redhatinc

m linkedin.com/company/red-hat u twitter.com/RedHat

You

Ll youtube.com/user/RedHatVideos

