
NFV go-live
Where are my containers?

Franck Baudin
Sr Principal Product Manager - OpenStack NFV
May 9 , 2018

Red Hat OpenStack Platform

Picture credits: wikipedia

Mobile networks deployment today/yesterday

1 ATCA blade
== 1 VM
== 1 VNFci

1 VNF == N x VNFci

N

https://commons.wikimedia.org/wiki/File:Pentair_12U_14-slot_ATCA_shelf.jpg

Red Hat OpenStack Platform

For Cloud/Web-App peoples, a load balancer is part of the PaaS (detail of implementation)

● It just works
● This is called an L7 LB but in reality this is a REST/HTTP or TCP based (with TLS or not)

In Networking/NFV world, the load balancer is the application or part of the application

● A GTP or SIP session load-balancer
● An L7 LB is decoding the sessions content to load-balance (DPI)

○ Based on URL
○ Based on content: gzip/MIME to be sent in an IDS cluster

More vocabulary clash: performances, scalability, availability, network connectivity, Real Time, ...

Cloud/Web-App world vs Networking/NFV world
Cultural shock… or at least persistent misunderstanding

Red Hat OpenStack Platform

Common questions/quotes around NFV and containers
● Government security agency for Telco: “Containers in NFV is an absolute no-go”
● VNF editor: “How to re-write my VM based VNF with Containers?”
● Telco Operator: “Are there still some VMs around?”

NFV is live, and go-live rhythm accelerate!

This presentation will not detail why NFV containers run in VMs for security reasons (yes, they do!)
● “What happens in a VM stays in the VM”

○ one origin/vendor per VM
● no impact on containers performances (cycles/packet), containers lifecycle, containers start time, …

This presentation will showcase
● That Kubernetization of VNFs is already possible even if Kube NFV Networking is WIP upstream
● What is the most common design pattern to implement cloud native VNFs with Kubernetes

A containerized vIMS

Red Hat OpenStack Platform

Containerized vIMS != Kubernetized vIMS

Schema credits: http://www.projectclearwater.org/

A large portion of coms
use REST/HTTP

Telco/Network protocols like Diameter, RTP…
are not REST/HTTP

=> Tunnel protocols over HTTP?
○ this is a wrong idea

=> host networking, DIY CNIs
○ this is what Clearwater (and others) do

http://www.projectclearwater.org/
https://tools.ietf.org/html/rfc2549

Red Hat OpenStack Platform

Upstream Kubernetes networking is not adapted to NFV (yet)

● REST/HTTP/TCP versus Networking/Telco protocols IEEE/IETF/3GPP/...

Kubernetes and NFV networking
Scratch status

This explains how some VNFs are already using containers orchestrated by k8s or not, inside VMs
(security/compartmentalization), with WIP/proprietary CNI, as PoCs

● They all aim to converge on a full upstream/k8s implementation (no DIY/Fork for production)

But NFV do not require Networking/Telco protocols support in Kubernetes

● Multiple ethernet interfaces up to the container/pod will suffice
○ Can be virtio interfaces, based on any DPDK or kernel vswitch
○ Can be physical dedicated interfaces or dedicated virtual functions

● WIP upstream to support Telco protocol with multiple CNI plugins: multus, vhostuser, device plugin...

https://github.com/Intel-Corp/multus-cni
https://github.com/intel/vhost-user-net-plugin

Cloud Native NFV design pattern

Red Hat OpenStack Platform

VNF components track user sessions, TCP sessions … they track state

● Firewall: TCP ACK, checking TCP windows values
● Billing, QoS: statistics per session/user
● Legal Intercept, Intrusion Detection/Protection: content reconstruction (email, files,

pictures), cross sessions/flows correlation (bot control channel detection)
● Video optimizer: video stream sequence
● ...

Depending on the VNF type, losing state means

● security breach
● Improper billing
● Low Quality of Experience
● …

NFV/Networking is all about state

Red Hat OpenStack Platform

VNF performances are about cycles/packet

● Throughput
● Latency

Typical ranges

● Dataplane: 300 and 2000 CPU cycles
● Control-plane: between 1000 and 20k CPU cycles

A single remote lookup, at best

● N x 10 usec == N x 20k’s cycles (for 2.0 GHz)

https://dpdksummit.com/Archive/pdf/2015Userspace/DPDK-U
serspace2015-SevenDeadlySinsPacketProcessing.pdf

Remote state storage for NFV?
From https://dpdksummit.com/Archive/pdf/2016USA/Day02-Session03-PeilongLi-DPDKUSASummit2016.pdf

70 ns

https://dpdksummit.com/Archive/pdf/2015Userspace/DPDK-Userspace2015-SevenDeadlySinsPacketProcessing.pdf
https://dpdksummit.com/Archive/pdf/2015Userspace/DPDK-Userspace2015-SevenDeadlySinsPacketProcessing.pdf
https://dpdksummit.com/Archive/pdf/2016USA/Day02-Session03-PeilongLi-DPDKUSASummit2016.pdf

Red Hat OpenStack Platform

GTP LBs

VNF typical structure: pipeline of scalable and
resilient stages

LB-1

LB-N

LB-2

VNF workers
type 1: GTP

worker-1

worker-M

worker-2

VNF states replicated (HA: 1+1 or n+p)

User/session
“Foo” Internet

VNF workers
type 2: QoS

worker-1

worker-M

worker-2

GTP sessions LB info replicated (HA: 1+1 or n+p)

Red Hat OpenStack Platform

GTP LBs

Failure of one element

LB-1

LB-N

LB-2

VNF workers
type 1: GTP

worker-1

worker-M

worker-2

User/session
“Foo” Internet

VNF workers
type 2: QoS

worker-1

worker-M

worker-2

*NULL

NOTIFICATION NOTIFICATION

On an established session, synced across replicas: few user datas lost or retransmitted, minimum impact

On a session creation: session to restart (user lag) or accept inaccurate session tracking (risk)

Red Hat OpenStack Platform

Sacrificial state, window of vulnerability

VNF workers
type 1: GTP

worker-1

worker-M

worker-2

This is the window of time that elapse until a state is
safely stored in multiple places (at least two)

State loss is only one part of the service unavailability picture

● Fault detection time (failure of one VNF element, aka VNFCI)
● Remediation time (reconfiguration with remaining VNFCI”s)
● Availability level recovery: replacement of the failed VNFCI

○ What if a second VNFCI fails?

Red Hat OpenStack Platform

The k8s and cloud-native way

VNF workers
type 1: GTP

worker-1

worker-M

worker-2

cache

cache

cache

Window of vulnerability == time to
push a new state into the central
(etcd for instance) state storage

Red Hat OpenStack Platform

Either the sessions datas will be fetched on demand

● The first packet latency will be way higher than other packets
○ One remote lookup is taking 20k CPU cycles at best

● Should not other sessions packets (no blocking)

Either the orchestration tell worker-2 to prefetch sessions datas

● Fall-back on next implementation when packets arrive before
the prefetch completion

Failure of one container

VNF workers
type 1: GTP

worker-1

worker-M

worker-2

cache

cache

cache

*NULL

Red Hat OpenStack Platform

● All VNFs components are not at the same containerization/Kubernetization stage
○ Re-architect as microservices, one VNFc (one pipeline stage) at a time

■ Re-implement the most critical VNFc first
■ Keep VMs for others VNFc or re-package them as big-fat containers

● Interconnecting VMs and Containers has no overhead when using OpenStack Kuryr (new!)
○ OpenShift pods directly connected to any Neutron network, without any overhead

● Networking backend proprietary/non standard CNI
○ Plenty already validated with OpenShift, streamlined and fast process
○ Red Hat leading upstream communities to provide an NFV grade CNI

● Containers deployed in VMs for security reasons: Security Government agencies requirement
■ Virtualization overhead is negligible

Conclusion: Kubernetization of VNFs is WIP!
Containerisation is not what you want: you want Kubernetization… now!

https://wiki.openstack.org/wiki/Kuryr

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Backup-Slides

IP-TV live on OpenStack:
Another High Availability model

Red Hat OpenStack Platform

IP TV architecture at
Simplified, per TV channel

Record / time-shift

mcast switchmcast switch
Active

Backup

Video
transcoding

Red Hat OpenStack Platform

Video Transcoding

eth0

RX TX

Housekeeping:
ssh, SNMP, logs

 TX

eth1 eth2
RX

br-int

10 vCPUs VM

OVS-DPDK bridge, NORMAL action with IGMP SNOOPING

200 Mbps

ovs-vsctl set Bridge br-int mcast_snooping_enable=true
ovs-vsctl set Bridge br-int other_config:mcast-snooping-disable-flood-unregistered=true

Zoom on one (active) VM
One VM == one TV channel == one input mcast stream + one output mcast stream

[root]# ovs-appctl mdb/show br-int
 port VLAN GROUP Age
 5 2 239.186.60.1 14
 8 2 239.186.60.1 1
 3 1 querier 27

