B

Exploiting modern microarchitectures

Meltdown, Spectre, and other hardware security vulnerabilities in modern processor

Jon Masters - Computer Architect
CRob - Red Hat Product Security
10May2018

Who are we?

CRob

#redhat #rhsummit - redhat.

Out-of-Order (O00Q) execution converts

sequential “in order” machines (CPUs)

as conceptualized by programmers into
out-of-order “data flow” machines in
which computation is performed as
soon as dependent data is available*

* Instructions issue and retire “in-order”, but are executed using an Out-of-Order “backend”

#redhat #rhsummi

« redhat

Sequential vs data flow

Sequential model

INSTRUCTION 1
INSTRUCTION 2
INSTRUCTION 3
INSTRUCTION 4
INSTRUCTION 5
INSTRUCTION 6

Data flow model

D1 DY

D3

D4

D6

D5

#redhat #rhsummit

« redhat.

Sequential machines

INSTRUCTION 1
INSTRUCTION 2
INSTRUCTION 3
INSTRUCTION 4
INSTRUCTION 5
INSTRUCTION 6

Programmers intuitively think in
terms of sequential program flow
(“I do this, then | do that”)

Expectation is that the machine does
everything in the order written down

Debugging involves tracing what each
individual instruction did, one after
the other, in the order written

#redhat #rhsummit

« redhat.

Data flow machines

D1 DY

D3

D4

D6

D5

Data flow operates in terms of data.
Each operation proceeds when its
dependent data operands are ready

Instructions do not execute in the
order written by the programmer

Debugging a real world data flow
machine would involve understanding
all of the internal machine state

#redhat #rhsummit

« redhat.

Robert Tomasulo described how to
convert an in-order sequential machine
(as understood by programmers) into an
Out-of-Order data flow model machine

#redhat #rhsummit

« redhat

Tomasulo’s Algorithm

R1=LOAD A R1 R2
R2=LOADB
R3
@ -Ri+R2 Nodatadependency _ " _ . _._._._._.-.
=1 R1 R2
R2=1
R3=R1 + @D

R3

#redhat #rhsummit

« redhat.

Tomasulo’s Algorithm

R1=LOAD A
R2=LOADB

®=R1+R2

R3=R1+ @

Program Order

Entry

1

o U1 A WD

RegRename Instruction Deps

Pil=R1 P1=LOADA X

P2=R2 P2=LOADB X

P3=R3 P3=R1+R2 172

P4 = R P4 =1 X

P5 =R2 P5 =1 X

P6=R3 P6=P4+P5 45

Re-Order Buffer (ROB)

Ready?

Y

Y
\
Y
Y
\

#redhat #rhsummit

« redhat.

Tomasulo removed the need for chips to
wait around for dependent calculations.
Deep reorder buffers allow very high
performance gains in contemporary
servers, laptops, and even phones

#redhat #rhsummit

« redhat

..tlime passed, and computer architects
realized it was possible to gain even
more performance...

##########

mmmmm

« redhat

“What if we combine Out-of-Order
Execution with Branch Prediction?”

#redhat #rhsummit

Branches

for

{

}

// post-loop code here

(R SRS

// something here

// pack clothes

if

}

(raining) {
// pack umbrella

// more packing

I
I

loop:

more packing:

movg $0, %rax
incg %rax
cmpg $10,
jle loop

Srax

movqg S$raining, %rax
cmpg $1, %rax
jne more packing

// pack umbrella

// more packing

#redhat #rhsummit

« redhat.

Branches

// pack clothes

if - { cmpg $1, %Srax
// pack umbrella ‘ jne more_packing

} more packing:

// more packing

Branch conditions take time to
“resolve” (do | take the branch or not?)

#redhat #rhsummit

- rednat

Speculative Execution

Entry RegRename Instruction Deps
R1=LOAD A 1 PI=Rl PI=LOADA X
TEST R1 2 TEST R1 1
IF R1ZERO { 3 IFR1ZERO{ 1
= 1 — 4 P2=R1 P4a=1 X
R2=1 5 P3=R2 P5 =1 X
R3=R + @@ 6 P4=R3 P4=P2+P3 45

* Speculatively execute the branch before the condition is known (“resolved”)

Y

Y
N
Y
Y
Y

Ready? Spec?

N

N

N
Y *
Y *
Y *

#redhat #rhsummit

« redhat.

Branch prediction allows machines to
guess which path code is going to take
before that is fully known (“resolved”)

#redhat #rhsummit

When combined with an Out-of-Order
backend, “Speculative Execution” will
try to execute code before we know
whether we need to do so. If we quess
wrong, we throw away our prediction

#redhat #rhsummit

All is well...unless someone can see
what we did speculatively and use it to
learn things they should not know...

##########

mmmmm

« redhat

The Speculation Diner

Look at what we found!

Flash forward nearly 40 years.... 3 groups of researchers independently find....

#tredhat #rhsummit « redhat

Speculation is not an unobservable
black box. We can abuse speculation to
leak information we shouldn’t access
using a “side channel”

##########

mmmmm

« redhat

Side channels are everywhere! And
they’re also not new! There are many
different mechanisms to discover what
a machine is doing through observation

#redhat #rhsummit

« redhat

Classic example is “differential power
analysis” being used to monitor
voltages on the pins of a chip during
crypto operations - power varies
according to the calculation*

* Your “chip-and-pin” bank card is very carefully designed not to do this

##########

mmmmm

« redhat

Cache side channels exploit the shared
nature of memory on a local system to
infer what other programs are doing

#redhat #rhsummit

« redhat

But first...let’s talk about
memory...recall how modern running
programs use “virtual memory”...

##########

mmmmm

« redhat

Virtual Memory

S cat /proc/self/maps ‘ /bin/cat

process

* Special case kernel VDSO (Virtual Dynamic Shared Object)

Virtual Memory
Oxffff_ffff_81a0_00e0

Oxffff_ffff_8100_0000

Ox7ffc683f9000*

Ox7ffc683a6000

0x55d776036000

#redhat #rhsummit

« redhat.

Virtual Memory
Physical Memory

Proces Page Tables Ox7000
> e e 0x6000
A —

—— 0x5000
0x4000
0x3000

Proces Page Tables
. — 0x2000
B == 0x1000
0x0000

#redhat #rhsummit -~ redhat.

Virtual Memory

Page Tables

Process
A

Translation Lookaside Buffer (TLB)
0x4000 w===p (Ox0000
O0x3000 ===y (Ox6000
Ox1000 w===p (Ox4000
0x0000 === (Ox7000

Physical Memory

O0x7000
0x6000
0x5000
0x4000
0x3000
0x2000
0x1000
0x0000

#redhat #rhsummit

« redhat.

Caches are used to store the actual data
read by a running program from this
virtual memory

##########

mmmmm

« redhat

Caches

#redhat #rhsummit - redhat

Caches

Virtual Memory Physical Memory
0xf080 0x0180
0xf040 0x0140
0)'i010]0) 0x0100

Cache (L1/L2/etc.) 0x00c0
0x0080 0xf040 ksecret 0x0080
0x0040 0x0040 usecret 0x0040
0)q0]0]0]0] 0)'(0]0]0]0]

* For readability privileged kernel addresses are shortened to begin Oxf instead of Oxffffffffff...

#redhat #rhsummit -~ redhat.

Caches are shared resources. The time
taken to access data is proportional to
whether it is located in the cache

#redhat #rhsummit

« redhat

Caches

time = rdtsc();

maccess (&data[0x300]) ;
delta3 = rdtsc() - time;
time = rdtsc();

maccess (&data[0x200]) ;
delta2 = rdtsc() - time;

Execution time taken for
instruction is proportional
to whether it is in cache(s)

#redhat #rhsummit

« redhat.

“Meltdown” abuses at-retirement
exception (error) handling in the
speculation backend to read
unauthorized data...

#redhat #rhsummit

« redhat

“Meltdown” abuses

exception (error) hagg

speculation bagsend to read
unauthgfzed data...

fancy way of saying
“at the very end”

#tredhat #rhsummit - redhat

...then uses the cache access trick to
reconstruct what that unauthorized
data was (hence “side channel”)

#redhat #rhsummit

« redhat

We will get a permission check failure
but we won’t handle it until too late -
after the speculation window completes
(we already did the cache access trick)

#redhat #rhsummit

Meltdown

- A malicious attacker arranges for exploit code similar to the following to speculatively execute:

1f (spec cond) {
unsigned char value = * (unsigned char *)ptr;
unsigned long index2 = (((value>>bit)&l)*0x100)+0x200;
maccess (&data[index2]) ;

- “data” is a user controller array to which the attacker has access, “ptr” contains privileged data

#tredhat #rhsummit « redhat.

Meltdown

char value = *SECRET_KERNEL_PTR;

|

mask out bit | want to read char data[];

l 0x000

calculate offset in “data” — O0x100

(that | do have access to) \ 0x200
0x300

#redhat #rhsummit

« redhat.

Meltdown

Access to “data” element 0x100 pulls the corresponding entry into the cache

char data[];
0x000 Cache
0x100 — 0x100
0x200
0x300 DATA

#redhat #rhsummit -~ redhat.

Meltdown

Access to “data” element 0x300 pulls the corresponding entry into the cache

char data[];
0x000
0x100
0x200 Cache
0)'¢1010) DATA RS 0x300

#redhat #rhsummit -~ redhat.

Meltdown: Speculative Execution

Entry RegRename Instruction Deps Ready? Spec?

1 P1=R1 R1=LOAD SPEC_CONDITION X Y \

2 TEST SPEC_CONDITION 1 Y \
3 IF (SPEC_CONDITION) { 1 N \
flags for
4 P2=R2 R2=LOAD KERNEL_ADDRESS X Y Y* <G future
exception
5 P3=R3 R3=(((R2&1)*0x100)+0x200) 2 Y Y*
6 P4 = R4 LOAD USER_BUF[R3] 3 Y Y*

#redhat #rhsummit -~ redhat.

Meltdown: Speculative Execution

Entry RegRename Instruction Deps Ready? Spec?

1 P1=R1 R1=LOAD SPEC_CONDITION X Y \

2 TEST SPEC_CONDITION 1 Y \
3 IF (SPEC_CONDITION) { 1 N \
4 P2=R2 R2=LOAD KERNEL_ADDRESS X Y NS
should Kkill
5 P3=R3 R3=(((R2&1)*0x100)+0x200) 2 Y Y* <@ speculation
here
6 P4 = R4 LOAD USER_BUF[R3] 3 Y NS

#redhat #rhsummit -~ redhat.

Meltdown: Speculative Execution

Entry RegRename Instruction Deps Ready? Spec?

1 P1=R1 R1=LOAD SPEC_CONDITION X Y \

2 TEST SPEC_CONDITION 1 Y N
3 IF (SPEC_CONDITION) { 1 N \
4 P2=R2 R2=LOAD KERNEL_ADDRESS X Y Y*
5 P3=R3 R3=(((R2&1)*0x100)+0x200) 2 Y Y*
really bad
6 P4 = R4 LOAD USER_BUF[R3] 3 Y Y* <uum thing(™)

#redhat #rhsummit -~ redhat.

We mitigated “Meltdown” through
“KPTI” (Kernel Page Table Isolation)*

* Shipping in a currently supported RHEL kernel near you

##########

mmmmm

« redhat

“Meltdown” requires that we have valid
kernel address translations (TLBs) so
ensure we never do by spitting kernel

and application page tables

#redhat #rhsummit

Performance impact comes from the
“trampoline” code that is needed to
switch page tables on every kernel

entry and exit back to a program

#redhat #rhsummit

“Spectre” v2 abuses (indirect) branch
predictors that don’t fully disambiguate
between two different process
“contexts”...

#redhat #rhsummit

Spectre-v2 (branch predictor poisoning)

Process A . Process B

0x5000 BRANCH A - 0x5000 BRANCH B

~.

TARGET
ADDRESS

#redhat #rhsummit - redhat

...we train the branch predictor in one
context (program) such that it will guess
a particular way in another context (the

victim/kernel we want to control)

#redhat #rhsummit

The attack relies upon finding “gadget”
code already in the victim program

#redhat #rhsummit

We mitigated “Spectre-v2” through a
combination of firmware and OS level
branch predictor control interfaces*

* Shipping in a currently supported RHEL kernel near you

##########

mmmmm

« redhat

CPUs have an ability to tweak certain
behavior (e.qg. “chicken bits”) or patch
new operations into a small on-chip
RAM via “microcode” updates

#redhat #rhsummit

We use microcode for two things:

privilege

. Toinvalic

entries w

. Torestrict speculation across

ooundaries (kernel entry)
ate the branch predictor

nen switching programs

#redhat #rhsummit

« redhat

A later optimization (“retpolines”)
converts indirect function calls into fake
return “trampolines”. Avoids using the
standard branch predictor hardware*

* Shipping default in a supported RHEL kernel near you, and you can even switch mitigations at run time

#redhat #rhsummi - redhat.

Another variant of Spectre (v1) requires
minor code tweaks (barriers) that were
added to the kernel source directly

#redhat #rhsummit

Why these problems mattered

Nearly every more CPU affected (to differing extents)
A skilled attacker could have the ability to read any memory they desire
Some attacks cross quest/host boundaries

Virtually undetectable

#redhat #rhsummit

« redhat

Why Red Hat was included

We have a very particular set of skills, skills we’ve acquired over our very long career

(the last 25 years and counting)

#redhat #rhsummit & redhat.

A snapshot of Red Hat Product Security over the
years

Total CVEs and RHSAs by Year Total CVEs Fixed by Severity
4000 = RHSAs 1500 W Low
o B Moderate
5704 i Important
3000 2545 = = Flaws -
1000 B Critical
2000
1400 1359 1391
101 8/ 500
1000 617 651 642 583
0 0
2014 2015 2016 2017 2014 2015 2016 2017 2018*
#rednat #rhsummit https://www.redhat.com/security/data/metrics/ @ rednat

https://access.redhat.com/documentation/en-us/red _hat_security data_api/0.1/html-single/red_hat_security data_api/index

https://www.redhat.com/security/data/metrics/
https://access.redhat.com/documentation/en-us/red_hat_security_data_api/0.1/html-single/red_hat_security_data_api/index

Coordinated Vulnerability Disclosure

Red Hat is part of a large group of vendor and community security teams

We use a process called Coordinated Vulnerability Disclosure(1) - The goal is
to protect customers and the larger global computing community

Red Hat respects the wishes of the issue reporter on how they want the issue
to be handled and how long to keep it secret

#tredhat #rhsummit « redhat

(1)

https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf

Red Hat’s Customer Security Awareness Program

Ride, ride my seesaw Take this place On thistrip Just for me

Identify security @—] Triage the impact Investigate
vulnerability =—| of the threat the issue

o O

Determine the
customer

impact of
the threat

Work with upstream communities
to develop patches

Package 3 Draft documentation and

and test 0 customer communications
patches v

o [/'_j Release security advisories and
/ communicate patches to customers

#redhat #rhsummit ‘ redhat.

What we delivered to subscribers

15 kernels...3 times (4 if you count retpolines)

59 total patches (plus 15 more for retpolines) PLUS our complete OpenShift Online
infrastructure (3 versions), plus all AMlIs, ISOs, and base images

Over 60 engineers involved in developing, testing, and packaging the errata

Education video, 1 vulnerability article (translated into 6 languages), 4 kcs articles on
specialized topics, 3 forms of customer emails, TAM T3, Performance webinar, and Portal
Banners & Alerts

10,000+ engineering hours dedicate to resolving issues

#redhat #rhsummit & redhat.

Il
0
i

\'\'\'
I
U1U1U‘l

Ol
0l
Ql

-
=
=4

=)

.£

IlAll|h'

#redhat #Hrhsummit

Q. redhat.

To learn more....

Vulnerability article - https://access.redhat.com/security/vulnerabilities/speculativeexecution

3 minute Video - https://youtu.be/syAdX44pokE

Blog - https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know

CSAw process - https://access.redhat.com/articles/2968471

To sign up for RHSA announcements - https://www.redhat.com/wapps/ugc/protected/notif.html

#redhat #rhsummit ‘ rednat.

https://access.redhat.com/security/vulnerabilities/speculativeexecution
https://youtu.be/syAdX44pokE
https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know
https://access.redhat.com/articles/2968471
https://www.redhat.com/wapps/ugc/protected/notif.html

THANK YOU

plus.google.com/+RedHat n facebook.com/redhatinc

m linkedin.com/company/red-hat u twitter.com/RedHat

youtube.com/user/RedHatVideos

