
 Exploiting modern microarchitectures
Meltdown, Spectre, and other hardware security vulnerabilities in modern processors

Jon Masters - Computer Architect
CRob - Red Hat Product Security
10May2018

Who are we?

JCM CRob

Out-of-Order (OoO) execution converts
sequential “in order” machines (CPUs)

as conceptualized by programmers into
out-of-order “data flow” machines in
which computation is performed as

soon as dependent data is available*

* Instructions issue and retire “in-order”, but are executed using an Out-of-Order “backend”

Sequential vs data flow

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5

INSTRUCTION 6

D3

D1 D2

D6

D4 D5

Sequential model Data flow model

Sequential machines

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5

INSTRUCTION 6

Programmers intuitively think in
terms of sequential program flow
(“I do this, then I do that”)

Expectation is that the machine does
everything in the order written down

Debugging involves tracing what each
individual instruction did, one after
the other, in the order written

Data flow machines
Data flow operates in terms of data.
Each operation proceeds when its
dependent data operands are ready

Instructions do not execute in the
order written by the programmer

Debugging a real world data flow
machine would involve understanding
all of the internal machine state

D3

D1 D2

D6

D4 D5

Robert Tomasulo described how to
convert an in-order sequential machine
(as understood by programmers) into an
Out-of-Order data flow model machine

Tomasulo’s Algorithm

R1 = LOAD A

R2 = LOAD B

R3 = R1 + R2

R1 = 1

R2 = 1

R3 = R1 + R2

R3

R1 R2

R3

R1 R2

No data dependency

Tomasulo’s Algorithm

R1 = LOAD A

R2 = LOAD B

R3 = R1 + R2

R1 = 1

R2 = 1

R3 = R1 + R2

P1 = R1 P1 = LOAD A X Y

P2 = R2 P2 = LOAD B X Y

P3 = R3 P3 = R1 + R2 1,2 N

P4 = R1 P4 = 1 X Y

P5 = R2 P5 = 1 X Y

P6 = R3 P6 = P4 + P5 4,5 N

1

2

3

4

5

6

Entry RegRename Instruction Deps Ready?

Program Order Re-Order Buffer (ROB)

Tomasulo removed the need for chips to
wait around for dependent calculations.

Deep reorder buffers allow very high
performance gains in contemporary
servers, laptops, and even phones

...time passed, and computer architects
realized it was possible to gain even

more performance...

“What if we combine Out-of-Order
Execution with Branch Prediction?”

Branches

 movq $0, %rax
 loop:
 incq %rax
 cmpq $10, %rax
 jle loop

for (i=0;i<10;i++)
{
 // something here
}
// post-loop code here

// pack clothes
if (raining) {
 // pack umbrella
}
// more packing

 movq $raining, %rax
 cmpq $1, %rax
 jne more_packing
 // pack umbrella
more_packing:
 // more packing

Branches

// pack clothes
if (raining) {
 // pack umbrella
}
// more packing

 movq $raining, %rax
 cmpq $1, %rax
 jne more_packing
more_packing:
 ...

Branch conditions take time to
“resolve” (do I take the branch or not?)

Speculative Execution

R1 = LOAD A

TEST R1

IF R1 ZERO {

R1 = 1

R2 = 1

R3 = R1 + R2

P1 = R1 P1 = LOAD A X Y

TEST R1 1 Y

IF R1 ZERO { 1 N

P2 = R1 P4 = 1 X Y

P3 = R2 P5 = 1 X Y

P4 = R3 P4 = P2 + P3 4,5 Y

1

2

3

4

5

6

Entry RegRename Instruction Deps Ready?

N

N

N

Y*

Y*

Y*

Spec?

* Speculatively execute the branch before the condition is known (“resolved”)

Branch prediction allows machines to
guess which path code is going to take
before that is fully known (“resolved”)

When combined with an Out-of-Order
backend, “Speculative Execution” will
try to execute code before we know

whether we need to do so. If we guess
wrong, we throw away our prediction

All is well...unless someone can see
what we did speculatively and use it to

learn things they should not know...

The Speculation Diner

Look at what we found!
Flash forward nearly 40 years…. 3 groups of researchers independently find….

Speculation is not an unobservable
black box. We can abuse speculation to

leak information we shouldn’t access
using a “side channel”

Side channels are everywhere! And
they’re also not new! There are many

different mechanisms to discover what
a machine is doing through observation

Classic example is “differential power
analysis” being used to monitor

voltages on the pins of a chip during
crypto operations - power varies

according to the calculation*

* Your “chip-and-pin” bank card is very carefully designed not to do this

Cache side channels exploit the shared
nature of memory on a local system to

infer what other programs are doing

But first...let’s talk about
memory...recall how modern running

programs use “virtual memory”...

Virtual Memory
0xffff_ffff_81a0_00e0

...
0xffff_ffff_8100_0000

...

...
0x7ffc683a6000

...
0x55d776036000

/bin/cat
process

Virtual Memory

0x7ffc683f9000*$ cat /proc/self/maps

* Special case kernel VDSO (Virtual Dynamic Shared Object)

Virtual Memory

0x7000
0x6000
0x5000
0x4000
0x3000
0x2000
0x1000
0x0000

Proces
s
A

Proces
s
B

Page Tables

Page Tables

Physical Memory

Virtual Memory

0x7000
0x6000
0x5000
0x4000
0x3000
0x2000
0x1000
0x0000

Process
A

Page Tables
Physical Memory

0x7000
0x6000
0x5000
0x4000

0x4000
0x3000
0x1000
0x0000

0x7000
0x6000
0x5000
0x4000

0x0000
0x6000
0x4000
0x7000

Translation Lookaside Buffer (TLB)

Caches are used to store the actual data
read by a running program from this

virtual memory

Caches

D
D
R

M
E
M

D
D
R

M
E
M

LLC

L2 $

C1 C
2

L2 $

C1 C
2

L2 $

C1 C
2

L2 $

C1 C
2

Caches

...
0xf080
0xf040
0xf000

...
0x0080
0x0040
0x0000

Virtual Memory

ksecret0xf040

...
0x0180
0x0140
0x0100
0x00c0
0x0080
0x0040
0x0000

usecret0x0040

Physical Memory

* For readability privileged kernel addresses are shortened to begin 0xf instead of 0xffffffffff...

Cache (L1/L2/etc.)

Caches are shared resources. The time
taken to access data is proportional to

whether it is located in the cache

Caches

 time = rdtsc();
 maccess(&data[0x300]);
 delta3 = rdtsc() - time;

 time = rdtsc();
 maccess(&data[0x200]);
 delta2 = rdtsc() - time;

Execution time taken for
instruction is proportional
to whether it is in cache(s)

“Meltdown” abuses at-retirement
exception (error) handling in the

speculation backend to read
unauthorized data...

“Meltdown” abuses at-retirement
exception (error) handling in the

speculation backend to read
unauthorized data...

fancy way of saying
“at the very end”

...then uses the cache access trick to
reconstruct what that unauthorized

data was (hence “side channel”)

We will get a permission check failure
but we won’t handle it until too late -

after the speculation window completes
(we already did the cache access trick)

Meltdown

• A malicious attacker arranges for exploit code similar to the following to speculatively execute:

 if (spec_cond) {
 unsigned char value = *(unsigned char *)ptr;
 unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;
 maccess(&data[index2]);
 }

• “data” is a user controller array to which the attacker has access, “ptr” contains privileged data

Meltdown

0x000

0x100

0x200

0x300

char data[];

char value = *SECRET_KERNEL_PTR;

mask out bit I want to read

calculate offset in “data”
(that I do have access to)

Meltdown

0x000

0x100

0x200

0x300 DATA

char data[];

0x100

Cache

• Access to “data” element 0x100 pulls the corresponding entry into the cache

Meltdown

0x000

0x100

0x200

0x300 DATA

char data[];

0x300

Cache

• Access to “data” element 0x300 pulls the corresponding entry into the cache

Meltdown: Speculative Execution

P1 = R1 R1 = LOAD SPEC_CONDITION X Y

TEST SPEC_CONDITION 1 Y

IF (SPEC_CONDITION) { 1 N

P2 = R2 R2 = LOAD KERNEL_ADDRESS X Y

P3 = R3 R3 = (((R2&1)*0x100)+0x200) 2 Y

P4 = R4 LOAD USER_BUF[R3] 3 Y

1

2

3

4

5

6

Entry RegRename Instruction Deps Ready?

N

N

N

Y*

Y*

Y*

Spec?

flags for
future
exception

Meltdown: Speculative Execution

P1 = R1 R1 = LOAD SPEC_CONDITION X Y

TEST SPEC_CONDITION 1 Y

IF (SPEC_CONDITION) { 1 N

P2 = R2 R2 = LOAD KERNEL_ADDRESS X Y

P3 = R3 R3 = (((R2&1)*0x100)+0x200) 2 Y

P4 = R4 LOAD USER_BUF[R3] 3 Y

1

2

3

4

5

6

Entry RegRename Instruction Deps Ready?

N

N

N

Y*

Y*

Y*

Spec?

should kill
speculation
here

Meltdown: Speculative Execution

P1 = R1 R1 = LOAD SPEC_CONDITION X Y

TEST SPEC_CONDITION 1 Y

IF (SPEC_CONDITION) { 1 N

P2 = R2 R2 = LOAD KERNEL_ADDRESS X Y

P3 = R3 R3 = (((R2&1)*0x100)+0x200) 2 Y

P4 = R4 LOAD USER_BUF[R3] 3 Y

1

2

3

4

5

6

Entry RegRename Instruction Deps Ready?

N

N

N

Y*

Y*

Y*

Spec?

really bad
thing(™)

We mitigated “Meltdown” through
“KPTI” (Kernel Page Table Isolation)*

* Shipping in a currently supported RHEL kernel near you

“Meltdown” requires that we have valid
kernel address translations (TLBs) so
ensure we never do by spitting kernel

and application page tables

Performance impact comes from the
“trampoline” code that is needed to
switch page tables on every kernel
entry and exit back to a program

“Spectre” v2 abuses (indirect) branch
predictors that don’t fully disambiguate

between two different process
“contexts”...

Spectre-v2 (branch predictor poisoning)

0x5000 BRANCH A 0x5000 BRANCH B

0x000 TARGET
ADDRESS

Process A Process B

...we train the branch predictor in one
context (program) such that it will guess
a particular way in another context (the

victim/kernel we want to control)

The attack relies upon finding “gadget”
code already in the victim program

We mitigated “Spectre-v2” through a
combination of firmware and OS level
branch predictor control interfaces*

* Shipping in a currently supported RHEL kernel near you

CPUs have an ability to tweak certain
behavior (e.g. “chicken bits”) or patch
new operations into a small on-chip

RAM via “microcode” updates

We use microcode for two things:

1. To restrict speculation across
privilege boundaries (kernel entry)

2. To invalidate the branch predictor
entries when switching programs

A later optimization (“retpolines”)
converts indirect function calls into fake
return “trampolines”. Avoids using the
standard branch predictor hardware*

* Shipping default in a supported RHEL kernel near you, and you can even switch mitigations at run time

Another variant of Spectre (v1) requires
minor code tweaks (barriers) that were

added to the kernel source directly

Why these problems mattered

Nearly every more CPU affected (to differing extents)

A skilled attacker could have the ability to read any memory they desire

Some attacks cross guest/host boundaries

Virtually undetectable

Why Red Hat was included

We have a very particular set of skills, skills we’ve acquired over our very long career

(the last 25 years and counting)

A snapshot of Red Hat Product Security over the
years

https://www.redhat.com/security/data/metrics/
https://access.redhat.com/documentation/en-us/red_hat_security_data_api/0.1/html-single/red_hat_security_data_api/index

https://www.redhat.com/security/data/metrics/
https://access.redhat.com/documentation/en-us/red_hat_security_data_api/0.1/html-single/red_hat_security_data_api/index

Coordinated Vulnerability Disclosure

Red Hat is part of a large group of vendor and community security teams

We use a process called Coordinated Vulnerability Disclosure(1) - The goal is
to protect customers and the larger global computing community

Red Hat respects the wishes of the issue reporter on how they want the issue
to be handled and how long to keep it secret

(1) https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf

https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf

Red Hat’s Customer Security Awareness Program
Ride, ride my seesaw Take this place On this trip Just for me

What we delivered to subscribers

15 kernels...3 times (4 if you count retpolines)

59 total patches (plus 15 more for retpolines) PLUS our complete OpenShift Online
infrastructure (3 versions), plus all AMIs, ISOs, and base images

Over 60 engineers involved in developing, testing, and packaging the errata

Education video, 1 vulnerability article (translated into 6 languages), 4 kcs articles on
specialized topics, 3 forms of customer emails, TAM T3, Performance webinar, and Portal

Banners & Alerts

10,000+ engineering hours dedicate to resolving issues

To learn more….

Vulnerability article - https://access.redhat.com/security/vulnerabilities/speculativeexecution

3 minute Video - https://youtu.be/syAdX44pokE

Blog - https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know

CSAw process - https://access.redhat.com/articles/2968471

To sign up for RHSA announcements - https://www.redhat.com/wapps/ugc/protected/notif.html

https://access.redhat.com/security/vulnerabilities/speculativeexecution
https://youtu.be/syAdX44pokE
https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know
https://access.redhat.com/articles/2968471
https://www.redhat.com/wapps/ugc/protected/notif.html

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

