

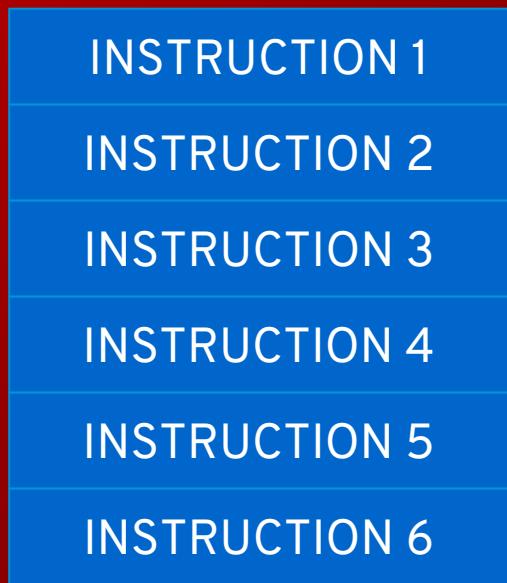
Exploiting modern microarchitectures

Meltdown, Spectre, and other hardware security vulnerabilities in modern processors

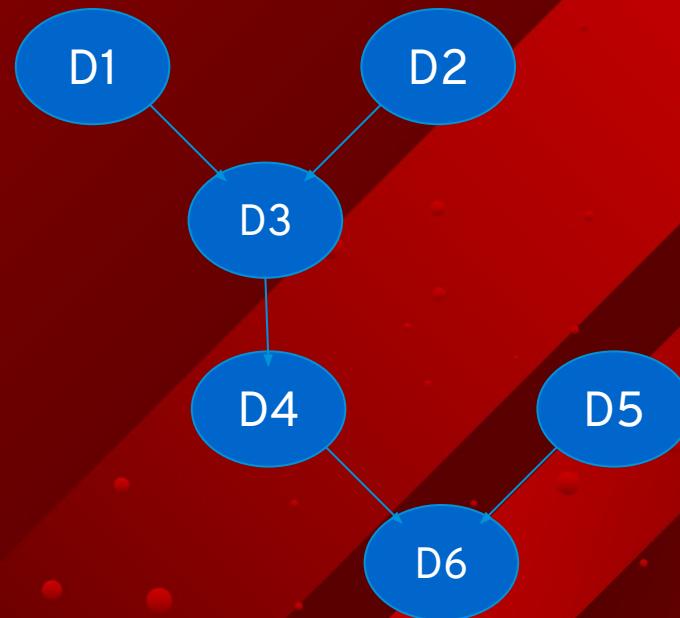
Jon Masters - Computer Architect
CRob - Red Hat Product Security
10 May 2018

Who are we?

JCM


CRob

Out-of-Order (OoO) execution converts sequential “in order” machines (CPUs) as conceptualized by programmers into out-of-order “data flow” machines in which computation is performed as soon as dependent data is available*


* Instructions issue and retire “in-order”, but are executed using an Out-of-Order “backend”

Sequential vs data flow

Sequential model

Data flow model

Sequential machines

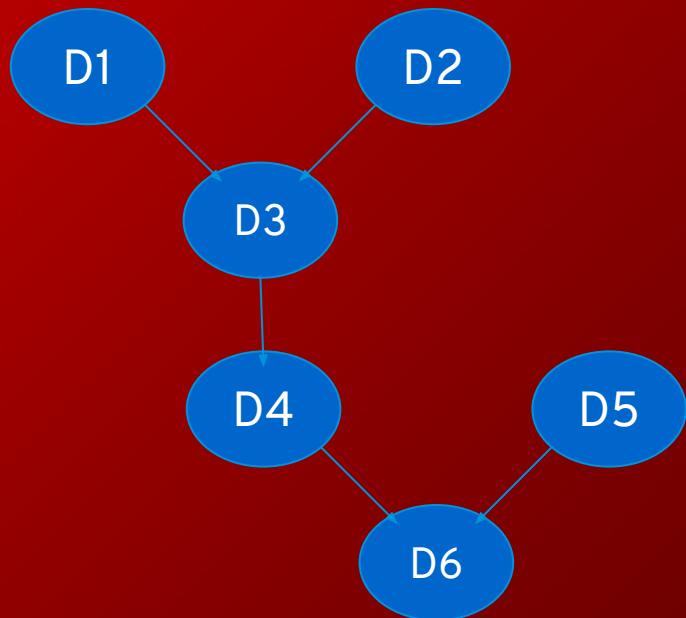
INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5


INSTRUCTION 6

Programmers intuitively think in terms of sequential program flow (“I do this, then I do that”)

Expectation is that the machine does everything in the order written down

Debugging involves tracing what each individual instruction did, one after the other, in the order written

Data flow machines

Data flow operates in terms of data. Each operation proceeds when its dependent data operands are ready

Instructions do not execute in the order written by the programmer

Debugging a real world data flow machine would involve understanding all of the internal machine state

Robert Tomasulo described how to convert an in-order sequential machine (as understood by programmers) into an Out-of-Order data flow model machine

Tomasulo's Algorithm

$R1 = \text{LOAD A}$
$R2 = \text{LOAD B}$
$R3 = R1 + R2$
$R1 = 1$
$R2 = 1$
$R3 = R1 + R2$

No data dependency

Tomasulo's Algorithm

$R1 = \text{LOAD A}$
$R2 = \text{LOAD B}$
$R3 = R1 + R2$
$R1 = 1$
$R2 = 1$
$R3 = R1 + R2$

Program Order

Entry	RegRename	Instruction	Deps	Ready?
1	$P1 = R1$	$P1 = \text{LOAD A}$	X	Y
2	$P2 = R2$	$P2 = \text{LOAD B}$	X	Y
3	$P3 = R3$	$P3 = R1 + R2$	1,2	N
4	$P4 = R1$	$P4 = 1$	X	Y
5	$P5 = R2$	$P5 = 1$	X	Y
6	$P6 = R3$	$P6 = P4 + P5$	4,5	N

Re-Order Buffer (ROB)

Tomasulo removed the need for chips to wait around for dependent calculations.

Deep reorder buffers allow very high performance gains in contemporary servers, laptops, and even phones

...time passed, and computer architects
realized it was possible to gain even
more performance...

“What if we combine Out-of-Order
Execution with Branch Prediction?”

Branches

```
for (i=0;i<10;i++)  
{  
    // something here  
}  
// post-loop code here
```



```
loop:  
    movq $0, %rax  
    incq %rax  
    cmpq $10, %rax  
    jle loop
```

```
// pack clothes  
if (rainy) {  
    // pack umbrella  
}  
// more packing
```



```
more_packing:  
    movq $rainy, %rax  
    cmpq $1, %rax  
    jne more_packing  
    // pack umbrella  
    // more packing
```

Branches

```
// pack clothes
if (rainy) {
    // pack umbrella
}
// more packing
```



```
movq $rainy, %rax
cmpq $1, %rax
jne more_packing
more_packing:
    ...
    ...
```

Branch conditions take time to
“resolve” (do I take the branch or not?)

Speculative Execution

Diagram illustrating the transformation of a C-like code snippet into a table of speculative execution steps. A blue box on the left contains the code, and a large blue arrow points to the right, leading into a table with columns: Entry, RegRename, Instruction, _deps, Ready?, and Spec?.

Entry	RegRename	Instruction	Deps	Ready?	Spec?
1	P1 = R1	P1 = LOAD A	X	Y	N
2		TEST R1	1	Y	N
3		IF R1 ZERO {	1	N	N
4	P2 = R1	P4 = 1	X	Y	Y*
5	P3 = R2	P5 = 1	X	Y	Y*
6	P4 = R3	P4 = P2 + P3	4,5	Y	Y*

* Speculatively execute the branch before the condition is known (“resolved”)

Branch prediction allows machines to guess which path code is going to take before that is fully known (“resolved”)

When combined with an Out-of-Order backend, “Speculative Execution” will try to execute code before we know whether we need to do so. If we guess wrong, we throw away our prediction

All is well...unless someone can see
what we did speculatively and use it to
learn things they should not know...

The Speculation Diner

Look at what we found!

Flash forward nearly 40 years.... 3 groups of researchers independently find....

Speculation is not an unobservable black box. We can abuse speculation to leak information we shouldn't access using a “side channel”

Side channels are everywhere! And they're also not new! There are many different mechanisms to discover what a machine is doing through observation

Classic example is “differential power analysis” being used to monitor voltages on the pins of a chip during crypto operations - power varies according to the calculation*

* Your “chip-and-pin” bank card is very carefully designed not to do this

Cache side channels exploit the shared nature of memory on a local system to infer what other programs are doing

But first...let's talk about
memory...recall how modern running
programs use “virtual memory”...

Virtual Memory

```
$ cat /proc/self/maps
```


/bin/cat
process

Virtual Memory

0xffff_ffff_81a0_00e0

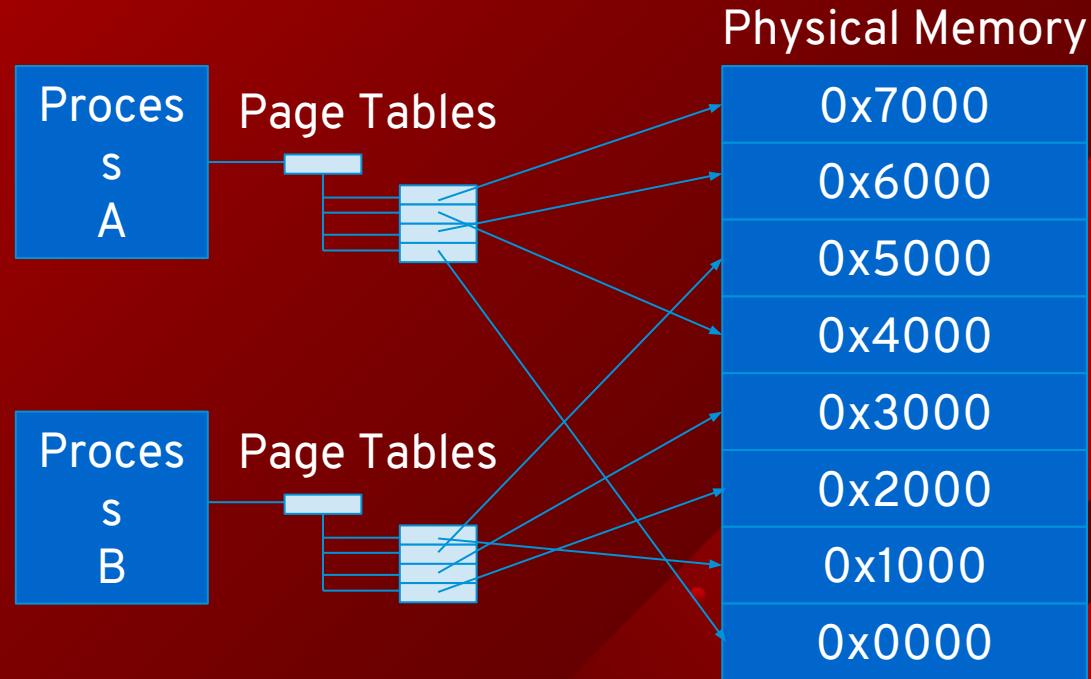
...

0xffff_ffff_8100_0000

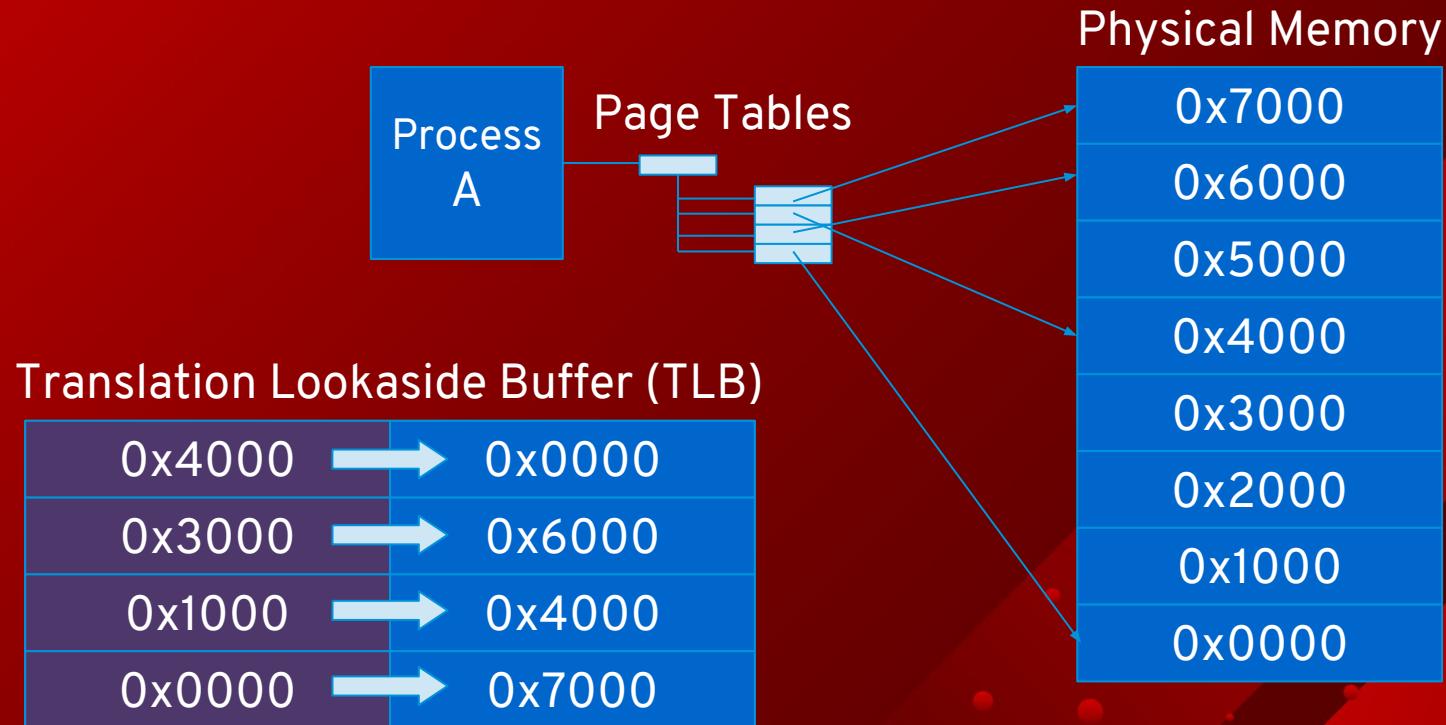
...

0x7ffc683f9000*

...

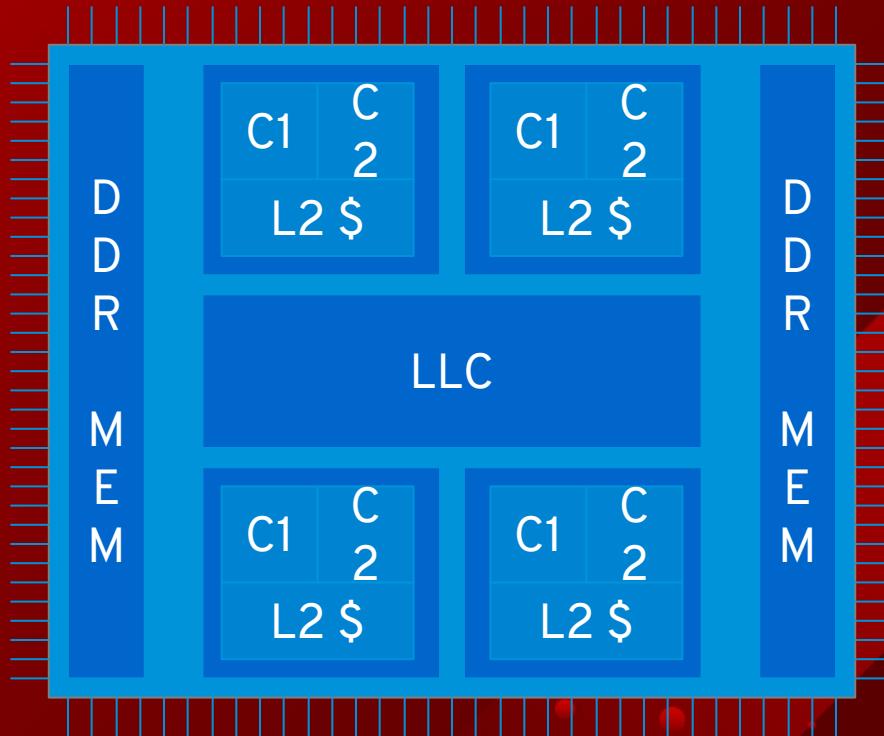

0x7ffc683a6000

...

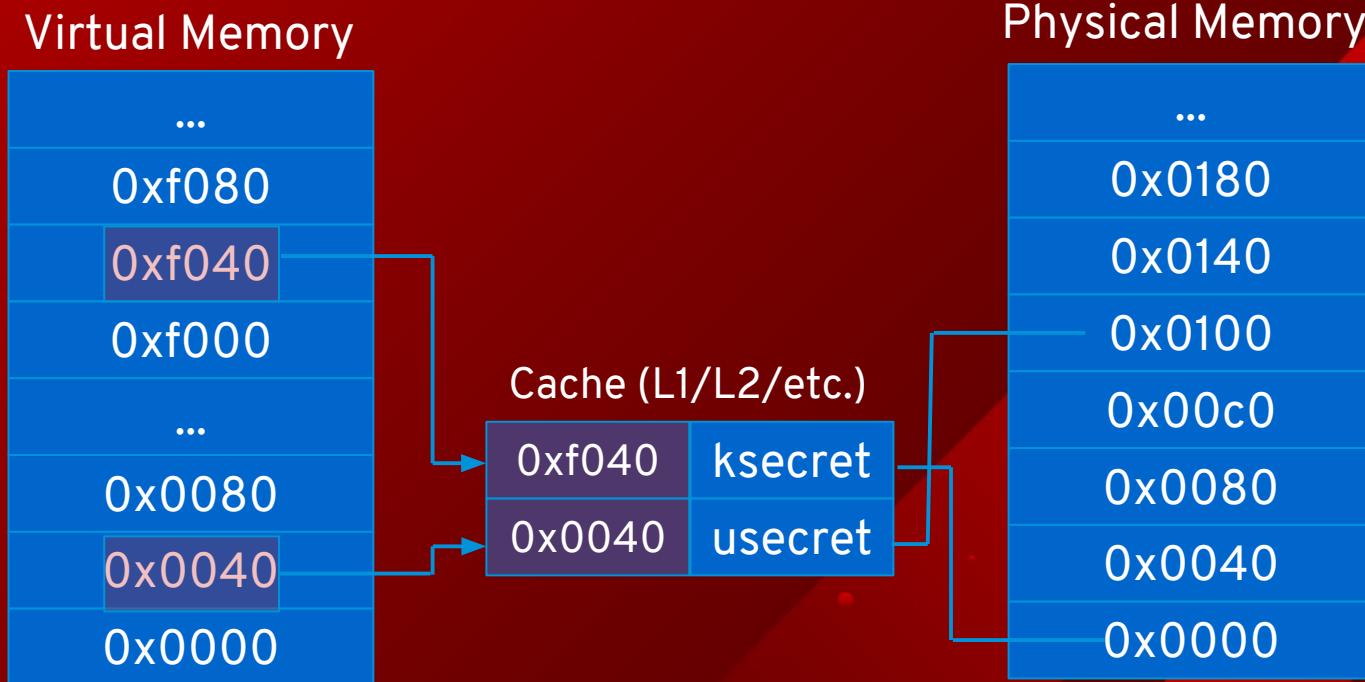

0x55d776036000

* Special case kernel VDSO (Virtual Dynamic Shared Object)

Virtual Memory



Virtual Memory



Caches are used to store the actual data
read by a running program from this
virtual memory

Caches

Caches

* For readability privileged kernel addresses are shortened to begin 0xf instead of 0xffffffff...

Caches are shared resources. The time taken to access data is proportional to whether it is located in the cache

Caches

```
time = rdtsc();  
maccess(&data[0x300]);  
delta3 = rdtsc() - time;
```

```
time = rdtsc();  
maccess(&data[0x200]);  
delta2 = rdtsc() - time;
```


Execution time taken for instruction is proportional to whether it is in cache(s)

“Meltdown” abuses at-retirement exception (error) handling in the speculation backend to read unauthorized data...

“Meltdown” abuses at-retirement
exception (error) handling in the
speculation backend to read
unauthorized data...

fancy way of saying
“at the very end”

...then uses the cache access trick to reconstruct what that unauthorized data was (hence “side channel”)

We will get a permission check failure
but we won't handle it until too late -
after the speculation window completes
(we already did the cache access trick)

Meltdown

- A malicious attacker arranges for exploit code similar to the following to speculatively execute:

```
if (spec_cond) {  
    unsigned char value = *(unsigned char *)ptr;  
    unsigned long index2 = (((value>>bit)&1)*0x100)+0x200;  
    maccess(&data[index2]);  
}
```

- “data” is a user controller array to which the attacker has access, “ptr” contains privileged data

Meltdown

```
char value = *SECRET_KERNEL_PTR;
```


mask out bit I want to read

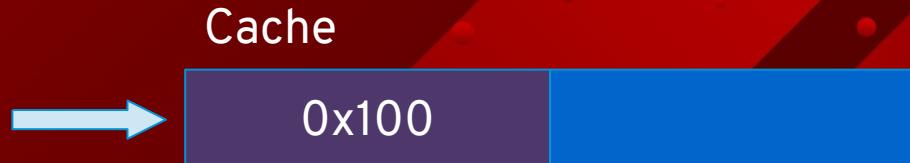
calculate offset in “data”
(that I do have access to)

char data[];

0x000

0x100

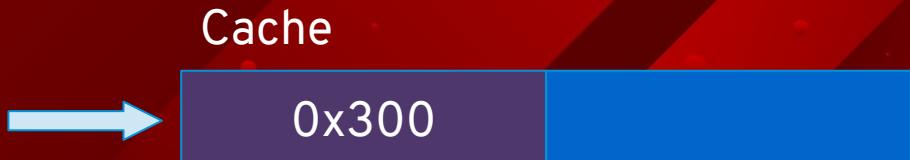
0x200


0x300

Meltdown

- Access to “data” element 0x100 pulls the corresponding entry into the cache

```
char data[];
```


0x000	
0x100	
0x200	
0x300	DATA

Meltdown

- Access to “data” element 0x300 pulls the corresponding entry into the cache

```
char data[];
```


Meltdown: Speculative Execution

Entry	RegRename	Instruction	Deps	Ready?	Spec?
1	P1 = R1	R1 = LOAD SPEC_CONDITION	X	Y	N
2		TEST SPEC_CONDITION	1	Y	N
3		IF (SPEC_CONDITION) {	1	N	N
4	P2 = R2	R2 = LOAD KERNEL_ADDRESS	X	Y	Y*
5	P3 = R3	R3 = (((R2&1)*0x100)+0x200)	2	Y	Y*
6	P4 = R4	LOAD USER_BUF[R3]	3	Y	Y*

flags for
future
exception

Meltdown: Speculative Execution

Entry	RegRename	Instruction	Deps	Ready?	Spec?
1	P1 = R1	R1 = LOAD SPEC_CONDITION	X	Y	N
2		TEST SPEC_CONDITION	1	Y	N
3		IF (SPEC_CONDITION) {	1	N	N
4	P2 = R2	R2 = LOAD KERNEL_ADDRESS	X	Y	Y*
5	P3 = R3	R3 = (((R2&1)*0x100)+0x200)	2	Y	Y*
6	P4 = R4	LOAD USER_BUF[R3]	3	Y	Y*

should kill
speculation
here

Meltdown: Speculative Execution

Entry	RegRename	Instruction	Deps	Ready?	Spec?
1	P1 = R1	R1 = LOAD SPEC_CONDITION	X	Y	N
2		TEST SPEC_CONDITION	1	Y	N
3		IF (SPEC_CONDITION) {	1	N	N
4	P2 = R2	R2 = LOAD KERNEL_ADDRESS	X	Y	Y*
5	P3 = R3	R3 = (((R2&1)*0x100)+0x200)	2	Y	Y*
6	P4 = R4	LOAD USER_BUF[R3]	3	Y	Y*

really bad
thing(™)

We mitigated “Meltdown” through
“KPTI” (Kernel Page Table Isolation)*

* Shipping in a currently supported RHEL kernel near you

“Meltdown” requires that we have valid kernel address translations (TLBs) so ensure we never do by spitting kernel and application page tables

Performance impact comes from the “trampoline” code that is needed to switch page tables on every kernel entry and exit back to a program

“Spectre” v2 abuses (indirect) branch predictors that don’t fully disambiguate between two different process “contexts”...

Spectre-v2 (branch predictor poisoning)

...we train the branch predictor in one context (program) such that it will guess a particular way in another context (the victim/kernel we want to control)

The attack relies upon finding “gadget” code already in the victim program

We mitigated “Spectre-v2” through a combination of firmware and OS level branch predictor control interfaces*

* Shipping in a currently supported RHEL kernel near you

CPUs have an ability to tweak certain behavior (e.g. “chicken bits”) or patch new operations into a small on-chip RAM via “microcode” updates

We use microcode for two things:

1. To restrict speculation across privilege boundaries (kernel entry)
2. To invalidate the branch predictor entries when switching programs

A later optimization (“retpolines”) converts indirect function calls into fake return “trampolines”. Avoids using the standard branch predictor hardware*

* Shipping default in a supported RHEL kernel near you, and you can even switch mitigations at run time

Another variant of Spectre (v1) requires minor code tweaks (barriers) that were added to the kernel source directly

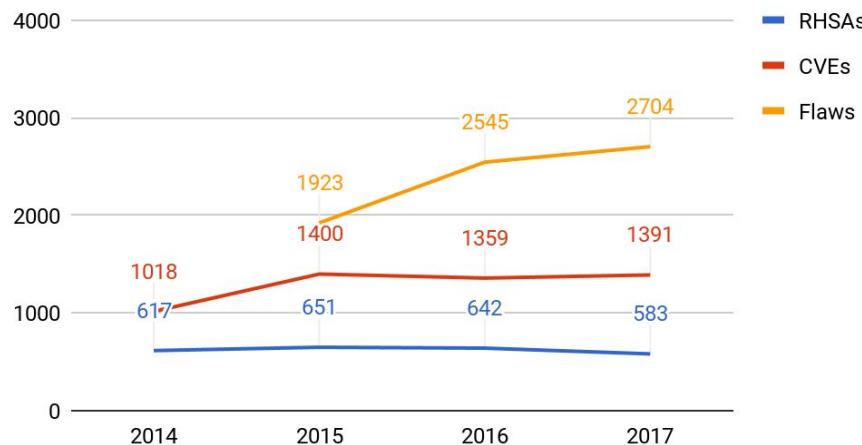
Why these problems mattered

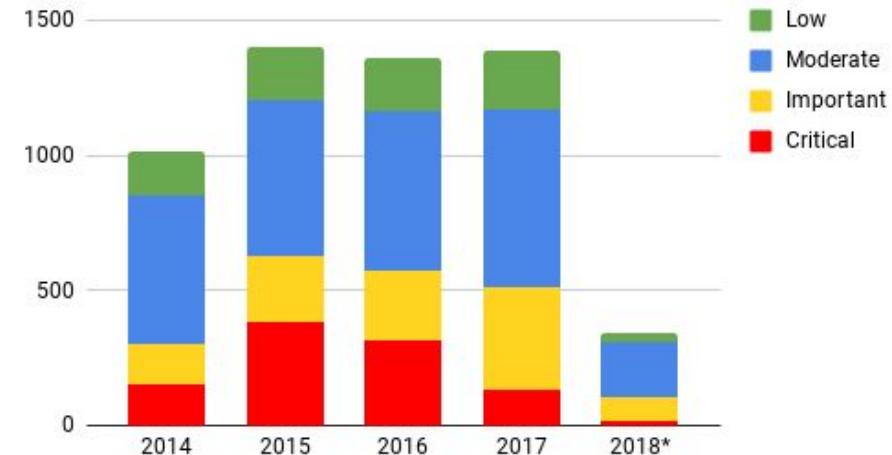
Nearly every more CPU affected (to differing extents)

A skilled attacker could have the ability to read any memory they desire

Some attacks cross guest/host boundaries

Virtually undetectable


Why Red Hat was included

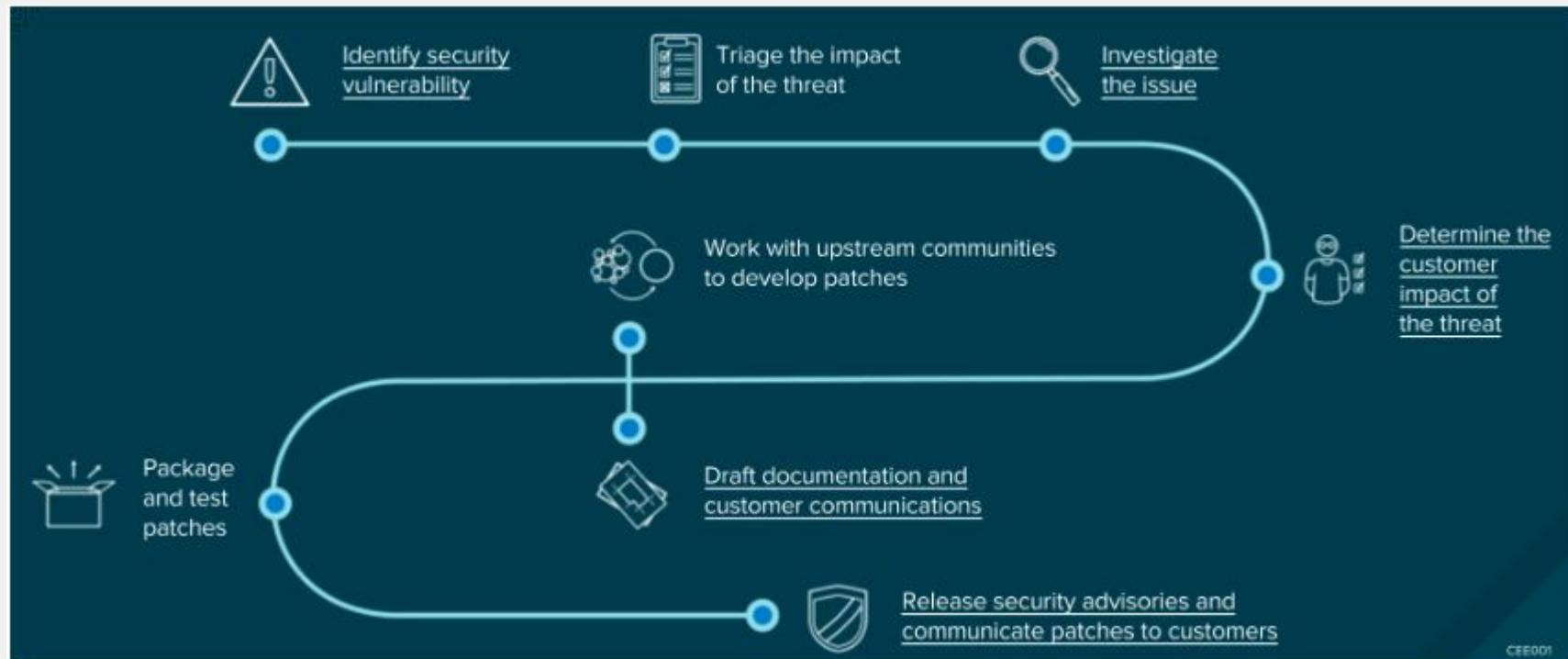

We have a very particular set of skills, skills we've acquired over our very long career
(the last 25 years and counting)

A snapshot of Red Hat Product Security over the years

Total CVEs and RHSAs by Year

Total CVEs Fixed by Severity

Coordinated Vulnerability Disclosure


Red Hat is part of a large group of vendor and community security teams

We use a process called Coordinated Vulnerability Disclosure(1) - The goal is to protect customers and the larger global computing community

Red Hat respects the wishes of the issue reporter on how they want the issue to be handled and how long to keep it secret

Red Hat's Customer Security Awareness Program

Ride, ride my seesaw Take this place On this trip Just for me

What we delivered to subscribers

15 kernels...3 times (4 if you count retpolines)

59 total patches (plus 15 more for retpolines) PLUS our complete OpenShift Online infrastructure (3 versions), plus all AMIs, ISOs, and base images

Over 60 engineers involved in developing, testing, and packaging the errata

Education video, 1 vulnerability article (translated into 6 languages), 4 kcs articles on specialized topics, 3 forms of customer emails, TAM T3, Performance webinar, and Portal Banners & Alerts

10,000+ engineering hours dedicate to resolving issues

To learn more....

Vulnerability article - <https://access.redhat.com/security/vulnerabilities/speculativeexecution>

3 minute Video - <https://youtu.be/syAdX44pokE>

Blog - <https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know>

CSAw process - <https://access.redhat.com/articles/2968471>

To sign up for RHSA announcements - <https://www.redhat.com/wapps/ugc/protected/notif.html>

THANK YOU

plus.google.com/+RedHat

facebook.com/redhatinc

linkedin.com/company/red-hat

twitter.com/RedHat

youtube.com/user/RedHatVideos