sdiiir

Shift-left site reliability engineering
for self-healing applications

Florian Bacher
Technology Strategqist
@bacherfl

Dynatrace

Jurgen Etzistorfer
Technology Strateqist
@jetzistorfer
Dynatrace

Our Challenge:
Delivering better software faster

OPENSHIFT

i3 kubernetes

dWs$s
~—"

, Cloud Natlvee»‘ i
= - ‘Deliver: High - -

=
)
i TR Quallﬁ/ Faster iy
Google Cloud Platform g 3= . e
: SN o

- e
- Microsoft Azure g \ %

e <

Q

Collecting more evic

Commit Cycle Time: From Dev to Pro

1 hour 2 days

< 1lday < 1week 1 to2 weeks 2 to3 weeks 3 to4 weeks > A weeks

95th Percentile

B Small (11-100 employees) O Medium (101-1000 employees)

W Large (1001-5000 employees) @ Extra large (over 5000 employees)

Confidential 4

Some results from our survey

e days 1 out of 10 hotfixes
Median | 2.5 days out of 10 hotfixes

Per Production
Deployment

Code to Production
(Commit Cycle Time)

Business Impacting
Deployments

Evaluate for yourself: https://dynatrace.ai/acsurvey

Q)

~4 hours

days

MTTR
(Mean Time to Repair)

What we want

commit build test stage prod

C womaclypehonetsae

What we (sometimes) have

commit build test stage pre-prodl pre-prod2 prod

9 0 0 C—0 ©—

L ekppemeamienitetaqaiygre

Confidentia

Shift-left quality gates — performance-spec-as-code

{

"lowerBound": 1,

"upperBound": 100,

" comment": "global configuration
environment-wide",
"timeseries": [

{

"timeseriesId":

com.dyaatrace.builtin:service.responsetime

n

1
14

"aggregation": "avg",
"entityIds": "SERVICE-
3211ABE8813B9239",
"lowerBound": 1000000,
"upperBound": 2000000

Incidents

Services - Re

Serv ;e

= Resposis t time - ovi 1a (Average)

Services - Response time - CRU -
Y 2rhe |

Confidential

How to increase quality

« Automate operations (self-healing) — auto-
mitigate bad deployments in production
« Automate deployment (shift-right) — push "monitoring-
as-code” for auto-validation and auto-alerting
« Automate quality (shift-left) — automate the pipeline
and stop bad code changes before they reach prod
« Automated monitoring — monitoring as feature of the
end-to-end pipeline

Confidentia

How to increase resilience

commit

build

test

stage

prod

Auto-
remediation-as

code

4

Confidential

Auto-remediation building blocks

- Monitoring: know what's going on in your - Automation/Execution: perform
applications mitigation/remediation actions
- End-to-end « Access to all systems

« Full-stack — fully integrated in all stages

010001
010010

¢
0o

Automation via

A IS

Auto-remediation with Ansible (Tower)

- APIs are key to enable automation

- Ansible Tower provides rich APl for managing Ansible jobs

cpHBPE Krem 5 EWSQ aB BN

« Playbooks can be orchestrated in workflows and job templates

RED HAT
ANSIBLE

Tower

Options to build (auto)remediation

Faster
A

Feature flags

Blue/Green switch

< >
Mitigation

effort <

https://medium.com/@sashman90/ops-mitigation-triangle-300c81d97df6

Re-deploy

Investigate, address
root cause, implement
fix, deploy

https://medium.com/@sashman90/ops-mitigation-triangle-300c81d97df6

Introducing ‘7/// keptn

What we have seen organizations actually do!

+ Building Custom Integrations with OpenSource & Commercial tools for

Deployment Pipelines

Testing Pipelines
Auto-Remediation
Notifications
Auditing

Confidential

Q

15

What we have seen organizations struggle with

Quote: ,Pipelines seem to become our new future unmanagable legacy
codel!”

Teams want to stick with existing tools to protect investement

Containing lots of custom code for tool integration, error handling, logging, ...
Getting harder to maintain the more tools get integrated

Pipelines becoming more complex requiring dedicated teams

Uncoordinated deployments between pipelines resulting in unstable Environments

Confidential 16

7, keptn from 10000ft

Core capabilities

EH:I Automated multistage unbreakable delivery pipelines

‘; Self-healing blue/green deployments

x Event-driven runbook automation

Design Principles
0 GitOps-based collaboration
a Operator patterns for all logic components

Monitoring and operations as code

Built on and for Kubernetes

@ Event-driven and serverless

‘\oﬁ

Pluggable tooling

Confidentia

Q)

17

Core

Services

Platform

keptn - conceptual architecture Environment Definition (shipyard file)

. crieelelelil, R
R oo P e P
PR “ IO T
|| R - L= =] -
- o -.;:él>;.!: .

Container : ontinuous: -
| (CIB0EE :: Registry : : Delivery :: AlOps

\ Dev Namespace Staging Namespace Production Namespace

Dev

keptn — Shipping through Unbreakable Continuous Delivery Pipelines

i 2:deploy dev i 6:deploy staging i 10: deploy production
. 3:test i 7: test 11: evaluate
i 4:evaluate i 8: evaluate i 12: operate

Q

Demo Time

7, keptn

20

Key takeaways

Everything-as-code
Performance signature as code

Auto-remediation as code
Increase resilience by automated quality checks in pipelines

keptn as open source tool for implementing unbreakable pipelines
https://keptn.sh
https.//github.com/keptn

Confidential 22

https://keptn.sh/
https://github.com/keptn

Even more talks!

Building autonomous operations for Kubernetes with keptn
Tuesday May 7th 2.30-3.15pm
Speaker: Alois Reitbauer

Dynatrace Operator
Wednesday May 8th 4.20-4.40pm + Thursday May 9th 11.30-11.50am
Speaker: Markus Heimbach

Unifying OpenShift cluster, container and application monitoring

Wednesday May 8th 3.30-3.50pm ‘y/j ke p t N

Speaker: Asad Al
Unbreakable DevOps on Red Hat OpenShift

Thursday May 9th 1-1-45prr g dynatrace

Speakers: Peter Hack & Florian Bacher

Confidential 23

Thank you !

