
Shift-left site reliability engineering 
for self-healing applications
Jürgen Etzlstorfer
Technology Strategist
@jetzlstorfer
Dynatrace

Florian Bacher
Technology Strategist
@bacherfl
Dynatrace



2Confidential

Our Challenge:
Delivering better software faster



Confidential 3

Your App / Container

Cloud Native: 
Deliver High 

Quality Faster



Confidential 4

< 1 day < 1 week 1 to 2 weeks 2 to 3 weeks 3 to 4 weeks > 4 weeks

Small (11-100 employees) Medium (101-1000 employees)

Large (1001-5000 employees) Extra large (over 5000 employees)

3%

20%

35%

42%

2 days 12.5 days

95th Percentile Median

Commit Cycle Time: From Dev to Pro

Goal: 1h to Production

1 hour



Confidential 5

3 out of 10

Business Impacting
Deployments

3 hotfixes

Per Production 
Deployment

4.8 days

MTTR
(Mean Time to Repair)

Evaluate for yourself: https://dynatrace.ai/acsurvey

12.5 days

Code to Production
(Commit Cycle Time)

1 out of 10 0 hotfixes ~4 hours2 days

Median

95th

Percentile

Some results from our survey



6Confidential

What we want

✓ ✓ ✓ ✓

commit build test stage prod

✓

✓ ✓ ✓ ✓

commit build test stage prod

✓

What we (sometimes) have

✗ ✗✓

pre-prod1

✓

pre-prod2

✗

Automatically push to next stage

Break pipelines early! (shift-left & quality gates)



7Confidential

Shift-left quality gates – performance-spec-as-code

{
"lowerBound": 1,
"upperBound": 100,
"_comment": "global configuration 

environment-wide",
"timeseries": [
{
"timeseriesId": 

"com.dynatrace.builtin:service.responsetime
",

"aggregation": "avg",
"entityIds": "SERVICE-

3211ABE8813B9239",
"lowerBound": 1000000,
"upperBound": 2000000

}
]

}

Performance Signature

Automatic Feedback

Build Performance 
Analysis



8Confidential

MULTI-PLATFORM MONITORING

QUALITY
SHIFT-LEFT

DEPLOYMENT
SHIFT-RIGHT

SELF 
HEALING

• Automate operations (self-healing) – auto-
mitigate bad deployments in production

• Automate deployment (shift-right) – push “monitoring-
as-code“ for auto-validation and auto-alerting

• Automate quality (shift-left) – automate the pipeline 
and stop bad code changes before they reach prod

• Automated monitoring – monitoring as feature of the 
end-to-end pipeline

How to increase quality



9Confidential

How to increase resilience

✓ ✓ ✓ ✓

commit build test stage prod

✓

Auto-
remediation-as-

code

✗



Confidential 11

Auto-remediation building blocks

• Monitoring: know what’s going on in your 
applications
• End-to-end

• Full-stack – fully integrated in all stages 

• Automation/Execution: perform 
mitigation/remediation actions
• Access to all systems

Automation via 

APIs



Confidential 12

Auto-remediation with Ansible (Tower)

• APIs are key to enable automation

• Ansible Tower provides rich API for managing Ansible jobs

• Playbooks can be orchestrated in workflows and job templates



Confidential 13

Options to build (auto)remediation

https://medium.com/@sashman90/ops-mitigation-triangle-300c81d97df6

https://medium.com/@sashman90/ops-mitigation-triangle-300c81d97df6


14Confidential

Introducing 



Confidential 15

What we have seen organizations actually do!

• Building Custom Integrations with OpenSource & Commercial tools for
• Deployment Pipelines

• Testing Pipelines

• Auto-Remediation

• Notifications

• Auditing



16Confidential

What we have seen organizations struggle with

Quote: „Pipelines seem to become our new future unmanagable legacy 
code!“

• Teams want to stick with existing tools to protect investement

• Containing lots of custom code for tool integration, error handling, logging, ...

• Getting harder to maintain the more tools get integrated

• Pipelines becoming more complex requiring dedicated teams

• Uncoordinated deployments between pipelines resulting in unstable Environments



Confidential 17

from 10000ft

GitOps-based collaboration

Operator patterns for all logic components

Monitoring and operations as code

Built on and for Kubernetes

Event-driven and serverless

Pluggable tooling

Automated multistage unbreakable delivery pipelines

Self-healing blue/green deployments

Event-driven runbook automation

Design Principles

Core capabilities



Confidential 18

keptn – conceptual architecture

Autonomous Cloud Control Plane

GitOps
Container 
Registry

Continuous 
Delivery AIOps

Operations
Automation

Test
Automation

Environment Definition (shipyard file)

ChatOps

Dev Namespace Staging Namespace Production Namespace

Co
re

Se
rv

ic
es

Pl
at

fo
rm

Data
Provider



Confidential 19

keptn – Shipping through Unbreakable Continuous Delivery Pipelines

Autonomous Cloud Control Plane

prodstagedev

1: push

2: deploy dev

3: test

4: evaluate

6: deploy staging

7: test

8: evaluate

10: deploy production

11: evaluate

12: operate

5: promote 9: promote

Dev



20Confidential

Demo Time



22Confidential

Key takeaways

• Everything-as-code
• Performance signature as code

• Auto-remediation as code

• Increase resilience by automated quality checks in pipelines

• keptn as open source tool for implementing unbreakable pipelines
• https://keptn.sh

• https://github.com/keptn

https://keptn.sh/
https://github.com/keptn


23Confidential

Even more talks!

• Building autonomous operations for Kubernetes with keptn
Tuesday May 7th 2.30-3.15pm
Speaker: Alois Reitbauer

• Dynatrace Operator 
Wednesday May 8th 4.20-4.40pm + Thursday May 9th 11.30-11.50am
Speaker: Markus Heimbach

• Unifying OpenShift cluster, container and application monitoring
Wednesday May 8th 3.30-3.50pm
Speaker: Asad Ali

• Unbreakable DevOps on Red Hat OpenShift 
Thursday May 9th 1-1:45pm
Speakers: Peter Hack & Florian Bacher



24Confidential

Thank you !


