

From cloud to edge: Why cloud-native application development matters in supporting IoT

David Bericat

Chief Architect Data Analytics (AI/ML) • Edge • IoT
Global Partner Solutions
Red Hat

Thursday May 9th

Erik Jacobs

Principal Technical Marketing Manager, OpenShift
Cloud Platforms BU
Red Hat

THE INTERNET IS ALL THINGS

YOU SIMPLY DON'T REALIZE IT YET...

AGENDA

- What has Red Hat been doing in IoT
- From IoT to end-to-end Analytics (AI/ML) to Edge computing
- Red Hat's next generation cloud-computing development
- Dreaming exercise: serverless & FaaS at the “edge”

RED HAT'S IoT STRATEGY OVERVIEW

- Customers use our parts of our portfolio in a variety of ways to address IoT challenges on a hybrid cloud infrastructure.
- We do not claim to provide an IoT platform. We work with our commercial partner ecosystem to define more complete solutions and bring them to market.
- We take a leadership role in open source communities to build IoT technology.

KEY FUNCTIONALITY

FOR AN END-TO-END IoT ARCHITECTURE

Device Management & Connectivity

Securely connect, authenticate and manage disparate connected devices that speak different protocols

Intelligent Edge Processing & Analytics

Apply analytics at the edge with machine learning and business rules to enable local, low-latency decision making

Advanced Analytics & Machine Learning

Centralize IoT data processing, analytics and machine learning to enable deep business insights and actionable intelligence

Business & Application Integration

Enable integration with enterprise and business applications to bridge the gap between OT and IT and reduce complexity

End-to-End Security & Compliance

Tools to enable end-to-end data security, compliance, authorization and authentication

OPEN END-TO-END IoT ARCHITECTURE

INTEGRATING OT, IT, DATA MANAGEMENT, ANALYTICS & APPLICATIONS

END-TO-END ANALYTICS

PUSHING AI/ML FROM CORE TO EDGE

FUNCTIONALITY OVERVIEW

HOW RED HAT PORTFOLIO CAN HELP

CONNECTED
“THINGS”

IoT
EDGE

IoT
INTEGRATION HUB

Telemetry

Management

RED HAT
ANSIBLE
Automation

APPLICATION DEVELOPMENT,
DELIVERY, & INTEGRATION

App
integration
Management

RED HAT
ANSIBLE
Automation

DATA MANAGEMENT & ANALYTICS

AGILE INTEGRATION

STANDARDIZING THE “WILD, WILD WEST”

AGILE INTEGRATION

STANDARDIZING THE “WILD, WILD WEST”

CONNECTED
“THINGS”

IoT
EDGE

IoT
INTEGRATION HUB

MQTT
HTTP
LoRaWAN
CoAP

Red Hat
AMQ
AMQ Online

Interconnect
Broker
Streams

Device Registry
Red Hat
Data Grid

Red Hat
Integration

Red Hat
Fuse

Red Hat
OpenShift

APPLICATION DEVELOPMENT,
DELIVERY, & INTEGRATION

PORTABILITY ACROSS ANY INFRASTRUCTURE

CONNECTED “THINGS”

IoT EDGE

IoT INTEGRATION HUB

Telemetry
↔
Management

DATA MANAGEMENT & ANALYTICS PLATFORM

 OPENSIFT[®]
by Red Hat[®]

- Linux containers
- Kubernetes-based orchestration
- Deployment flexibility
- Automation
- Scalability
- Persistent storage

APPDEV & CONTINUOUS DELIVERY

* coming soon

#redhat #rhsummit

APPDEV WITH CODEREADY WORKSPACES

PLANNING, CREATING, AND DEPLOYING HYBRID CLOUD SERVICES

The collaborative OpenShift-Native IDE. Free for any customer of OpenShift Dedicated or OpenShift Container Platform.

RED HAT®
CODEREADY

Container Workspaces

Workspace replicas to end “works on my machine” and enable team collaboration.

DevOps Integrations

Reference developer workspaces from any issue, failed build, or git notification.

Protect Source Code

Full access to source code without any of it landing on hard-to-secure laptops.

Based on the open Eclipse Che project

Red Hat Linux and Application Infrastructure

Plugin model for extensibility

Serverless support (coming later)

Use It To: Replace VDI for devs, and enable true container-based DevOps.

EDGE CONTINUOUS DEPLOYMENTS

1. Create App / microservice / function

Who: Developers

Where: CodeReady Workspaces

3. Execute at the edge

WHAT IS THE EDGE ANYWAYS?

[What is Edge Computing](#)
[Why choose Red Hat for Edge computing?](#)

RED HAT EDGE COMPUTING PoV

CORE
few, large sites
(scale-up)

Regional Data Center Core Data Center

Provider Edge

Provider Device Edge Provider Access Edge Provider Aggregation Edge

End-User Premise Edge

"last mile"

EDGE
many small sites
(scale-out)

Device Edge Infrastructure Edge

Provider/Enterprise core		Traditional “non-edge” tiers, owned and operated by public cloud providers, telco service providers, or large enterprises.
Core datacenter		Larger centralized presence.
	Regional datacenter	Smaller regional presences.
(Service) Provider edge		Edge tiers between the core/regional data centers and the last mile access, commonly owned and operated by a telco or internet service provider and from which this provider serves multiple customers.
Provider aggregation edge	Provider aggregation edge	Higher tiers aggregating multiple smaller presences.
	Provider access edge	For sites terminating the access link.
	Provider device edge	Standalone non-clustered devices.
End-user premises edge		Edge tiers on the end-user (or customer) side of the last mile access ⁸ . <ul style="list-style-type: none"> • Enterprise edge (e.g. a retail store, a factory, a train). • End-user premises edge - indicating ownership/control (e.g. a residential household, a car).
Infrastructure edge		1-to-N nodes of generic, clustered compute/storage infrastructure accessible in a cloud-like manner. ***
Device edge		Standalone (non-clustered) devices that directly connect sensors/actuators via non-internet protocols.

*** Minimum of 3 nodes required today

BEST EDGE COMPUTING FOUNDATION?

CLOUD-NATIVE DEVELOPMENT

DRIVING SERVERLESS / FaaS FROM CORE TO EDGE

QUARKUS

RED HAT®
OPENSHIFT®

KNATIVE

SERVERLESS BUILDING BLOCKS

"...an extension to Kubernetes exposing building blocks to build modern, source-centric, and container-based applications that can run anywhere".

Build

A pluggable model for building artifacts, like jar files, zips or containers from source code.

Serving

An event-driven model that serves the container with your application and can "scale to zero".

Eventing

Common infrastructure for consuming and producing events that will stimulate applications.

KNATIVE

EVENTING FLOW

SERVERLESS ADOPTION

OK, WE HAVE THE BUILDING BLOCKS, NOW WHAT?

- 62.9 % Node.js

- 20.8 % Python

- 6.4 % Go

- 6.1 % Java

- 3.8 % C#

<https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/>

QUARKUS

SUPersonic Subatomic Java

A Kubernetes Native Java stack tailored for GraalVM & OpenJDK HotSpot, crafted from the best of breed Java libraries and standards

100x faster startup, 10% of the memory in native mode

10x faster and $\frac{1}{2}$ the of the memory on Hotspot/OpenJDK

Memory (RSS) in Megabytes

REST + CRUD

Boot + First Response Time in Seconds

MEMORY & BOOT + FIRST RESPONSE TIME

Polyglot, Native or JVM, Embeddable

**BUILD
PROCESS**

Quarkus enables Java developers to easily use the most popular frameworks and standards directly on SubstrateVM without any hassle.

APACHE CAMEL K

SERVERLESS INTEGRATION

- A lightweight platform for directly running Camel integration DSL in a cloud-native way
- Based on (ex Core OS) operator-sdk
- Works on Openshift and Kubernetes
- Create Event Sources, use EIPs, define Integration Functions

<https://github.com/apache/camel-k>

Updated minikube doc 3 days ago

Apache Camel K

Apache Camel K (a.k.a. Camel) is a lightweight integration framework built from Apache Camel that runs natively on Kubernetes and is specifically designed for serverless and microservice architectures.

Getting Started

Camel K allows to run integrations directly on a Kubernetes or OpenShift cluster. To use it, you need to be connected to a cloud environment or to a local cluster created for development purposes.

If you need help on how to create a local development environment based on [Minishift](#) or [Minikube](#), you can follow the [local cluster setup guide](#).

CAMEL K

OVERVIEW

Time to run an integration using different strategies (in seconds)

Lower is better :)

File routes.groovy

```
from("telegram:bots/bot-id")
    .transform()...
    .to("kafka:topic");

from("kafka:topic")
    .to("http:my-host/api/path");
```

\$ kamel run routes.groovy

DEVICE EDGE

WHAT CAN WE DO WITHOUT KNATIVE/K8s?

- Run native functions in containers at the edge
- Benefit from low footprint and fast startup

CALL TO ACTION

- <https://try.openshift.com/>
- <https://developers.redhat.com/>
- <https://knative.dev/docs/>
- <https://quarkus.io/>
- <https://github.com/apache/camel-k>

LET'S BUILD
CLOUD NATIVE
APPS

THANK YOU

[linkedin.com/company/Red-Hat](https://www.linkedin.com/company/Red-Hat)

[facebook.com/RedHatincl](https://www.facebook.com/RedHatincl)

[youtube.com/user/RedHatVideos](https://www.youtube.com/user/RedHatVideos)

twitter.com/RedHat

CASE STUDY - Smart Manufacturing - Deep Dive

Integrating open source IoT operating technology, data management, analytics, and applications

Knative Overview - Serving

- **Configurations** represent the ‘floating HEAD’ of a history of **Revisions**
- **Revisions** represent immutable snapshot of code and configuration
- **Routes** configure ingress over a collection of Revisions and/or Configurations
- **Services** (nope, not K8s services) are top-level controllers that manage a set of Routes and Configurations to implement a network service

SERVERLESS ADOPTION

- 62.9 % Node.js
- 20.8 % Python
- 6.4 % Go
- 6.1 % Java
- 3.8 % C#

<https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/>

ENTERPRISE JAVA WAS DESIGNED FOR 3-TIER ARCHITECTURE

Presentation Logic

Business Logic

Data Access Logic

HOW APPLICATION SERVERS DEPLOYED JAVA APPS

MICROSERVICES CHANGED HOW WE DEPLOY APPS

THE HIDDEN TRUTH ABOUT JAVA IN CONTAINERS

Node

Traditional Cloud-Native Java Stack

Traditional Cloud-Native Java Stack

Traditional Cloud-Native Java Stack

Traditional Cloud-Native Java Stack

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Node

Go Go Go

Node

Quarkus Quarkus Quarkus Quarkus Quarkus

CONTAINER ORCHESTRATION

<https://developers.redhat.com/blog/2017/03/14/java-inside-docker/>

FAAS & SERVERLESS CHANGES HOW WE DEPLOY APPS IN THE FUTURE

QUARKUS NATIVE DEPLOYMENT

HOW IS THIS POSSIBLE?

GraalVM™

Polyglot, Native or JVM, Embeddable

DEVELOPING NATIVE APPLICATIONS FOR SUBSTRATEVM IS PAINFUL

Quarkus enables Java developers to easily use the most popular frameworks and standards directly on SubstrateVM without any hassle.

FRAMEWORK OPTIMIZATIONS

- Moved as much as possible to build phase
- Minimized runtime dependencies
- Maximize dead code elimination
- Introduced clear metadata contracts
- Spectrum of optimization levels
(all -> some -> no runtime reflection)

Optimizations benefit both GraalVM (SVM) and HotSpot

Quarkus Extensions

RESTEasy

Undertow

Hibernate

Bean Validation

Narayana

Agroal

MP Reactive St.

MP Health

MP Rest Client

Fault Tolerance

MP Metrics

MP Open API

OpenSSL

Quarkus Core

Jandex

Gizmo

Graal SDK

Hotspot

Substrate

IMAGE CREDITS

bmw - <https://www.flickr.com/photos/pinemike/8850948516>

android - <https://www.flickr.com/photos/microsiervos/15350193299>

nest - <https://www.flickr.com/photos/161156731@N05/45096474951>

question - <https://www.flickr.com/photos/dharmabum1964/3108162671>

SECTION BREAK

SECTION BREAK

SECTION BREAK

CONTENT SLIDE

THANK YOU

[linkedin.com/company/Red-Hat](https://www.linkedin.com/company/Red-Hat)

[facebook.com/RedHatinic](https://www.facebook.com/RedHatinic)

[youtube.com/user/RedHatVideos](https://www.youtube.com/user/RedHatVideos)

twitter.com/RedHat