

How Software Defined Storage Can Help To Solve Retail Industry Challenges

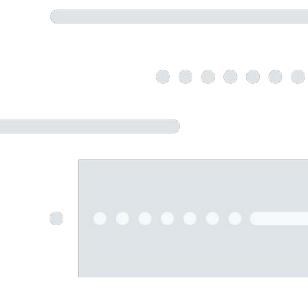
Luis Rico

Jorge Tudela

José Ángel de Bustos

- Senior Storage Specialist Solution Architect, EMEA

- Senior Cloud Consultant, Iberia


- Senior Cloud Consultant, Iberia

07/May/2019

AGENDA

AGENDA

- Retail Industry Challenges
- Red Hat Ceph Storage Product Overview
- Object Storage Use Case for E-Commerce Platform
- Fastest Red Hat Ceph Object Storage
- Conclusions
- Q&A

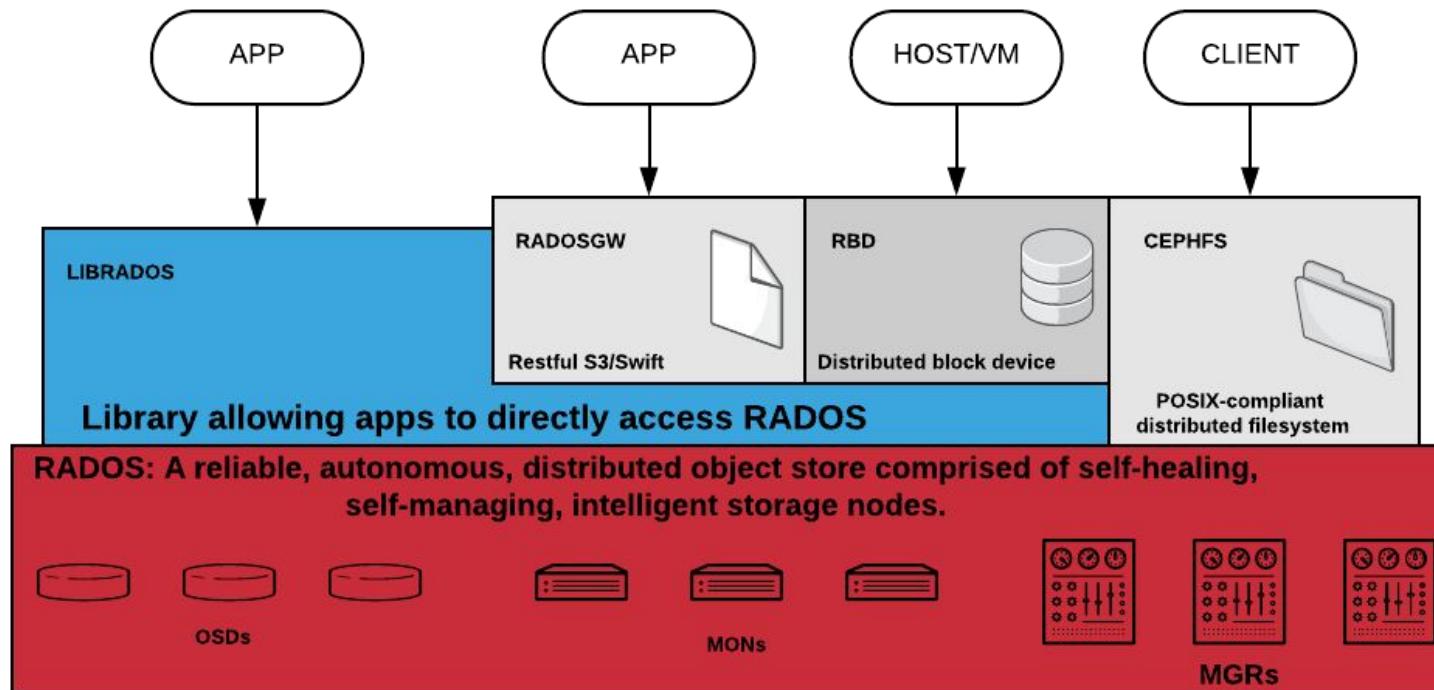
RETAIL INDUSTRY CHALLENGES

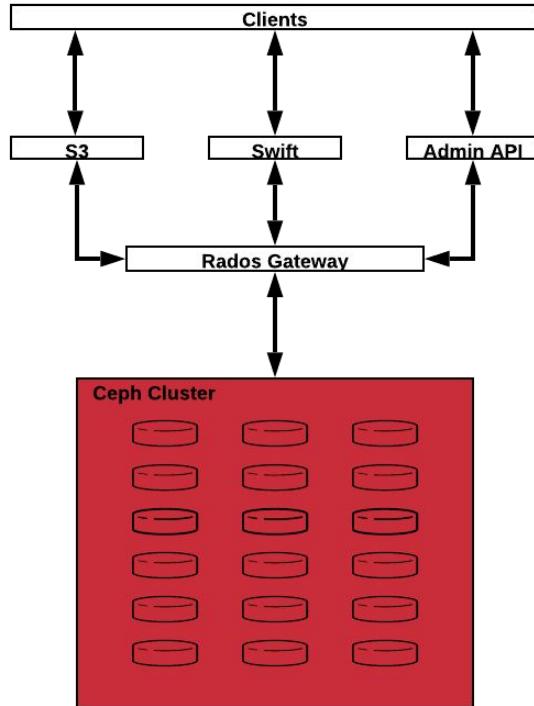
Retail Industry Challenges

- Availability
 - Global Geo-Availability 24x7
- Scalability
 - Aggressive growth year by year
 - ~2x growth or more for many companies
- Performance
 - Support high traffic peaks during specific dates
 - Christmas sales, Black Friday, etc
 - E-commerce store sensitive to web experience (lag, delays, etc)
 - Requires fastest R/W operations
- Data location is important
 - To comply with National legislations:
 - In some countries, bills have to be stored physically inside the country

Retail Industry Challenges

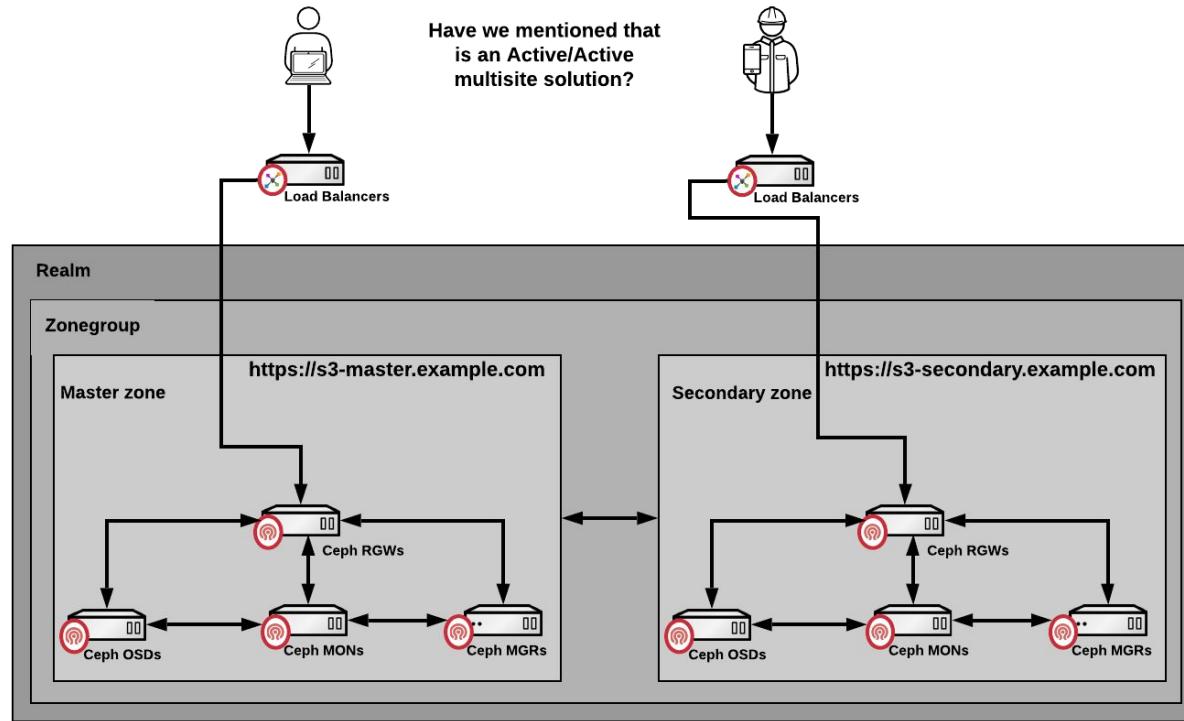
- Data retention
 - Retail companies must comply with local National legislations
 - Data retention policies are dictated by National legislations
 - For example, European GDPR Article 5:
 - "Personal data shall be kept in a form which permits identification of data subjects for **no longer than is necessary**"
- High SLAs, specially e-commerce platform
 - Small service outages are worth \$\$. E-commerce cost of downtime:
 - [amazon.com](https://www.gremlin.com/ecommerce-cost-of-downtime/) revenue loss per minute **\$220,318.80**
 - [walmart.com](https://www.gremlin.com/ecommerce-cost-of-downtime/) revenue loss per minute **\$40,771.20**
 - [nike.com](https://www.gremlin.com/ecommerce-cost-of-downtime/) revenue loss per minute **\$5,685.60**


* Source: <https://www.gremlin.com/ecommerce-cost-of-downtime/>


Red Hat Ceph Storage

PRODUCT OVERVIEW

Red Hat Ceph Architecture



Red Hat Ceph Object Architecture

- S3 like API & Swift API
- Objects are stored in buckets
- Bucket index can be sharded into multiple parts for better performance

Red Hat Ceph Active/Active Multi-site Architecture

OBJECT STORAGE USE CASE FOR E-COMMERCE PLATFORMS

CUSTOMER REQUIREMENTS

Customer's requirements

- **Store bills in PDF issued by e-commerce store worldwide**
- Some numbers:
 - ~80,000,000 bills per year
 - ~64Kb PDF size
 - ~200K request during first sales hour
 - peaks of ~6000 purchases per minute
 - ~15.000.000 bills during Black Friday
- ~2x growth year by year!!!
- In some countries, e-bills have to be stored there
- High Availability and Disaster Recovery
- Currently stored in traditional NAS not able to geo-scale

WHY CEPH FOR THE RETAIL INDUSTRY?

Why Red Hat Ceph Storage was chosen? (I)

- Bills are stored in unique PDFs
 - PDF is an object --> Object Storage
- Ceph can scale to many millions of objects
- Easily and massively scalable:
 - Scale out process is simple
 - From one disk or one server with disks
- Flexibility and freedom to customize commodity HW
 - Freedom to choose any x86 hardware vendor
 - Disk technology to satisfy performance
- Open Source vs Proprietary

Why Red Hat Ceph Storage was chosen? (II)

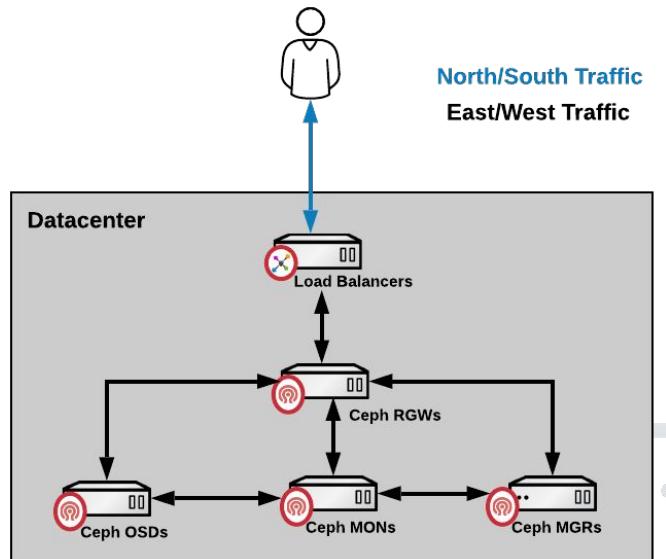
- Highly Available
 - Distributed architecture
 - No SPoF
- Easy maintenance
 - No outages when upgrading & operating
- Data durability via erasure coding or replication
- Able to meet performance requirements
 - Scale out
 - Customized architecture: CPU, RAM, disks, networking

Why Red Hat Ceph Storage was chosen? (III)

- Object Storage Rest API compatible with Amazon S3 API
 - Based on the de-facto industry standard-proprietary API (S3)
 - Commonly used with any object storage: No vendor lock-in
- Ceph Multi-site architecture
 - Complies with Geo-distribution of bills
 - Business continuity + Disaster Recovery
- Successful PoC that demonstrates the features!!
- Competition:
 - EMC Elastic Cloud Storage (ECS)

Red Hat Consulting

FASTE^T CEPH OBJECT STORAGE


ARCHITECTURE

Customer Architecture

- Why is this solution unique?
 - Red Hat Ceph Storage 3.0
 - Full flash NVMe disks
 - No SPoF
 - Active/Active Multi-site replication between 2 DCs
 - Collocated & Containerized Ceph daemons MONs, OSDs & RGWs
 - RGWs perform both tasks, attend **customer requests** and **data replication**.
- Two Ceph production clusters, each cluster:
 - 4 servers for storage. 10 NVMe per server. 40 NVMe disks per cluster.
 - 3 servers for MONs/RGWs.

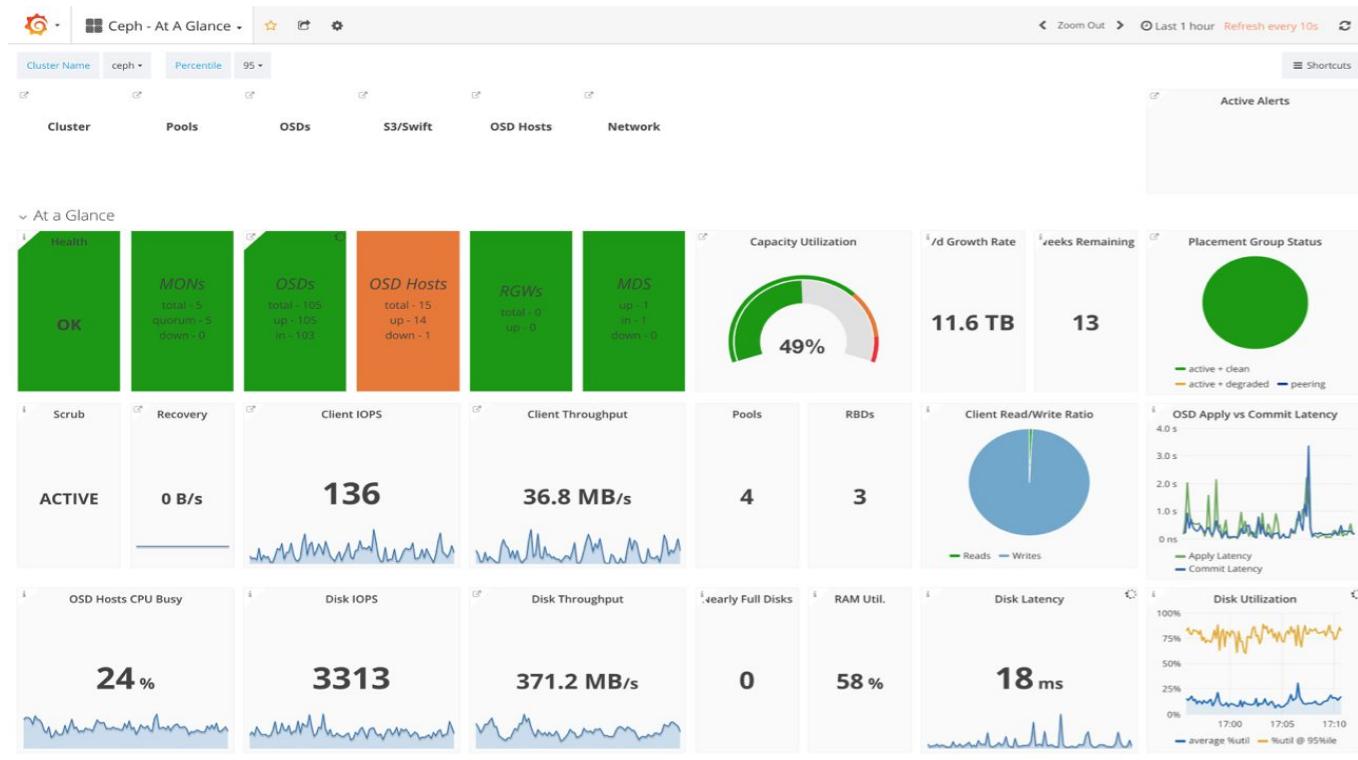
Customer Architecture

- App traffic (North/South)
 - F5 LBs layer to load balance RGWs
 - Expose RGWs APIs (S3) to the Apps
- Ceph cluster replication traffic (East/West)
 - RGWs inter DC sync is point to point, no LB involved
 - RGWs communicate to each other across DCs

IMPLEMENTATION DETAILS

Implementation Details

- First worldwide deployment of its kind:
 - Full flash NVMe
 - Object Storage Multisite Active-Active Architecture
 - Containerized Ceph Services
 - Red Hat Ceph Storage 3.0!!
 - Was release 3 months ago ;)
- Strong collaboration
 - Customer
 - Red Hat Ceph Engineering
 - Red Hat Ceph Support
 - Red Hat Storage Business Unit
 - Red Hat Consulting


Implementation Details

- Containerized installation using ceph-ansible tool
 - Supported, easy and fast
- 2nd day Operations performed with ceph-ansible
 - Upgrades, add & remove disks, etc
- Ceph daemons running in containers
 - Installed just a few packages
 - New version of Ceph -> New container image
 - Ceph operations have to be done inside the container!

Implementation Details

- Ceph metrics, visually monitors various metrics in a Ceph cluster
 - Comes with Ceph Ansible installer
 - Real time monitoring tool!!!
 - Very easy to install
- Key to visualize and analyze benchmark results
 - Gathers many key metrics: I/O, Network, latency, etc.
- Before Ceph metrics, monitoring a Ceph cluster was a DIY effort.

Implementation Details

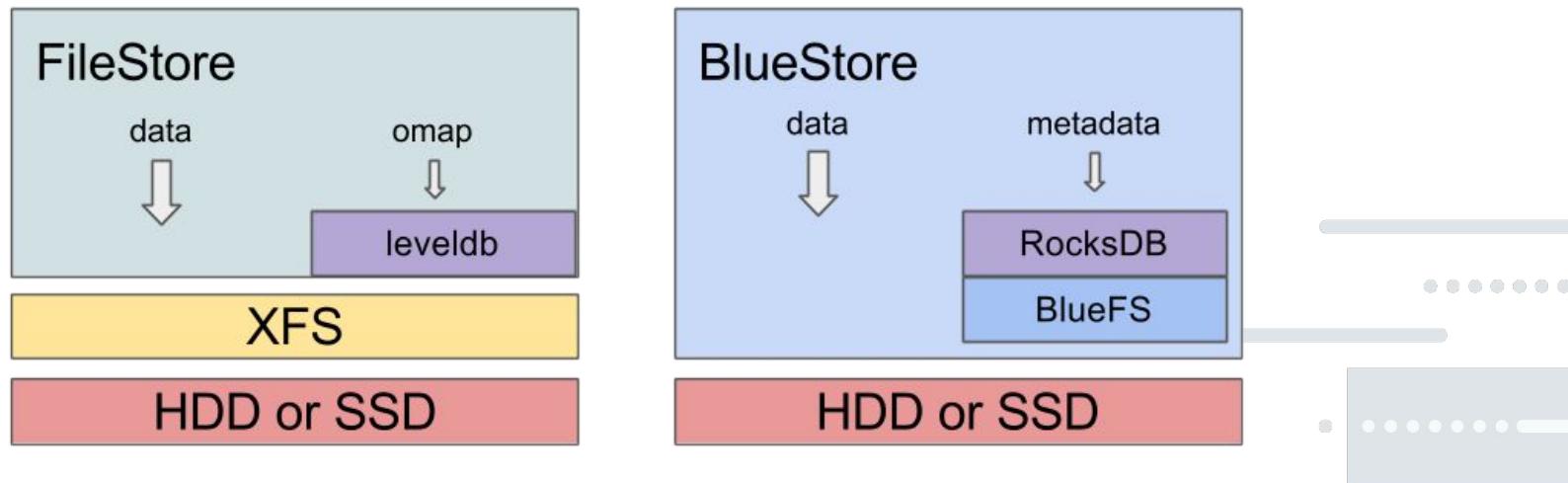
BENCHMARKING

Customer's requirements

- **Store bills in PDF issued by e-commerce store worldwide**
- Some numbers:
 - ~80,000,000 bills/objects per year
 - ~64Kb Object size
 - ~200K request during first sales hour
 - peaks of ~6000 purchases per minute
 - ~15.000.000 bills during Black Friday
- ~2x growth year by year!!!

Benchmarking - Single Cluster

- CosBench tool to "try" to stress the cluster
 - A benchmark tool for cloud object storage service
- We really could NOT stress the disks/RGWs nor disks ;)
 - We did many tests
 - We saturated the network
 - We saturated the CosBench nodes
- 88.000.000 objects(64k) digested in the cluster, in 11 hours!!!!
 - Only to one cluster, no replication active yet.
 - Customer requirements exceeded in the first test, with no tuning!!
- Cluster filled with 240.000.000 objects (64K)
 - Close to cluster full capacity
 - Not performance degradation!


Benchmarking - Multisite Replication

- Simulated customers needs for Multisite replication benchmark
 - Filling the cluster with objects, with no cleanup
 - Last benchmarks performed with cluster full of objects
 - No performance degradation!!
- Performance test is executed from 4 external CosBench nodes, directly to the LBs.
 - All RGWs nodes as LBs backends.
 - RGWs perform both tasks, attend **customer requests** and **data replication**.
- CosBench execution time for 10M objects (64k):
 - 2 hours and 35 minutes (9300 seconds)
- Performance:
 - $10M \text{ requests} / 9300 = 1075 \text{ requests/second!!!}$

FUTURE IMPROVEMENTS

Migrate to BlueStore Backend

- Red Hat Ceph Storage 3.2 supports BlueStore
- BlueStore is a new Ceph Backend
 - Replaces current backend: Filestore

Migrate to BlueStore Backend

- Significant performance improvements for Block and Object.
- Already public benchmarks.
- 4M Objects - 100% writes
 - 88% increase in throughput
 - 47% decrease in average latency
- 4M Objects - 70% read / 30% write
 - 64% increase in throughput
 - 40% decrease in average latency

Source: <https://ceph.com/planet/bluestore-unleashed/>

Cold Backup Cluster

- Avoid malicious or accidental buckets/objects deletion.
 - Data is critical!!
 - Requirement to keep all objects (including history) in a separate area.
- Storing every object in a full flash NVMe cluster is expensive ;)
- So syncing objects to a cold backup cluster is the solution chosen.
- New archive zone feature coming in Nautilus!!!
 - **Archive zone federation enables full preservation of all objects (including history) in a separate zone (cluster).**
- Separate tool to restore objects from the cold backup cluster.

Conclusions

Conclusions

- Object storage is able to satisfy requirements traditional NAS storage is not capable to accomplish in the retail industry
- Red Hat Ceph Storage is an open, flexible and scalable object storage solution
- Hardware to run Ceph can be customized and adapted to fulfill any performance requirements
- Ceph multi-site architecture provides geographical async replication between clusters in active-active mode

Conclusions

- Ceph is flexible enough to accommodate other use cases in the future for this customer:
 - Store web images for online stores
 - Store millions of WhatsApp attachments for customer supporting returns and refunds
- New use cases for Ceph as storage solution beyond providing storage to OpenStack:
 - Persistent storage for OpenShift and Kubernetes with Rook.io
 - Data analytics and Shared Data Lake for Big Data through S3A
 - Massively scalable Object storage for IoT, Machine Learning and AI

Team members

- Sales team:
 - Mar Santos, Key Account Manager
 - Ramón Gordillo, Solution Architect
 - Luis Rico, Storage Specialist Solution Architect EMEA
- Red Hat Consulting team:
 - Mariola Ramos, Technical Project Manager
 - Daniel Domínguez, Cloud&Storage Architect
 - Jorge Tudela, Cloud&Storage Consultant
 - Maurizio Garcia, Cloud&Storage Consultant
 - José Ángel de Bustos, Cloud&Storage Consultant
 - Eric Goirand, Storage Architect EMEA

Q&A

THANK YOU

plus.google.com/+RedHat

facebook.com/redhatinc

linkedin.com/company/red-hat

twitter.com/redhat

youtube.com/user/RedHatVideos

Sources

- <https://ceph.com/community/new-luminous-scalability/>
- <https://www.gremlin.com/ecommerce-cost-of-downtime/>
- <http://www.privacy-regulation.eu/en/article-5-principles-relating-to-processing-of-personal-data-GDPR.htm>
- https://www.redhat.com/en/success-stories/?f%5B0%5D=taxonomy_product%3ARed+Hat+Ceph+Storage