How Software Defined Storage Can Help To Solve Retail Industry Challenges

Luis Rico - Senior Storage Specialist Solution Architect, EMEA
Jorge Tudela - Senior Cloud Consultant, Iberia
José Ángel de Bustos - Senior Cloud Consultant, Iberia

07/May/2019
AGENDA
AGENDA

- Retail Industry Challenges
- Red Hat Ceph Storage Product Overview
- Object Storage Use Case for E-Commerce Platform
- Fastest Red Hat Ceph Object Storage
- Conclusions
- Q&A
Retail Industry Challenges

● Availability
 ○ Global Geo-Availability 24x7

● Scalability
 ○ Aggressive growth year by year
 ○ ~2x growth or more for many companies

● Performance
 ○ Support high traffic peaks during specific dates
 ■ Christmas sales, Black Friday, etc
 ○ E-commerce store sensitive to web experience (lag, delays, etc)
 ■ Requires fastest R/W operations

● Data location is important
 ○ To comply with National legislations:
 ■ In some countries, bills have to be stored physically inside the country
Retail Industry Challenges

● Data retention
 ○ Retail companies must comply with local National legislations
 ○ Data retention policies are dictated by National legislations
 ○ For example, European GDPR Article 5:
 ■ "Personal data shall be kept in a form which permits identification of data subjects for no longer than is necessary"

● High SLAs, specially e-commerce platform
 ○ Small service outages are worth $$.
 ○ E-commerce cost of downtime:
 ■ [amazon.com](https://www.gremlin.com) revenue loss per minute $220,318.80
 ■ [walmart.com](https://www.gremlin.com) revenue loss per minute $40,771.20
 ■ [nike.com](https://www.gremlin.com) revenue loss per minute $5,685.60

* Source: https://www.gremlin.com/ecommerce-cost-of-downtime/
Red Hat Ceph Architecture

Library allowing apps to directly access RADOS

RADOS: A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes.

- OSDs
- MONs
- MGRs

RADOSGW

Restful S3/Swift

RBD

Distributed block device

CEPHFS

POSIX-compliant distributed filesystem
Red Hat Ceph Object Architecture

- S3 like API & Swift API
- Objects are stored in buckets
- Bucket index can be sharded into multiple parts for better performance
Red Hat Ceph Active/Active
Multi-site Architecture
OBJECT STORAGE USE CASE
FOR
E-COMMERCE PLATFORMS
CUSTOMER REQUIREMENTS
Customer's requirements

- Store bills in PDF issued by e-commerce store worldwide
- Some numbers:
 - ~80,000,000 bills per year
 - ~64Kb PDF size
 - ~200K request during first sales hour
 - Peaks of ~6000 purchases per minute
 - ~15,000,000 bills during Black Friday
- ~2x growth year by year!!!
- In some countries, e-bills have to be stored there
- High Availability and Disaster Recovery
- Currently stored in traditional NAS not able to geo-scale
WHY CEPH FOR THE RETAIL INDUSTRY?
Why Red Hat Ceph Storage was chosen? (I)

- Bills are stored in unique PDFs
 - PDF is an object --> Object Storage
- Ceph can scale to many millions of objects
- Easily and massively scalable:
 - Scale out process is simple
 - From one disk or one server with disks
- Flexibility and freedom to customize commodity HW
 - Freedom to choose any x86 hardware vendor
 - Disk technology to satisfy performance
- Open Source vs Proprietary
Why Red Hat Ceph Storage was chosen? (II)

- **Highly Available**
 - Distributed architecture
 - No SPoF
- **Easy maintenance**
 - No outages when upgrading & operating
- **Data durability via erasure coding or replication**
- **Able to meet performance requirements**
 - Scale out
 - Customized architecture: CPU, RAM, disks, networking
Why Red Hat Ceph Storage was chosen? (III)

- Object Storage Rest API compatible with Amazon S3 API
 - Based on the de-facto industry standard-proprietary API (S3)
 - Commonly used with any object storage: No vendor lock-in
- Ceph Multi-site architecture
 - Complies with Geo-distribution of bills
 - Business continuity + Disaster Recovery
- Successful PoC that demonstrates the features!!

- Competition:
 - EMC Elastic Cloud Storage (ECS)
Red Hat Consulting

FASTEST CEPH OBJECT STORAGE
ARCHITECTURE
Customer Architecture

- Why is this solution unique?
 - Red Hat Ceph Storage 3.0
 - Full flash NVMe disks
 - No SPoF
 - Active/Active Multi-site replication between 2 DCs
 - Collocated & Containerized Ceph daemons MONs, OSDs & RGWs
 - RGWs perform both tasks, attend **customer requests** and **data replication**.

- Two Ceph production clusters, each cluster:
 - 4 servers for storage. 10 NVMe per server. 40 NVMe disks per cluster.
 - 3 servers for MONs/RGWs.
Customer Architecture

- **App traffic (North/South)**
 - F5 LBs layer to load balance RGWs
 - Expose RGWs APIs (S3) to the Apps

- **Ceph cluster replication traffic (East/West)**
 - RGWs inter DC sync is point to point, no LB involved
 - RGWs communicate to each other across DCs
IMPLEMENTATION DETAILS
Implementation Details

● First worldwide deployment of its kind:
 ○ Full flash NVMe
 ○ Object Storage Multisite Active-Active Architecture
 ○ Containerized Ceph Services
 ○ Red Hat Ceph Storage 3.0!!
 ■ Was release 3 months ago ;)

● Strong collaboration
 ○ Customer
 ○ Red Hat Ceph Engineering
 ○ Red Hat Ceph Support
 ○ Red Hat Storage Business Unit
 ○ Red Hat Consulting
Implementation Details

- Containerized installation using ceph-ansible tool
 - Supported, easy and fast

- 2nd day Operations performed with ceph-ansible
 - Upgrades, add & remove disks, etc

- Ceph daemons running in containers
 - Installed just a few packages
 - New version of Ceph -> New container image
 - Ceph operations have to be done inside the container!
Implementation Details

- Ceph metrics, visually monitors various metrics in a Ceph cluster
 - Comes with Ceph Ansible installer
 - Real time monitoring tool!!!
 - Very easy to install

- Key to visualize and analyze benchmark results
 - Gathers many key metrics: I/O, Network, latency, etc.

- Before Ceph metrics, monitoring a Ceph cluster was a DIY effort.
Implementation Details
BENCHMARKING
Customer's requirements

- Store bills in PDF issued by e-commerce store worldwide
- Some numbers:
 - ~80,000,000 bills/objects per year
 - ~64Kb Object size
 - ~200K request during first sales hour
 - peaks of ~6000 purchases per minute
 - ~15,000,000 bills during Black Friday
- ~2x growth year by year!!!
Benchmarking - Single Cluster

- CosBench tool to "try" to stress the cluster
 - A benchmark tool for cloud object storage service

- We really could NOT stress the disks/RGWs nor disks ;)
 - We did many tests
 - We saturated the network
 - We saturated the CosBench nodes

- 88,000,000 objects (64k) digested in the cluster, in 11 hours!!!!
 - Only to one cluster, no replication active yet.
 - Customer requirements exceeded in the first test, with no tuning!!

- Cluster filled with 240,000,000 objects (64K)
 - Close to cluster full capacity
 - Not performance degradation!
Benchmarking - Multisite Replication

- Simulated customers needs for Multisite replication benchmark
 - Filling the cluster with objects, with no cleanup
 - Last benchmarks performed with cluster full of objects
 - No performance degradation!!

- Performance test is executed from 4 external CosBench nodes, directly to the LBs.
 - All RGWs nodes as LBs backends.
 - RGWs perform both tasks, attend customer requests and data replication.

- CosBench execution time for 10M objects (64k):
 - 2 hours and 35 minutes (9300 seconds)

- Performance:
 - 10M requests / 9300 = 1075 requests/second!!!
FUTURE IMPROVEMENTS
Migrate to BlueStore Backend

- Red Hat Ceph Storage 3.2 supports BlueStore
- BlueStore is a new Ceph Backend
 - Replaces current backend: Filestore
Migrate to BlueStore Backend

- Significant performance improvements for Block and Object.
- Already public benchmarks.
- 4M Objects - 100% writes
 - 88% increase in throughput
 - 47% decrease in average latency
- 4M Objects - 70% read / 30% write
 - 64% increase in throughput
 - 40% decrease in average latency

Source: https://ceph.com/planet/bluestore-unleashed/
Cold Backup Cluster

- Avoid malicious or accidental buckets/objects deletion.
 - Data is critical!!
 - Requirement to keep all objects (including history) in a separate area.

- Storing every object in a full flash NVMe cluster is expensive ;)

- So syncing objects to a cold backup cluster is the solution chosen.

- New archive zone feature coming in Nautilus!!!
 - Archive zone federation enables full preservation of all objects (including history) in a separate zone (cluster).

- Separate tool to restore objects from the cold backup cluster.
Conclusions
Conclusions

- Object storage is able to satisfy requirements traditional NAS storage is not capable to accomplish in the retail industry

- Red Hat Ceph Storage is an open, flexible and scalable object storage solution

- Hardware to run Ceph can be customized and adapted to fulfill any performance requirements

- Ceph multi-site architecture provides geographical async replication between clusters in active-active mode
Conclusions

● Ceph is flexible enough to accommodate other use cases in the future for this customer:
 ○ Store web images for online stores
 ○ Store millions of WhatsApp attachments for customer supporting returns and refunds

● New use cases for Ceph as storage solution beyond providing storage to OpenStack:
 ○ Persistent storage for OpenShift and Kubernetes with Rook.io
 ○ Data analytics and Shared Data Lake for Big Data through S3A
 ○ Massively scalable Object storage for IoT, Machine Learning and AI
Team members

● Sales team:
 ○ Mar Santos, Key Account Manager
 ○ Ramón Gordillo, Solution Architect
 ○ Luis Rico, Storage Specialist Solution Architect EMEA

● Red Hat Consulting team:
 ○ Mariola Ramos, Technical Project Manager
 ○ Daniel Domínguez, Cloud&Storage Architect
 ○ Jorge Tudela, Cloud&Storage Consultant
 ○ Maurizio Garcia, Cloud&Storage Consultant
 ○ José Ángel de Bustos, Cloud&Storage Consultant
 ○ Eric Goirand, Storage Architect EMEA
Q&A
THANK YOU

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Google+</td>
<td>plus.google.com/+RedHat</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>linkedin.com/company/red-hat</td>
</tr>
<tr>
<td>Facebook</td>
<td>facebook.com/redhatinc</td>
</tr>
<tr>
<td>Twitter</td>
<td>twitter.com/redhat</td>
</tr>
<tr>
<td>YouTube</td>
<td>youtube.com/user/RedHatVideos</td>
</tr>
</tbody>
</table>
Sources

- https://ceph.com/community/new-luminous-scalability/
- https://www.redhat.com/en/success-stories/?f%5B0%5D=taxonomy_product%3ARed+Hat+Ceph+Storage