

Red Hat Ceph Storage in BBVA

High Performance Workloads

Daniel Parkes

Senior Cloud Consultant, Iberia

06/05/2019

Spain's second largest bank, BBVA have a broad global presence & innovative culture

BBVA

Six Strategic Priorities

- New standard in customer experience
- Digital sales
- New business models
- Optimize capital allocation
- Unrivaled efficiency
- A first class workforce

€685
billion in total assets

73
million customers

>30
countries

8,200
branches

31,602
ATMs

131,745
employees

Data at the end of March 2018. Those countries in which BBVA has no legal entity or the volume of activity is not significant are not included

BBVA. Why Red Hat Ceph Storage?

Key Storage Decisions Factors

Enterprise Class - High Performance

Openstack Integration

Multi-Geographic
Distribution

Secure Multitenancy

Efficiency / Scalability

Automation

Key Storage Decisions Factors

Enterprise Class - High Performance

Openstack Integration

Multi-Geographic Distribution

Secure Multitenancy

Efficiency / Scalability

Automation

openstack®

Cinder, Glance, Swift, Manila, Nova, Keystone

Single Storage Layer

Availability Zones - Regions

Containerized Services

Security

Interoperability / API compatibility

Key Storage Decision Factors

- Enterprise Class - High Performance
- Openstack Integration
- Multi-Geographic Distribution
- Secure Multitenancy
- Efficiency / Scalability
- Automation

Bluestore

Next Generation performance flash-native

RBD, RGW, CephFS

RBD-mirroring

Bluestore compression

Erasure Coding

Ansible Driven

Cinder, Glance, Swift, Manila, Nova, Keystone

Single Storage Layer

Availability Zones - Regions

Containerized Services

Security

Interoperability / API compatibility

Partnership

Hardware Architecture

Choosing the right hardware configuration

Red Hat Ceph Storage Node Configuration

Chassis

5 x Cisco UCS C220-M5SN Rack Server

CPU

2 x Intel Xeon Platinum 8180. 28 core @ 2.50 GHz

Memory

12 x 16GB DIMM Modules(196 GB)

NIC

2 x Cisco UCS VIC 1387 40GB Dual Port

Storage

Data: 7x Intel® SSD DC P4500 4.0 TB

RocksDB/WAL: 1x Intel Optane SSD P4800X 375GB

Software Configuration

RHEL 7.6, Linux Kernel 3.10, RHCS 3.2(12.2.8)

Client Hardware Configuration

Chassis

7 x Cisco UCS B200 M4 Blade servers

CPU

2x Intel® Xeon® CPU E5-2640 v4 @ 2.40GHz

Memory

528 GB

NIC

Cisco UCS VIC 1387 2 port (20Gb public network)

Software Configuration

RHOSP 10, RHEL 7.6, Linux Kernel 3.10, Pbench-FIO 3.3

Network Architecture

Software Architecture

RH Ceph Storage Configuration

Red Hat Ceph Storage 3.2 Configuration ceph

- ❑ Software versions:
 - Red Hat Ceph Storage 3.2 (Luminous 12.2.8)
 - RHEL 7.6
 - Linux Kernel 3.10
- ❑ Ceph-Ansible Containerized deployment
- ❑ 3 Ceph nodes will have collocated MON + MGR + OSD services
- ❑ Set per OSD container Limit: 7 Vcpus/12Gb Ram
- ❑ 2 OSDs per NVMe drive/ 70 OSDs
- ❑ WAL and RocksDB configured on Intel Optane P4800X drive

Fitting Red Hat Ceph Storage in BBVA's current Red Hat Openstack

Availability Zones Openstack IaaS Overlay

Availability Zones Openstack IaaS Overlay

Availability Zones Openstack IaaS Overlay

Cinder Storage AZ1

Cinder Standard type

- Cinder NFS Backend
- Cinder Standard Type
- Sata Disk Storage

Cinder Storage AZ2

Cinder Standard type

Cinder Storage AZ3

Cinder Standard type

Availability Zones Openstack IaaS Overlay

Red Hat Ceph Storage 3.2 Performance Bluestore on All Flash Clusters Results

Performance Testing Methodology

- ❑ **2 OSDs per NVMe drive.**
- ❑ **Ceph Storage Pool Config.**
 - 2x Replication 4096 PGs. 105x200Gb RBD images. $\sim 2\text{TB} \times 2 = 4\text{ TBytes}$.
- ❑ **RBD block tests were run using FIO RBD IOengine.**
 - Pbench-fio version 3.3 used to generate the load.
 - 1 RBD image per client, 105 clients spread among the 7 hypervisors available.
 - 3 workloads used: Random Read, Random Write and Mixed 70% Read/30% Write
- ❑ **RBD block test duration and execution.**
 - The RBD images were pre-conditioned writing the full size of each volume.
 - Each test was run 4 times during 10 minutes.
 - The results presented are the average of these 4 runs.

Peak Performance With Small Block Workloads(4kb)

RHCS 3.2 BlueStore on All-Flash : IOPS vs. Average Latency vs. IO-Depth

5 x Ceph Nodes | 4KB Block Size | 105 x RBD Volumes

IO-Depth 64

RR. 2.2 Million IOPS@3ms
average latency

RW. 463K IOPS@11ms
average latency

MIXED. 691K IOPS@5.8ms
average latency

IO-Depth 32

RR. 2 Million IOPS@1.8ms
average latency

RW. 415K IOPS@6.2ms
average latency

MIXED. 611K IOPS@3.2ms
average latency

Small Block(4k) Workload CPU Utilization

RHCS 3.2 BlueStore on All-Flash : IOPS vs. CPU Utilisation vs. IO-Depth

5 x Ceph Nodes | 4KB Block Size | 105 x RBD Volumes

IO-Depth 64

RR. 92% CPU usage

RW. 83% CPU usage

MIXED. 83% CPU usage

IO-Depth 32

RR. 89% CPU usage

RW. 76% CPU usage

MIXED. 75% CPU usage

Peak Throughput With Big Block Workloads(1MB/4MB)

RHCS 3.2 BlueStore on All-Flash : Throughput vs. Media Utilisation vs. CPU Utilisation

5 x Ceph Nodes | 1MB / 4MB | IODepth 32 | 105 x RBD Volumes

Big Block 4MB throughput

RR. Limited to 10Gbytes/s by network

RW. Limited to 10Gbytes/s by network

MIXED. Limited to 10Gbytes/s by network

Big Block 1MB throughput

RR. Limited to 10Gbytes/s by network

RW. 6.2 Gigabytes/s

MIXED. 8.5 Gigabytes/s

RHCS 3.2 Bluestore performance Scalability

RHCS 3.2 Scale Out: 3 Node vs. 5 Node. IOPS vs. Latency

3 & 5 x Ceph Nodes | 4KB Block Size | 105 x RBD Volumes | IO-Depth 32

Scale Out. IOPS results

RR. **55% Increase** with 5 nodes

RW. **90% Increase** with 5 nodes

MIXED. **77% Increase** with 5 nodes

Scale Out. Latency results

RR. **29% Lower** latency

RW. **40% Lower** latency

MIXED. **46% Lower** latency

How Many OSDs Per Drive 2 or 4 ?

4 OSD higher CPU Percentage Utilization

Very similar IOPS and Latency results.

Performance Boost Using Intel Optane P4800X for the RocksDB/WAL device

RHCS 3.2 BlueStore on All-Flash : Optane vs No Optane . IOPS vs. Latency

5 x Ceph Nodes | 8KB Block Size | 84 x RBD Volumes | IO-Depth 32

RocksDB/WAL with Optane

IOPS. 8KB Block Size

RR. 29% Increase in IOPS
RW. 37% Increase in IOPS
MIXED. 51% Increase in IOPS

Avg Latency. 8KB Block Size

RR. 17% Lower latency
RW. 27% Lower latency
MIXED. 43% Lower latency

Tail Latency. 8KB Block Size

RR. 75% Lower latency
RW. 71% Lower latency
MIXED. 51% Lower latency

SQL workload All-Flash vs Spinning Drives

MySQL on Ceph RBD : Write Queries Per Seconds (QPS) & 99th Percentile Tail Latency (ms)

60 x HDD Ceph Cluster, 42 x NVMe Ceph Cluster, 10 x MySQL Instances, 1 x 100G Cinder RBD per MySQL Instance

RHCS on All-Flash Cluster: Performance Blog Series

BlueStore (Default vs. Tuned) Performance Comparison
red.ht/RHCS-Bluestore-Perfomance-Blog1

Configuration Files Used During Benchmarking

Red Hat Ceph Storage ceph.conf file used during tests
red.ht/ceph-conf

Red Hat Ceph Storage ceph-ansible group_vars/all.yml
red.ht/ceph-ansible-conf

Red Hat Enterprise Linux custom Tuned profile
red.ht/rhel-tuned-conf

Flexible I/O tester configuration template file
red.ht/fio-template-conf

FIND US AT RED HAT SUMMIT

redhat.com/storage

@redhatstorage

redhatstorage.redhat.com

- At the Storage lockers
- At the Red Hat booth
- At one of Storage dedicated sessions (red.ht/storageatsummit)
- At the Community Happy Hour (Tues 6:30, Harpoon Brewery)
- At the Hybrid Cloud Party (Wed, 7:30, “Committee” restaurant)

Red Hat OpenShift Container Storage
red.ht/videos-RHOCS

Red Hat data analytics infrastructure solution
red.ht/videos-RHDAIS

Red Hat Hyperconverged Infrastructure
red.ht/videos-RHHI

THANK YOU

[linkedin.com/company/Red-Hat](https://www.linkedin.com/company/Red-Hat)

[facebook.com/RedHatinic](https://www.facebook.com/RedHatinic)

[youtube.com/user/RedHatVideos](https://www.youtube.com/user/RedHatVideos)

twitter.com/RedHat